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SUPPLEMENTAL METHODS 

 

Supplemental Method E1. Artificial Intelligence Training Framework 

 

Supplemental Table E1 describes the population characteristics of the 78 cystic fibrosis (CF) 

patients whose computed tomography (CT) examination was entered in the artificial 

intelligence (AI) Training dataset. There was a wide range of ages, from 4- to 51-year-old, 

and a wide range of disease severity, as assessed by forced expiratory volume in 1-second 

percentage predicted (FEV1%) at pulmonary function test (PFT), from 31 to 114%.   

Three CF reference centers from two Institutions were involved: the Adult’s Hospital of Haut 

Leveque (Pessac, France; Site1), the Children’s Hospital of Pellegrin (Bordeaux, France; 

Site2), and Cincinnati Children Hospital Medical Center (Ohio, United States of America; 

Site3). All three sites correspond to geographically distinct CF reference centers, notably with 

their medical team and their own CT machines[1]. CT and PFT were performed the same as 

part of the annual evaluation. 

Pulmonary function tests were completed by using a bodyplethysmography devices (site1: 

Medisoft, Belgium; site2: Jaeger, Germany; site3: SensorMedics, USA). The examinations 

were performed according to the joint ATS/ERS taskforce guidelines [2], and a daily 

calibration of devices was routinely performed. Reference values were determined according 

to Quanjer et al. in site 1 and 2[3], and according to Wang et al. in Site 3[4]. This evaluation 

requires the cooperation of the patients, which is not always possible notably in children 

under the age of 6-year-old[5]. 
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Supplemental Table E2 describes the CT characteristics. There were seven different machine 

models from 2 major manufacturers over the three sites, namely General Electric (GE) GE 

Lightspeed 16®, GE LightSpeed VGT®, GE Revolution®, Siemens Somatom Emotion®, 

Siemens Somatom Sensation 16®, Siemens Somatom Definition 64®, and Siemens Somatom 

Force®. The matrix was 512*512, the dose-length product ranged from 8 to 260 mGy.cm and 

the slice thickness from 1 to 1.25 mm. 

All patients were thoroughly coached in breathing techniques before each CT scan and CT at 

full inspiration and reconstructed with standard kernels were used. This methodology choice 

deserves some comments. A previous study has shown that standard kernel CT noise texture 

is similar between manufacturers[6] and avoids the high level of noise-induced by “sharp” 

filters[6]. Second, AI was trained by using inspiratory CT images only. Expiratory CT 

requires additional radiation exposure and, despite advances in CT reduction of radiation 

doses, this is not practiced in all CF centers[7–11]. Moreover, inspiratory images are more 

easily obtained than expiratory images[12], improving reliability and allowing younger 

patients to provide the necessary cooperation. Importantly, using only inspiratory images 

decreases radiation exposure by 50%. 

 

 

Methodology used for labeling of CT slices 

The annotation of CT slices was done in consensus between three observers of 6, 12, and 25 

years of experience in thoracic imaging, who are part of a CF reference center which belongs 

to the European Cystic Fibrosis Society Clinical Trial Network,  and with published expertise 

in CF scoring of lung CT and MRI[13–17]. 

Manual segmentation of labels was performed by using the 3D Slicer software 4.11, an open-

source software. CT images were displayed with parenchymal window width and level 

(width, 1500 Hounsfield Unit; level -450 Hounsfield Unit)[18]. Five labels were created to 

represent five main hallmarks of structural alterations of CF: bronchiectasis, peribronchial 

thickening, bronchial mucus plugs, bronchiolar mucus plugs with the “tree-in-bud” pattern, 

and collapse/consolidation[19]. In this study, bronchiectasis refers to the mucus-free airway 

lumen dilatation, and the bronchial mucus plug was scored when a secretion filled the 

bronchial lumen entirely. A sixth label was also created, which corresponds to the lung 

parenchyma, as the total lung minus the sum of other abnormal labels. Bulla or sacculation 

was also not part of the analysis, the former being a rare abnormality[20] and the second 

without a definition[19]. One could discuss that bronchiectasis was meant for mucus-free 
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bronchial lumen dilatation herein. There is not a single definition of bronchiectasis[21]. 

However, the multilabel method allows flexible evaluations and could enable customized 

combinations, such as a mix of the airway lumen, airway wall, and mucus alterations, as 

proposed earlier[22]. In this study, a detailed description of each feature was provided, and we 

did not attempt to perform such combinations. The pipeline to reach a consensus CT 

evaluation is illustrated in Figure E1. One observer with 12 years of experience in thoracic 

imaging and published expertise in CT scoring of CF made the annotations on a slice-by-slice 

analysis over a full CT acquisition. After recognizing a specific label, the observer had to 

delineate their shape and extent. Multiplanar reformations and scrolling of CT slices were 

allowed to identify target structural alterations better. Two independent observers of 6 and 25 

years of experience in thoracic imaging had to visually check the segmentations at the 

segmental level. A segment was considered false-negative if a specific label was missing in a 

lung segment. Conversely, a false-positive was scored when a label was incorrectly present in 

a lung segment. Moreover, a visual agreement of more than 80% in the visible spatial extent 

of true-positive findings was necessary. The threshold of 80% was arbitrary, to take into 

account the human interobserver reproducibility. The true-negative results from the 

surrounding lung parenchyma were not considered for visual consensus analysis. 

