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Abstract
Rationale Lung transplantation is the ultimate treatment option for patients with end-stage respiratory
diseases but bears the highest mortality rate among all solid organ transplantations due to chronic lung
allograft dysfunction (CLAD). The mechanisms leading to CLAD remain elusive due to an insufficient
understanding of the complex post-transplant adaptation processes.
Objectives To better understand these lung adaptation processes after transplantation and to investigate
their association with future changes in allograft function.
Methods We performed an exploratory cohort study of bronchoalveolar lavage samples from 78 lung
recipients and donors. We analysed the alveolar microbiome using 16S rRNA sequencing, the cellular
composition using flow cytometry, as well as metabolome and lipidome profiling.
Measurements and main results We established distinct temporal dynamics for each of the analysed data
sets. Comparing matched donor and recipient samples, we revealed that recipient-specific as well as
environmental factors, rather than the donor microbiome, shape the long-term lung microbiome. We further
discovered that the abundance of certain bacterial strains correlated with underlying lung diseases even
after transplantation. A decline in forced expiratory volume during the first second (FEV1) is a major
characteristic of lung allograft dysfunction in transplant recipients. By using a machine learning approach,
we could accurately predict future changes in FEV1 from our multi-omics data, whereby microbial profiles
showed a particularly high predictive power.
Conclusion Bronchoalveolar microbiome, cellular composition, metabolome and lipidome show specific
temporal dynamics after lung transplantation. The lung microbiome can predict future changes in lung
function with high precision.

Introduction
Lung transplantation is the ultimate, life-saving treatment for patients with end-stage respiratory failure.
Despite substantial medical advances, the 5-year survival rate remains at only 54%, which is the lowest
among all solid organ recipients [1]. This grim prognosis is a consequence of a range of pathologies that
prevent the transplanted lung from maintaining normal function, which are summarised under the umbrella
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term chronic lung allograft dysfunction (CLAD). The most frequent manifestation of CLAD is
bronchiolitis obliterans syndrome (BOS), which is characterised by the development of airflow limitation
caused by bronchiolitis obliterans [2]. The underlying disease mechanism has been linked to allo- and
auto-immunity as well as microbial triggers [3], but the precise pathophysiology is not known and no
specific treatment is available.

Once considered a sterile body site, the lungs are now known to harbour a unique microbiome that is
critical for respiratory health and immune homeostasis [4]. Recent studies indicate that community-level
activities can modulate microbiome pathogenicity [5], myeloid cell responses [6], pulmonary remodelling
[7, 8] and CLAD development [9, 10] after lung transplantation. However, host–microbe interplay in the
transplanted lung is insufficiently understood and it is unclear to what degree the donor lung microbiome
contributes to the post-transplant microbiome and whether this bears relevance for CLAD development.

Innate immune responses are an emerging concept in understanding the events leading to chronic
inflammation and CLAD [11]. As such, resident alveolar macrophages (AMs) seem to be instrumental in
CLAD development [12], and the higher abundance of neutrophils in transplants is considered detrimental
in graft acceptance and survival [11, 13]. These findings clearly suggest a role for myeloid cells in
transplant adaptation and function, yet studies investigating the simultaneous coordination of cellular and
pulmonary microbial changes are lacking.

Metabolites reflect local metabolic states and can mediate the crosstalk between immune responses and
microbiota. In lung transplant recipients, the metabolome composition of bronchoalveolar lavage (BAL)
fluid was used to reliably classify the degree of BOS severity [14] and metabolomics/lipidomics of donor
lung ex vivo lung perfusion fluids were shown to predict primary graft dysfunction [15]. Considering these
findings, we hypothesised that the pulmonary metabolome and lipidome might provide important clues to
understanding multi-level adaptation after lung transplantation.

