

Collaboration between explainable artificial intelligence and pulmonologists improves the accuracy of pulmonary function test interpretation

Nilakash Das¹, Sofie Happaerts [©]², Iwein Gyselinck [®]^{1,2}, Michael Staes^{1,2}, Eric Derom [®]³, Guy Brusselle [®]³, Felip Burgos [®]⁴, Marco Contoli⁵, Anh Tuan Dinh-Xuan [®]⁶, Frits M.E. Franssen [®]⁷, Sherif Gonem⁸, Neil Greening⁹, Christel Haenebalcke¹⁰, William D-C. Man [®]^{11,12}, Jorge Moisés [®]¹³, Rudi Peché¹⁴, Vitalii Poberezhets [®]¹⁵, Jennifer K. Quint [®]^{11,12}, Michael C. Steiner⁹, Eef Vanderhelst [®]¹⁶, Mustafa Abdo¹⁷, Marko Topalovic¹⁸ and Wim Janssens [®]^{1,2}

¹Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases Metabolism and Ageing, KU Leuven, Leuven, Belgium. ²Clinical Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium. ³UZ Gent, University of Ghent, Ghent, Belgium. ⁴Department of Pulmonary Medicine, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain. ⁵Department of Translational Medicine, University of Ferrara, Ferrara, Italy. ⁶Service de Physiologie-Explorations Fonctionnelles, AP-HP, Hôpital Cochin, Université Paris Cité, Paris, France. ⁷Department of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, The Netherlands. ⁸Nottingham University Hospitals NHS Trust, Nottingham, UK. ⁹Leicester NIHR Biomedical Research Centre – Respiratory, Department of Respiratory Sciences, University of Leicester, Leicester, UK. ¹⁰AZ Sint-Jan Brugge-Oostende, Bruges, Belgium. ¹¹National Heart and Lung Institute, Imperial College London, London, UK. ¹²Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK. ¹³Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain. ¹⁴CHU Charleroi, Charleroi, Belgium. ¹⁵Department of Propedeutics of Internal Medicine, National Pirogov Memorial Medical University, Vinnytsya, Ukraine. ¹⁶University Hospital of Brussels, Vrije Universiteit Brussel, Brussels, Belgium. ¹⁷LungenClinic Grosshansdorf, Grosshansdorf, Germany. ¹⁸ArtiQ NV, Leuven, Belgium.

Corresponding author: Wim Janssens (wim.janssens@uzleuven.be)

respectively; n=62 pulmonologists). In both phases, the number of diagnoses in the differential diagnosis

did not reduce, but diagnostic confidence and inter-rater agreement significantly increased during

intervention. Pulmonologists updated their decisions with XAI's feedback and consistently improved their baseline performance if AI provided correct predictions.

Conclusion A collaboration between a pulmonologist and XAI is better at interpreting PFTs than individual pulmonologists reading without XAI support or XAI alone.