If at least one segment was scored as incorrectly labeled by one observer due to false-positive 

and/or false-negative labeling or an agreement in the spatial extent of true-positive labels 

<80%, the CT examination was returned for edits. The process was continued until all 

observers agree that no false-positive or false-negative lung segments were present in the 

multilabel segmentation. The visual extent of true-positive matched all three observers by 

more than 80%. Thus, the CT multilabel segmentation was considered a consensus CT 

segmentation and entered in the AI framework as “ground-truth” (GT). The mean time to 

reach a first CT multilabel segmentation was 10 hours (including all labels). The mean time to 

achieve a consensus CT segmentation was six additional hours, depending on the number of 

structural lung alterations. 

All ground-truth labels were performed randomly, blinded to any other data, and before any 

AI labeling. 

 

Description of the AI pipeline 

Convolutional neural networking training was performed on Lambda Labs computer running 

Ubuntu with ten core I9-9820X processor, 128GB memory, Titan RTX GPU with 24GB 
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memory. We allocated 23 530 axial CT slices from 78 CF patients' CT scans to create the 

image analysis pipeline. As mentioned above, they were annotated by the consensus of three 

expert radiologists as training data. The multilabel segmentation included five classes 

representing five main hallmarks of structural alteration in the cystic fibrosis lung and a sixth 

class to characterize the surrounding lung parenchyma. Then, each CT slice was scaled to a 

value between 0-1. To improve the method's generalizability, we used the Vicinal Risk 

Minimization principle to train similar but different training data examples through data 

augmentation[23]. The accompanying segmentation was used to create heuristic data 

augmentation by applying a deterministic sequence of transformation functions. In our 

implementation, ten new image/segmentation combinations were obtained by applying affine 

transformations, including random combinations of shearing, scaling, rotation, and 

translation.  Data augmentation was performed using Keras image data preprocessing tools 

(available at https://keras.io/api/preprocessing/image/). After augmentation, there were 258 

830 unique 2D-CT image and semantic segmentation pairs (1 original plus ten augmented) for 

neural network training. To further improve generalizability, random pairs of the 

image/segmentation data were selected to undergo Mixup augmentation[24].  Another 30 000 

Mixup image/segmentation pairs were created and made available for neural network training.   

A total of 288 830 CT slices data were pooled together, shuffled regardless of the CT scan 

they were originally coming from, and then split randomly 80%/20% as training and 

validation datasets for neural network optimization. Three two-dimensional (2D) 

convolutional neural network (CNN) architectures were trained based on the popular U-Net 

model with different backbone architectures. These included:  

1) InceptionResNetv2 (Model 1) is a convolutional neural architecture that builds on the 

Inception family of architectures but incorporates residual connections, replacing the filter 

concatenation stage of the Inception architecture[25];  

2) ResNet50 (Model 2) is a convolutional neural network that is 50 layers deep and uses 

residual learning[26]; 

3) the classic U-net (Model 3) is a convolutional neural network, where the main principle is 

to supplement a usual contracting network by successive layers, where polling operators are 

replaced by upsampling operators[27]. 

These models were chosen for two main reasons. First, the three of them are known to have 

made such significant contributions to the field of imaging segmentation that they have 

https://keras.io/api/preprocessing/image/
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become widely considered as current standards[28]. Thus, they are commonly used as 

building blocks for many segmentation architectures[29]. Second, their backbone 

architectures are different; thus, their segmentation result is not expected to be entirely 

similar, allowing a Majority Vote ensemble of different classifiers[30]. 

 

The optimizer algorithm selected was Adam, a replacement optimization algorithm for 

stochastic gradient descent for training deep learning models[31]. The loss function was 

combined with categorical cross-entropy and Dice[32] by taking into account the overall 

performance of the six labels.  The Input shape was (512x512x1), and the Output shape was 

(512x512x7). The batch size was 3, and 15 epochs were performed.  

Finally, to improve segmentation consistency, a majority vote[33] of the three outputs was 

performed at each pixel to determine the final semantic multilabel segmentation using ANTs 

(https://github.com/ANTsX/ANTs). The rationale is as follows: 

The rationale is as follows:  

- Assume n independent classifiers with an error rate ϵ. 

- Assume a binary classification task (yes/no) 

- Assume the error rate of each independent classifier is better than random guessing 

(i.e., ϵ is lower than 0.5 for each binary classification) 

Let   (     )be a Bernouilli variable:     if the classifier k makes a good 

prediction (this happens with a probability 1-ϵ) and     if the classifier k makes a 

wrong prediction (this happens with a probability ϵ). 