A better understanding of the contribution of the pulmonary microbiome, metabolome, lipidome and
cellular profiles to the development of CLAD requires a holistic assessment of post-transplant dynamics. In
this explorative cohort study, we characterised the reshaping of the pulmonary environment after
transplantation with the primary objective to identify time-dependent factors of the process and the
secondary objective to describe drivers of lung function decline. Variation of cell composition, microbial
diversity, lipid and metabolite profiles, as well as the spirometry parameter FEV1 (forced expiratory
volume during the first second) served as statistical endpoints. We discovered that the microbial
composition after lung transplantation was primarily driven by environmental and recipient-specific factors,
independent of the donor microbiome, and identified selected microbial species that correlated with
transplant indication. Using a computational model enabled us to predict lung function trajectories from
multi-omics data sets. The explorative study design entails a descriptive interpretation of p-values and
limits conclusions on negative results due to lack of power for small effects.

Ultimately, a more comprehensive knowledge of graft adaptation will enable us to identify novel
therapeutic angles to prevent lung allograft dysfunction in the future.

Materials and methods
Detailed descriptions of materials and methods are provided as a supplement.

Patient collective and recruitment
We included all 78 patients who underwent lung transplantation at the Medical University of Vienna
between February 2017 and November 2018. The cohort consisted of 76 double lung and two single lung
recipients. Donor lung derived BAL samples of sufficiently high quality were available for 23 matched
transplant recipients. To obtain a reliable number of donor samples for cross-sectional analyses we
included 24 additional high-quality donor BALs without matching recipients. Detailed inclusion and
exclusion criteria are stated in the supplementary information. All BAL samples were collected under
sterile conditions during routine bronchoscopy, except for one sample that was collected due to acute
respiratory symptoms. Routine bronchoscopy was performed before extubation, at four, eight, 12, 26 and
52 weeks after transplantation or whenever medically indicated. The collection of follow-up samples was
extended to April 2019. Processing and analyses of BAL samples are described in the supplementary
information. Collected patient variables included recipients’ age, sex, transplant indication,
immunosuppressive therapy, antibiotic and antifungal therapies, serum C-reactive protein (CRP)
concentration, lung function (FEV1) and time after transplantation at the time of sample collection.
Detailed patient characteristics are presented in table 1. The study was approved by the ethics committee at
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the Medical University of Vienna (EK-Nr:1418/2018) and written informed consent was obtained from all
patients.

16S rRNA gene sequencing
Bacterial DNA was isolated using the QIAamp DNA Microbiome kit (Qiagen) according to the
manufacturer’s protocol. We included sampling controls by flushing sterilised bronchoscopes and negative
controls for DNA extraction. Isolated bacterial DNA was amplified using barcoded, adaptor-linked PCR
primers targeting the V1–V2 16S rRNA gene region. PCR products were sequenced using Illumina MiSeq
technology in the 2×250 bp configuration. Sequencing data were processed using the dada2.R package. A
detailed description of bacterial DNA extraction, library preparation, sequencing and sequencing data
processing is included in the supplementary information.

Lipidomics and metabolomics
Liquid chromatography–mass spectrometry (LC-MS) analysis was performed using a Vanquish ultra high
performance liquid chromatography system combined with an Orbitrap Fusion Lumos Tribrid mass
spectrometer for lipidomics or an Orbitrap Q Exactive mass spectrometer for metabolomics. Lipid
separation was performed by reversed phase chromatography. The detailed description of lipid extraction,
lipid- and metabolite LC-MS analysis, and data processing is included in the supplementary information.

