Online Supplement

All-age relationship between arm span and height in different ethnic

 groups| Philip H. Quanjer | Department of Pulmonary Diseases, and Dept of Paediatrics, division Respiratory Medicine, Erasmus University Medical Centre - Sophia Children's Hospital, Rotterdam, the Netherlands. |
| :---: | :---: |
| André Capderou | Université Paris-Sud, Faculté de Médecine Paris-Sud, Centre Chirurgical Marie Lannelongue, Service Physiologie, and INSERM U 999, Le Plessis Robinson, France |
| Mumtaz M. Mazicioglu | Erciyes Üniversitesi Tıp fakültesi Aile hekimliği Anabilim Dalı Melikgazi-Kayseri, Turkey |
| Ashutosh N. Aggarwal | Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh 160012 India |
| Sudip Datta Banik | Department of Human Ecology. Centro de Investigación y de Estudios Avanzados (Cinvestav) del Instituto Politecnico Nacional (IPN), Mérida. Yucatan, Mexico. |
| Stevo Popovic | University of Montenegro, Faculty for Sport and Physical Education, Niksic, Montenegro |
| Francis A. K. Tayie | Department of Human Environmental Studies, Central Michigan University, Mount Pleasant, MI, USA |
| Mohammad Golshan | Dept. of Medicine, School of Medicine, Isfahan University of Medical Sciences, Iran |
| Mary S.M. Ip | Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China |
| Marc Zelter | Université Pierre et Marie Curie, and Assistance Publique, Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France |

Relationship between arm span and height in different ethnic groups

Online supplement

Figure E-1. Arm span/standing height ratio as a function of age in males and females, for each of the 9 sites contributing data.

Table E-1. Agreement between the number of French patients classified with a z-score below (low) or above (normal) - 1.645 for FEV_{1}, FVC or $\mathrm{FEV}_{1} / \mathrm{FVC}$, or a restrictive pattern (FEV 1 /FVC z-score > -1.645 FVC <-1.645.
Calculations were performed using measured and predicted height.

		Using measured height	
		FEV_{1}	
		low	normal
	low	329	41
	normal	22	1111
		FVC	
		low	normal
	low	169	23
	normal	25	1286
		$\mathrm{FEV}_{1} / \mathrm{FVC}$	
		low	normal
	low	329	6
	normal	0	1186
		Restrictive pattern	
		low	normal
	low	58	8
	normal	7	1430

Fig E-2. Worm plot displaying the residuals within different age ranges. The residuals relate to the model of sitting height/standing height as a function of age and ethnic group in males.

Fig. E-3. Normal probability (Q-Q) plot and other quantile distributions which allow to judge the goodness of fit to the data of the model for the standing height/height ratio in males as a function of age and ethnic group. In case of a good fit the quantile residuals should be symmetrically distributed (i.e. equal variance) around an average $=0$, the density plot should suggest a Gaussian distribution, and the plot of theoretical quantiles and quantiles from the fitted sample should lie on a line $y=x$.

Figure E-4. Mspline represented by three polynomials for the 5-95 year age range. The explained variance (r^{2}) between measured and derived Mspline varied between 0.9997 and 1 in females, and between 0.9995 and 1 in males.