Let   ∑   
 
   be the number of classifier that make a wrong prediction.  is a 

Binomial variable and we have: 

 (   )  (
 
 
)   (   )    

Therefore, the probability that we make a wrong prediction via the ensemble on n 

classifier is equal to: 

 (  
 

 
)  ∑ (

 
 
)

 

     ⁄  

  (   )    

As a consequence, by making the assumptions mentioned above, it is expected that the 

majority voting error of an ensemble of n independent classifiers converges toward 0 

as long as the number n of classifiers increase. 

https://github.com/ANTsX/ANTs
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That being said, we have used three models, mainly because we have used a “hard voting” 

system instead of “soft voting” system. Indeed, we have not weighted the prediction made per 

each model. Thus, using a hard voting system, any pair number of models would lead to the 

possibility of equality between classifiers, and thus, unlabeled pixels. In this implementation, 

we have chosen to assign a label to all pixels. 

However, other methods of voting systems could be implemented and tested in next studies or 

other groups, for instance soft voting systems or a number of models higher than three. 

However, one could also expect that the time required to get the final results will be 

necessarily much higher by using more than three models. 

 

Pilot evaluation of the manual segmentations chosen as Ground Truth 

 

Supplemental Table E3 shows the result of a pilot statistical analysis performed in the 

Training data set. It shows that all labels from the consensus CT segmentations significantly 

correlated to other well-established biomarkers of the lung disease severity, notably FEV1% 

at PFT, and a modified CT Brody system at CT (Supplemental Table E4)[34], with all p-value 

from all labels being ≤0.001.  

A modified version of Brody and colleagues' original scoring system (24) was necessary since 

expiratory CT was not performed in two of the three CF reference centers. Thus, the feature 

of air trapping was not available for analysis as a sub-score and was not part of the visual CT 

scoring evaluation. In the Training dataset, the visual modified Brody score of anonymized 

CTs was established by Obs3, blinded to any other data. 

 

 

 

Supplemental Method E2. Test Cohort evaluation 

All CF patients from the external Test cohort were not part of the Training cohort. All manual 

ground-truth CT labels in the Test dataset were done using the same method as in the Training 

dataset and before any AI segmentation.  

Since the AI-driven quantification was performed using 2D-CNNs, an evaluation of the 

similarity between AI-driven segmentation and GT labels was planned via a pixel-by-pixel 

2D-similarity assessment over 11345 CT slices of 36 patients CTs, after anonymization, 

blinded from any other data. For this, all 2D-axial CT slices were shuffled randomly 
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altogether before being segmented by the 2D-CNNs. True-positive (TP), true-negative (TN), 

false-positive (FP), and false-negative results (FN) were counted and summed over the full 

dataset of 11345 CT slices to calculate the balanced accuracy, Sorensen-Dice coefficient, 

recall, and precision, as reported earlier[35]. 

 

The standard formula of calculation were as follows: 

Dice = 2*TP / (2*TP + FP + FN) 

Recall = TP / (TP + FN) 

Precision = TP / (TP + FP) 

True negative rate = TN / (TN + FP) 

Balanced accuracy = (Recall + True negative rate) / 2 

 

However, in the specific field of lung CT of CF airways, the similarity metric evaluations 

have to deal with specific issues as follows: 

- The study deals with 2D algorithms. Thus, the unit of measurement is the pixelwise 

similarity, since there is no 3D information in the code of the CNNs, neither for Training nor 

for Test purposes. 

- The full CT examinations of all patients were used, to enable an extensive overview of the 

model performance over a full CT scan, without any pre-selection of some CT slices. This 

includes both tasks of detecting and ruling out the disease presence or absence. 

- However, it is known that there is a vast heterogeneity in the regional distribution of 

structural abnormalities. Therefore, the five structural abnormalities were heterogeneously 

present/absent across the stack of CT slices. 

- Moreover, each label were not segmented by 6 different AI algorithm, but the same AI 

algorithm in a multilabeling fashion. Thus, six labels (including the normal lung parenchyma) 

plus the background image (extrapulmonary pixels) were considered to perform probability 

maps per each CT slice by the same AI algorithm, before allocating a single label per each 

pixel of the CT slice image.  
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- In addition, it is known that the similarity metrics cannot be considered similarly when 

dealing with small or large structures. Owing to the known vast heterogeneity in size and 

shape of structural abnormalities, the metrics would not have the same meaning from one CT 

slice to another[36]. 

  

Therefore, the heterogeneity of distribution of lesions does not allow to provide the results as 

a mean per CT slice with standard deviation. Notably, the heterogenous distribution of lesions 

would inevitably lead to a substantial amount of 0 divisions in the calculations, thus a 

mathematical impossibility to calculate the metrics. In addition, the heterogeneity in size and 

shape of the structural abnormalities would also lead to mix similarity results that would not 

have the same meaning from one evaluation to another. Thus, such approach would also lead 

to inconsistent and uninterpretable results[36]. 

This is why we have performed the similarity evaluation by using a spatial overlap 

calculation over the full set of CT slices[35]. By doing so, one could remark that the 

uncertainty of the result is expected to be negligible, since it is performed over 512x512 

pixels per CT slice, over 11435 CT slices herein. 