TABLE 1 Patient characteristics

All Subset 16S rRNA Seq Subset FACS Subset metabolomics/lipidomics

Patients n 78 73 54 36
Age in years at Tx; median (range) 55.5 (17–69) 55 (17–69) 56.5 (17–69) 58.5 (20–69)
Female patients; n (%) 32 (41) 30 (41) 20 (37) 11 (31)
Samples n 164 143 116 70
Donor samples (recipient-matched) n 47 (23) 35 (15) 24 (12) 9 (6)
Recipient samples n 117 108 92 61
Samples per time bin n
0–7 22 18 18 16
7–30 18 16 15 10
30–75 28 28 24 10
75–400 49 46 35 25

Samples per patient; median (range) 2 (1–6) 1 (1–5) 2 (1–6) 2 (1–6)
Tx indication; samples n/patients n
COPD 44/25 40/22 35/20 29/15
CF 20/20 19/19 10/9 6/6
IPF 14/9 12/9 12/7 10/5
A1ATD 14/5 14/5 13/5 7/3
PPH 6/6 5/6 5/3 1/1
Other 19/13 18/12 17/10 9/6

Immunosuppressive therapy#; samples n/patients n
Prednisolone 117/56 108/54 92/43 61/33
Ciclosporin 4/2 3/1 4/2 1/1
Tacrolimus 113/55 105/33 88/41 60/32
Mycophenolate/mofetil 50/23 47/22 41/18 29/13
Everolimus 6/3 6/3 4/2 1/1

Antibiotic therapy#; samples n/patients n
Trimethoprim/sulfamethoxazole 76/40 73/40 62/33 34/22
Gentamicin inhalation 26/16 21/16 23/16 20/13
Piperacilin/tazobactam 24/17 19/16 20/15 20/14
Tobramycin inhalation 9/7 9/7 4/3 2/2
Meropenem 9/8 8/8 7/6 2/2
Colistin 8/6 7/6 3/2 1/1
Ciprofloxacin 5/5 5/5 2/2 2/2
Other 32/23 29/20 21/15 15/11

#: number of specimens collected from patients while receiving respective drugs at the time of bronchoalveolar lavage. CF: cystic fibrosis; IPF:
idiopathic pulmonary fibrosis; A1ATD: alpha-1 antitrypsin deficiency; FACS: fluorescence-activated cell sorting; 16S rRNA Seq: 16S rRNA gene
sequencing; PPH: primary pulmonary hypertension; Tx: treatment.
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Statistical analyses
Associations of microbial diversity and richness, cell populations, lipid species and metabolites with time
after transplantation were analysed by permutational multivariate variance testing and linear mixed-effect
models. Time intervals were entered as a factor in the permutational multivariate variance testing, and as a
metric covariate together with patient identity as a random effect in the linear mixed-effect models. Factors
explaining microbial variation were identified using distance-based redundancy analysis (dbRDA). The
association of amplicon sequencing variant (ASV) abundance with time after transplantation and transplant
indication was determined using log-transformed linear models on cumulative sum scaling-normalised
ASV data (MaAsLin2 R package). Prediction of lung function from omics data sets was done with ridge
regression, using a nested cross-validation scheme for hyperparameter tuning and estimation of predictive
accuracy. Throughout the manuscript, when applicable, p-values are adjusted for multiple testing using the
Benjamini–Hochberg procedure. Due to the exploratory nature of our research, all p-values are to be
interpreted in a descriptive manner. Detailed information on the statistical analyses is provided as
supplementary material.

Results
Sample stratification and inflammatory parameters
We stratified samples of 78 lung transplant patients into time bins spanning from 0 to 7, 7 to 30, 30 to 75
and >75 days after lung transplantation based on temporal changes in administered medications
(immunosuppressive and antimicrobial therapies) (figure S1a) to detect nonlinear associations with time
after transplantation. We observed strong associations of serum CRP and blood leukocyte counts (p<0.001
for both) with time, indicating decreased systemic inflammation with time after transplantation (figures
S1b and c).