Indeed, the mathematical formula of the 95% confidence interval would be: 

P = p ± 1.96 √[p(1-p)/n] where P is the maximum or minimum limit of the 95% confidence 

interval of a ratio, p the measured ratio, and n is the number of evaluations (herein the number 

of pixels). 

Thus, we have assumed that the 95% confidence interval of the pixelwise similarity metrics 

are negligible.  

 

Finally, the Total Abnormal Lung's similarity result was calculated as the mean of the five 

label results, related to bronchiectasis, peribronchial thickening, bronchial mucus, bronchiolar 

mucus, and collapse/consolidation measurements. 

Then, the shuffled CT slices were re-assigned to their initial CT examination, and the volume 

of labels was calculated per each CT scan according to the volume of positive findings of 

each label, and expressed as a volume in milliliters. One could remark that these volumetric 

measurements are original, as compared the standard cross-sectional measurements of 

airways, which represents the plain area of a single cross-section along a bronchial path[14]. 
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The Total Abnormal Volume was defined as the sum of the five structural alteration volumes 

per CT scan. The Total Lung Volume was defined as the sum (Total Abnormal Volume + 

Lung Parenchyma Volume). 

To take into account variations in lung volumes, notably between children and adults, or 

related to lung growth over time in children and teenagers, normalization was performed as 

follows: Normalized Volume of Label(y) = [Volume of Label(y) / Total Lung Volume] x 10
4
. 

The factor 10
4 

was done to take into account the expected magnitude of volume difference 

between the normal central airway tree at the segmental level and the lung volume[37]. 

 

Supplemental Method E3. Visual CT scorings. 

As mentioned above, we used a modified Brody score on CT[34] (Supplemental Table E4).  

Two separate sessions were done: the first session was dedicated to CTs of the Test cohort, 

and the second session was dedicated to CTs of the Clinical Validation cohort. 

Per each session, anonymized CTs of a given cohort were analyzed randomly by Obs1 and 

Obs2, independently and blinded to any other data. The mean of both evaluations was kept for 

further analysis. The time required to perform a CT Brody score ranges between 15 to 20 

minutes. 

 

Supplemental Method E4. Reproducibility and repeatability of evaluations. 

To assess the reproducibility of AI evaluations, the 140 CTs of the Clinical Validation cohort 

were runned on two different computers: 

- An “advanced” computer, with the following characteristics: Lambda Labs computer 

running Ubuntu with ten core I9-9820X processor, 128GB memory, Titan RTX GPU 

with 24GB memory 

- A “standard” computer, with the following characteristics: Dell computer running 

Windows 10 with I7-6700 processor, 32 GB memory, GeForce GT 730 with 2 GB 

memory. 

The repeatability of AI evaluation was also assessed by repeating twice the 140 CTs by using 

the advanced computer. 
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Moreover, a random subset of 8 patients’ CTs (e-Table5) was segmented independently by 

Observer 1 and 2 with 6 and 12 years of experience, respectively, to assess the manual 

interobserver reproducibility. The same dataset was manually segmented a second time by 

Observer 2, 6 months apart from the first evaluation, to assess the intra-observer repeatability. 

Observer 1 and 2 were the same observers than those who were part of the Training 

evaluations. 
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SUPPLEMENTAL TABLES 

 

Table E1. Characteristics of 78 cystic fibrosis patients in the Training dataset 

        

      Training dataset 

        

        

Age Years   21 (4-51) 

Gender Male/Female   36/42 

Body mass index kg.m
-2

   19 (12-28) 

        

Pulmonary function tests FEV1%   74 (31-114) 

  100xFEV1/FVC 73 (38-92) 

 100xRV/TLC 41 (17-106) 

        

Visual CT score mBrody score 40 (0-151) 

        

        

Data are median with (minimum-maximum) range of values 

 

Legends: FEV1=forced expiratory volume in 1 second; FVC=forced vital capacity; RV=residual volume; TLC=total 

lung capacity; %=percentage predicted; mBrody=modified Brody score. 
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Table E2. Characteristics of CT scans 

 
          

              

Dataset Machine model Kernel Reconstruction DLP kV mAs 
Slice 

thickness 

        (mGy.cm) 
 

  (mm) 

                

Training 
Somatom Sensation 16® (Site1, 

n=7 ; Site2, n=9) 
STD (n=31) FBP (n=42) (8-260) (100-140) (5-40) (1-1.25) 

  
Somatom Definition 64® (Site1, 
n=8 ; Site2, n=10) 

B40s (n=20) ASiR (n=16)         

  
Somatom Force® (Site1, n=9) 

Somatom Emotion® (Site3, n=4) 
Br40 (n=7) SAFIRE (n=20)         

  GE LightSpeed 16® (Site3, n=9) I30f (n=20)           

  GE LightSpeed VGT® (Site3, n=6)             

  GE Revolution® (Site2, n=16)             

                

Test 
Somatom Sensation 16® (Site1, 
n=2 ; Site2, n=5) 

STD (n=14) FBP (n=12) (9-210) (100-140) (5-40) (1-1.25) 

  
Somatom Definition 64® (Site1, 

n=3 ; Site2, n=6) 
B40s (n=8) ASiR (n=10)         

  Somatom Force® (Site1, n=5) Br40 (n=5) SAFIRE (n=14)         

 Somatom Emotion (Site3, n=1) I30F (n=9)      

 GE LightSpeed® 16 (Site3, n=2)       

  GE LightSpeed VGT® (Site3, n=2) 
 

          

  GE Revolution® (Site2, n=10)             

               

                

Clinical 

Validation 

Somatom Sensation 16® (Site1, 

n=28 ; Site2, n=35) 
B40s (n=53) FBP (n=75) (12-64) 110 (5-54) 1 

  
Somatom Definition 64® (Site1, 
n=37 ; Site2, n=40) 

Br40 (n=22) SAFIRE (n=65)         

    I30F (n=65)           

                

            

 

Legend: Site1=Adult Hospital of Haut Levêque (Pessac, France); Site2=Children Hospital of Pellegrin 

(Bordeaux, France); Site3=Cincinnati Children Hospital Medical Center (Ohio, United States of America); 

GE=General Electric®; STD=standard kernel; FBP=filtered-back projection; ASiR=adaptive statistical iterative 

reconstruction; SAFIRE=sinogram affirmed iterative reconstruction; kV=kilovoltage, mAs=milliampere second; 

DLP=dose length product; for kV, mAs and pixel size, data between parentheses are the (minimum-maximum) 

range of values. 
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Table E3. Correlation between structural abnormality volumes, lung function, and structural 

severity in the Training dataset. 

              

              

    Manual segmentation 

Normalized volumes   FEV1%   mBrody score 

    rho p-value   rho p-value 

              

Bronchiectasis   -0.45 0.001   0.72 <0.001 

Peribronchial thickening   -0.49 <0.001   0.70 <0.001 

Bronchial mucus plug   -0.64 <0.001   0.67 <0.001 

Bronchiolar mucus plug   -0.46 <0.001   0.69 <0.001 

Collapse/Consolidation   -0.35 0.001   0.39 <0.001 

Total Abnormal Volume   -0.60 <0.001   0.79 <0.001 

              

              

Note: Data are Spearman's rho coefficient of correlation. The Total Abnormal Volume corresponds 

to the sum of five structural alteration volumes. Normalized volumes were obtained by dividing a 

given structural alteration volume by the corresponding total lung volume. 

Legends: FEV1%=forced expiratory volume in 1-second percentage predicted; mBrody=modified 

Brody score 
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Table E4. Brody HRCT score (reproduced from the original publication by A. S. Brody et al. J Pediatr 2004). 

    

Parameter Calculation 

 

 

Bronchiectasis score (0-12) 

(Extent of bronchiectasis in central lung + Extent of bronchiectasis in peripheral 

lung) x Average bronchiectasis size multiplier [0.5 = 0; 1 = 1; 1.5 = 1.25; 2.0 = 

1.5; 2.5 =1.75; 3 = 2] 
 

where 
 

Average bronchiectasis size = ( Size of largest dilated bronchus + Average size 

of dilated bronchus )/2   

Mucus plugging score (0-6) 
The extent of mucous plugging in central lung + Extent of mucous plugging in 

peripheral lung  

Peribronchial thickening 

score (0-9) 

(Extent of peribronchial thickening in central lung + Extent of peribronchial 

thickening in peripheral lung) x Severity of peribronchial thickening [1 = mild; 

1.25 = moderate; 1.5 = severe] 
 

Parenchyma score (0-9) 
The extent of dense parenchymal opacity + Extent of ground-glass opacity + 

Extent of cysts or bullae  

Air trapping score (0-4.5) 
Extent of air trapping x Appearance of air trapping [1 = subsegmental; 1.5 = 

segmental or larger]  

    
 

Finding extent scoring: absent (0), 1/3 of the lobe (1), 1/3 to 2/3 of the lobe (2), more than 2/3 of the lobe (3) 
 

Bronchiectasis Severity: less than 2X adjacent vessel (1), 2x to 3x adjacent vessel (2), more than 3X adjacent 

vessel (3)   

Parameters’ definitions   
 

1.Bronchiectasis: one or more of the following criteria: a broncho arterial ratio >1, a non-tapering bronchus, a 

bronchus within 1 cm of the costal pleura, or a bronchus abutting the mediastinal pleura  

2. Peribronchial thickening: bronchial wall thickness >2 mm in the hila, 1 mm in the central portion of the lung, 

and 0.5 mm in the peripheral lung  

3. Mucus plugging: Central mucous plugging was defined as an opacity filling a defined bronchus, and peripheral 

mucous plugging was defined as the presence of either dilated mucous-filled bronchi or peripheral thin branching 

structures or centrilobular nodules in the peripheral lung 
 

4. Air trapping: areas of the lung on the expiratory images that remained similar in attenuation to the appearance 

on inspiratory images   

    
 

Note: in this study, we used a modified version of the scoring system, and the feature of air trapping was not 

scored. Indeed, in this retrospective study, expiratory CT was not performed in 2/3 sites.  
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Table E5. Characteristics of 8 cystic fibrosis patients of the Clinical Validation cohort for 

interobserver manual similarity assessments. 