Pulmonary microbiome shows temporal dynamics after lung transplantation
By analysing the microbial taxonomic compositions based on 16S rRNA gene sequencing, we found a
high diversity between samples at genus and phylum level (figure 1a, figure S2a). Hierarchical clustering
of genus-level profiles instantaneously separated samples collected early (<30 days) and late (>30 days)
after transplantation (figure 1a). Species-level microbial diversity (Shannon) and richness (Chao 1) (figure
1b, figure S2b) showed highly significant (p<0.001) associations with time after transplantation. Using
principal coordinate analysis, we observed a tendency of samples to cluster according to time after
transplantation (figure 1c, figure S2c and d). We confirmed these visual patterns by permutational
multivariate analysis of variance (PERMANOVA; p<0.05 for all pairwise comparisons between time
groups) (table S1). Donor samples exhibited a microbial profile that was most similar to samples collected
within the first week after transplantation, but their composition differed significantly from later timepoints
(PERMANOVA p=0.057 versus 0–7 days after transplantation; p=0.001 versus any other time bin) (table S1).
These results show that lung microbial composition and diversity undergo significant changes from
pre-implantation (donor) states to post-transplantation.

Antibiotic therapy and underlying disease explain variation in microbial composition
To identify the key factors that influence the lung microbiome after transplantation, we combined dbRDA
with stepwise model building. We included 108 samples from 73 lung recipients that were collected over
the entire study period (table 1). The primary objective was to assess dependent covariates and to identify
the combination of covariates that best explained microbial variation (figure 1d, figure S2e).

We first analysed all recipient samples (all time bins) and found that the administration of trimethoprim/
sulfamethoxazole, the transplant indication, as well as colistin, meropenem and (inhaled) tobramycin
together could best explain inter-sample variation (figure 1d, top panel). Next, we separately analysed each
time bin after transplantation and observed that only ciprofloxacin during the first week after
transplantation accounted for a significant variation between microbiome samples, while none of the tested
antibiotics explained inter-sample variation 7–30 or 30–75 days after transplantation (figure 1d, second to
fourth panel). Interestingly, out of all tested factors, only transplant indication was significantly associated
with microbial composition 30–75 days after transplantation. For samples collected later than 75 days,
transplant indication best explained microbial variation, followed by some antibiotics, age and sex
(figure 1d, last panel). We also tested the potential impact of immunosuppression on the recipients’ lung
microbiome, but the very homogenous immunosuppressive therapy scheme received by this cohort
(figure S1a) prevented us from identifying clear associations (data not shown). These results suggest that
microbial profiles in samples collected early after transplantation are mainly driven by antibiotic therapy,
while patient-associated factors including transplant indication, age and sex show significant explanatory
power for microbiome samples collected later.
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Selected strains associate with time and transplant indication
After identifying global associations of time and transplant indication with the pulmonary microbial
profile, we tested if individual ASVs differentiated between these associations with time or transplant
indication, respectively. In these analyses, we included 108 recipients’ samples derived from 73 lung
transplant patients with the following indications for lung transplantation: COPD (n=22), cystic fibrosis
(CF) (n=19), idiopathic pulmonary fibrosis (IPF) (n=9), alpha-1 antitrypsin deficiency (A1ATD) (n=5),
primary pulmonary hypertension (PPH) (n=6) and other (n=12) (table 1). The distribution of underlying
diseases is representative of the patient population at our study site (based on 885 patients between 2010
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FIGURE 1 Pulmonary microbial dynamics after lung transplantation. a) Relative abundances (genus level) of
16S rRNA gene sequencing amplicons in donor and recipient bronchoalveolar lavage samples. Samples are
clustered according to Bray–Curtis distance. Time after transplantation is annotated for recipient samples
(heatmap). b) Change in Shannon diversity (species level) with time (linear mixed model p<0.001). Samples are
coloured according to time after transplantation and shape indicates donor (triangle)/recipient (circle) origin.
c) Principal coordinate analysis on Bray–Curtis distances of donor and recipient microbiomes (species level).
Every triangle/circle represents a sample and is coloured according to time after transplantation, while shape
indicates donor (triangle)/recipient (circle) origin. Lines connect samples to the cluster centroids p<0.001,
permutational multivariate analysis of variance (PERMANOVA). d) Microbial variation explained by various
factors analysed by distance-based redundancy analyses (Bray–Curtis distance). R2 and significance for
multivariate models are shown, whereby the best model was generated by selecting predictors in a stepwise
manner, until no further increase in accuracy could be reached. *: p<0.05, **: p<0.01, PERMANOVA test. SXT:
trimethoprim/sulfamethoxazole; dbRDA: distance-based redundancy analysis; Tx: treatment.
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and 2018; data not shown). We found that 33 individual ASVs significantly (false discovery rate (FDR)
<0.1) associated with time after transplantation (figure 2a, table S2). Hierarchical clustering separated these
strains into three different clusters (figure 2a). Meanwhile, six ASVs associated with transplant indication
(figure 2b, table S2). Of these, we detected the strongest association for a strain of Pseudomonas (ASV_2,
FDR=0.006), which was increased in CF patients, supporting previous reports that showed a predisposition
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FIGURE 2 Time and underlying disease influence the recipient lung microbiome. a) Heatmap of amplicon
sequencing variant (ASVs) showing significant (MaAsLin false discovery rate (FDR)<0.1) association with time
after transplantation. Raw counts are cumulative-sum normalised, followed by log-transformation and
standardisation (z-score transformation). Samples (columns) are ordered according to time after
transplantation. ASVs (rows) are clustered using the “ward.D2” method. The first three branches of the
dendrogram are separated for visualisation purposes. b) Boxplots of ASVs showing a significant (MaAsLin
FDR<0.1) association with underlying disease. Raw counts are cumulative-sum normalised, followed by
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of CF patients to lung allograft colonisation with Pseudomonas aeruginosa [16–18]. Furthermore, three
strains were almost exclusively found in IPF patients, of which Fusobacterium nucleatum (ASV_226)
showed the strongest association with transplant indication (FDR=0.01). Another strain identified as
Gemella haemolysans (ASV_42, FDR=0.03) was rarely encountered in patients with CF or A1ATD, but
frequently found in patients with other transplant indications. In addition, Rothia mucilaginosa (ASV_80)
was preferentially found in patients transplanted due to A1ATD (FDR=0.09). Our results show that
transplant indications continuously influence the abundance of certain bacterial strains in the lung after
transplantation, in particular in patients with CF, IPF or A1ATD.