 

        

      N=8 

        

        

Age Years   12 (6-42) 

Gender Male/Female   3/5 

Body mass index kg.m
-2

   17 (13-21) 

        

Pulmonary function tests FEV1%   68 (38-95) 

  100xFEV1/FVC   77 (51-101) 

 100xRV/TLC  42 (24-85) 

        

 
mBrody score   115 (0-152) 

        

        

Data are median with (minimum-maximum) range of values 

Legends: FEV1=forced expiratory volume in 1 second; FVC=forced vital capacity; RV=residual volume; 

TLC=total lung capacity; %=percentage predicted; mBrody=modified Brody score. 
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Table E6. Background therapeutic management in the Clinical Validation cohort. 

          

    Clinical Validation Cohort 

    n=70 

    

n=10 patients with 

lumacaftor/ivacaftor 
  

n=60 patients without 

lumacaftor/ivacaftor 

          

Inhaled treatment Antibiotics 3   24 

  LABA 4   15 

  Corticosteroid 4   15 

  Mucolytic 7   43 

          

Oral treatment Antibiotics 0   5 

  Corticosteroids 0   0 

  Antifungal 0   4 

          

Intravenous treatment Antibiotics 0   5 

  Corticosteroids 0   0 

 Antifungal 0  0 

          

          

Data are the absolute number of patients with a given chronic treatment. 

Legends: LABA=long-acting beta-agonist. 
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Table E7. Description of the volume of the six labels in the Test cohort per each CT slice, in milliliters. 

  

  

                        

  AI segmentation   Manual segmentation 

Labels 
Median IQR 

95% 

CI 
Minimum Maximum 

  
Median IQR 

95% 

CI 
Minimum Maximum 

                        

Bronchiectasis 0.0005 0-0.06 0-0.04 0 2.4   0.0005 0-0.08 0-0.05 0 3 

                        

Peribronchial 

thickening 
0.001 0-0.01 0-0.5 0 2.4 

  
0 0-0.01 0-0.7 0 2.5 

                        

Central mucus 0.0005 0-0.05 0-0.4 0 1.3   0 0-0.07 0-0.4 0 1.5 

                        

Peripheral mucus 0.001 0-0.03 0-0.1 0 1.9   0.001 0-0.09 0-0.5 0 2 

                        

Collapse consolidation 0 0-0.08 0-0.2 0 4.3   0 0-0.09 0-0.4 0 4.4 

                        

Lung parenchyma 21.3 0-34.6 0-41.9 0 50.8   21.2 0-34.2 0-41.9 0 50 

                        

                        

Note: data corresponds to the volume per each CT slice, and expressed in milliliters.           

The summary characteristics were calculated from 11435 CT slices of 36 CF patients' CT         

Legend: AI=artificial intelligence; IQR=interquartile range; CI=confidence interval           
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Table E8. Performance of three convolutional neural networks in the Test dataset. 

 

 

                 

Overall pixelwise similarity in 

11435 axial CT slices 

  

Bronchiectasis 
Peribronchial 

Thickening 

Bronchial 

mucus 

plug 

Bronchiolar 

mucus plug 

Collapse 

/consolidation 

Total 

Abnormal 

Lung 

 

  
          

  

InceptionResNetv2 DICE 0.85 0.68 0.79 0.46 0.74 0.70 

  Precision 0.89 0.71 0.82 0.61 0.83 0.77 

  Recall 0.81 0.66 0.76 0.37 0.67 0.65 

  
Balanced 

Accuracy 
0.90 0.83 0.88 0.68 0.85 0.82 

    
      

ResNet50 DICE 0.83 0.67 0.77 0.48 0.70 0.69 

  Precision 0.89 0.76 0.80 0.65 0.74 0.76 

  Recall 0.79 0.60 0.74 0.38 0.65 0.63 

  
Balanced 

Accuracy 
0.89 0.80 0.87 0.69 0.85 0.82 

    
      

U-net DICE 0.82 0.65 0.75 0.45 0.72 0.68 

  Precision 0.88 0.77 0.82 0.74 0.80 0.79 

  Recall 0.77 0.56 0.69 0.32 0.66 0.60 

  
Balanced 

Accuracy 
0.89 0.78 0.84 0.66 0.85 0.80 

    
      

Majority Vote DICE 0.84 0.69 0.79 0.49 0.75 0.71 

  Precision 0.90 0.78 0.87 0.78 0.86 0.84 

  Recall 0.79 0.61 0.73 0.37 0.66 0.63 

  
Balanced 

Accuracy 
0.90 0.81 0.87 0.68 0.85 0.82 

    
      

                

 

Note: Owing to the large number of pixels over 11435 CT slices , the confidence interval of measurements was 

considered as negligible. 

The Total Abnormal Lung values correspond to the average of the five structural alterations results. 
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Table E9. Longitudinal evaluation of CF patients at initial evaluation and at follow-up, with or 

without lumacaftor/ivacaftor treatment. 

  

Clinical Validation cohort 
CF patients with 

lumacaftor/ivacaftor (n=10) 

CF patients without 

lumacaftor/ivacaftor (n=60) 

  
Median 

difference 

95%CI of 

median 

difference 

Median 

difference 

95% CI of 

median 

difference 

          

Normalized AI 

volumes 
Bronchiectasis -0.2 [-7; 4.5] 3.1 [1; 5.6] 

            

  Peribronchial thickening -6.4 [-22; -2.2] 3.3 [0.1; 9.9] 

            

  Bronchial mucus plug -2.5 [-19; -0.2] -0.3 [-2.4; 0.8] 

            

  Bronchiolar mucus plug -4.1 [-44; -0.3] -0.01 [-0.7; 1.2] 

            

  Collapse/Consolidation -1.4 [-72; 0.01] 0.1 [-1; 0.8] 

            

  Total Abnormal Volume -51 [-146; -4.2] 3.6 [-6.6; 8.7] 

            

PFT FEV1% 5.5 [-1; 19] -1.5 [-4; 0] 

            

Visual CT score mBrody score -2.5 [-30; 0] 5 [0; 5] 

  

  

Note: The Total Abnormal Volume corresponds to the sum of the five structural alterations volumes per CT 

scan. 

Legends: AI=artificial intelligence; PFT=pulmonary function test; FEV1%=forced expiratory volume in 1 

second percentage predicted; mBrody score=modified Brody score 
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Table E10. Paired comparisons of raw AI-driven label volumes in CF patients with and without lumacaftor/ivacaftor 

treatment 

                            

 Clinical Validation cohort 

  
  CF patients with lumacaftor/ivacaftor   

CF patients without 

lumacaftor/ivacaftor 

      (n=10)   (n=60) 

      M0   M12   
p-

value 
  M0   M24   

p-

value 

                            

                            

Raw AI volumes (ml) Bronchiectasis Median 6.8   5.8   0.88   5.8   8.6   0.005 

    Range (0-75)   (0-82)       (0-144)   (0.1-146)     

                            

  
Peribronchial 

thickening 
Median 6.3   3.9   0.005   6.8   11.5   0.003 

    Range (1-18)   (0-11)       (0-84)   (0.2-99)     

                            

  Bronchial mucus plug Median 2.3   2.0   0.005   3.0   2.7   0.96 

    Range (0.08-20)   (0.01-13)       (0-110)   (0.1-58)     

                            

  Bronchiolar mucus plug Median 8.3   3.2   0.006   1.7   2.8   0.52 

    Range (0.1-36)   (0.01-25)       (0-32)   (0-49)     

                            

  Collapse/Consolidation Median 3.0   1.5   0.01   1.5   1.3   0.68 

    Range (0-80)   (0-17)       (0-55)   (0.9-46)     

                            

  Total Abnormal Volume Median 56.0   20.4   0.005   21.4   29.5   0.17 

    Range (1.0-294)   (0.8-100)       (0-276)   (0.8-249)     

                            

  Lung Parenchyma Median 3250   3457   0.04   3549   3929   0.001 

    Range (2326-6494)   (2328-6494)       (1009-7405)   (1389-7455)     

                            

                            

 

Note: Data are medians, with (minimum-maximum) range of values. The Total Abnormal volume corresponds to 

the sum of the five structural alterations volumes per CT scan. 

 

Legends: M0=initial evaluation; M12=second evaluation at one year; M24=second evaluation at two years. 
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Table E11. Characteristics of CT scans in the follow-up of 140 CF.  

  

                    

      CF with lumacaftor/ivacaftor 
 

CF without lumacaftor/ivacaftor 

 Clinical Validation group 

  
  (n=10) 

 
(n=60) 

      M0   M12 
 

M0 
 

M24 

      
 

  
     

      
 

  
     

Machine brand     
Somatom 

Definition 64® 

(n=10) 

  
Somatom 

Definition 64® 

(n=10) 
 

Somatom 
Definition 64® 

(n=33) 
 

Somatom 
Definition 64® 

(n=34) 

      
 

  
  

Somatom 
Sensation 16® 

(n=27) 
 

Somatom 
Sensation 16® 

(n=26) 

      
 

  
     

Kernel     I30f (n=10)   I30f (n=10) 
 

I30f (n=22) 
 

I30f (n=23) 

      
 

  
  

Br40 (n=11) 
 

Br40 (n=11) 

      
 

  
  

B40s (n=27) 
 

B40s (n=26) 

      
 

  
     

Reconstruction     SAFIRE (n=10)   SAFIRE (n=10) 
 

FBP (n=38) 
 

FBP (n=37) 

      
 

  
  

SAFIRE (n=22) 
 

SAFIRE (n=23) 

      
 

  
     

DLP  
 mGy.cm  
(minimum-maximum) 

  (12-17)   (12-18) 
 

(12-53) 
 

(13-64) 

      
 

  
     

kV 
 

  110   110 
 

110 
 

110 

      
 

  
     

mAs 
Dose modulation* 

(yes/no) 
  10/0   10/0 

 
38/32 

 
39/31 

  
If yes, reference values 

(minimum-maximum) 
  (5-10)   (5-10) 

 
(5-10)  

 
(5-10) 

          

  
If no, fixed value 

(minimum-maximum) 
  NA   NA 

 
(35-54) 

 
(35-54) 

      
 

  
     

Slice thickness (mm)   1   1 
 

1 
 

1 

      
 

  
     

      
 

            

 

 

*Note: the dose modulation system was CareDose4D®. 

Legends: FBP=filtered-back projection; SAFIRE=sinogram affirmed iterative reconstruction; kV=kilovoltage, 

mAs=milliampere second; DLP=dose length product 

 

 

 

 



25 
 

 

 

 

 

Table E12. Reproducibility and repeatibility of AI and manual interobserver similarity in the Clinical Validation cohort 

  

2D pixelwise similarity AI1 vs. AI2 AI1 vs. AI1 

n=42280 CT slices in 140 CTs Dice Dice 

      

      
Bronchiectasis >0.99 >0.99 

Peribronchial thickening >0.99 >0.99 

Bronchial mucus plug >0.99 >0.99 

Bronchiolar mucus plug >0.99 >0.99 

Collapse/Consolidation >0.99 >0.99 

Total Abnormal Lung >0.99 >0.99 

Lung Parenchyma >0.99 >0.99 

  

      
  Manual1 vs. Manual2 Manual1 vs. Manual1 

n=2850 CT slices in 8 CTs Dice Dice 

      

      
Bronchiectasis 0.86 0.84 

Peribronchial thickening 0.70 0.73 

Bronchial mucus plug 0.72 0.73 

Bronchiolar mucus plug 0.62 0.65 

Collapse/Consolidation 0.73 0.77 

Total Abnormal Lung 0.72 0.74 

Lung Parenchyma 0.99 0.99 

      
      

  

Note: the Total Abnormal Lung corresponds to the average of the five structural alterations similarity results. 

Legends: AI1=artificial intelligence-driven measurement performed on an advanced computer device; AI2=artificial intelligence-driven 

measurement performed on a standard computer device; Manualx=segmentation performed by Observer x 
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SUPPLEMENTAL FIGURES 

 

 

 

Figure E1. Flow chart of the method to produce consensus CT semantic segmentation for 

Training. The segmentations were visually checked at the segmental level. TP=true positive; 

FP=false positive; FN=false negative. 
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Figure E2. Axial (A) and coronal reformations (D) of a lung CT scan acquired in a 15-year-

old female with cystic fibrosis. Manual (B, E) and AI-driven (C, F) semantic multilabel 

segmentation are shown and displayed in corresponding axial CT slice (B, C) and volume 

rendering in coronal view (E, F). In panels B, C, E, F, red arrow and red labels indicate 

mucus-free bronchial lumen dilatations, green arrow, and green labels show peribronchial 

thickening, blue arrow, and blue labels indicate central bronchoceles. Bronchiolar mucus 

plugs were labeled in yellow color, and orange arrows show some AI’s false-negative results 

of this feature (C). In panels E and F, cyan labels indicate consolidations. Note the 

heterogeneity of structural alterations and their regional distribution within the same lung CT 

volume. In this patient, the mean Dice coefficient of similarity between manual and AI-driven 

segmentation was equal to 0.70. 
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Figure E3. Bland-Altman analyses of manual versus AI-driven label volumes in the Test 

cohort (n=36), expressed in milliliters. The plain lines represent the mean difference and the 

bars their 95% confidence interval; the dashed lines represent the limits of agreement. 
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Figure E4. Bland-Altman analyses of manual versus AI-driven normalized volumes in the 

Test cohort (n=36). The plain lines represent the mean difference and the bars their 95% 

confidence interval; the dashed lines represent the limits of agreement. 

 

 

Figure E5. Spearman’s correlations between AI-driven measurement of normalized total 

abnormal volume and CF disease severity, as assessed by the forced expiratory volume in 1-

second percentage predicted (FEV1%; A and C) and the modified Brody score (mBrody; B 

and D). Results are shown for both the Test (A, B) and the Clinical Validation (C, D) cohorts. 
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Figure E6. Comparison of AI-driven semantic labeling in the Clinical Validation cohort, at 

initial evaluation (A, C) and after two years (B, D) of standard management, in a 15-year-old 

male with cystic fibrosis. Axial CT slices (A, B) are shown, with AI-driven semantic labeling 

displayed in the corresponding axial slice (C, D). Mucus-free bronchial lumen dilatations are 

labeled in red color, peribronchial thickening in green color, bronchial mucus plugs in blue 

color, bronchiolar mucus plugs in yellow color, and atelectasis in cyan color. In panels (C, D), 

red arrows show an increase in bronchial dilatations and peribronchial thickening over time.  

 

 

 

 

 