Donor lung microbial profiles do not determine the post-transplant microbiome
To determine to what extent the lung allograft microbiome is influenced by the donor lung microbiome,
we analysed the similarity between matched donor and recipient microbiomes over time. Bray–Curtis
similarity between donors and recipients decreased after transplantation (p<0.001) (figure 2c). Similar
trends were observed for weighted (p<0.001) and unweighted UniFrac similarities (p<0.01) (figure S3a
and b), which incorporate phylogenetic distances between different organisms. In the first week after
transplantation, we found recipient samples to be more similar to matched donor samples than to
time-matched recipients (figure 2d). However, at all subsequent timepoints, recipient samples were more
similar to samples collected within a comparable timeframe than to their respective donors (figure 2d,
figure S3c and d). Thus, the donor microbiome influenced the recipient microbiome only shortly after
transplantation, while recipient-associated factors became dominant in shaping the long-term
post-transplant pulmonary microbiome.

Pulmonary cellular and molecular profiles change after lung transplantation
The abundance of AMs and inflammatory cells, such as neutrophils, in the BAL correlates with the lung
inflammatory state [19]. To investigate alterations in pulmonary cellular profiles after lung transplantation,
we conducted flow cytometry of BAL myeloid cell populations (figure S4a). We observed that the
numbers of AMs and cells expressing major histocompatibility complex class II (MHCII) but not cluster of
differentiation 206 (CD206) were significantly associated with time after transplantation (FDR<0.01 for
AMs, FDR<0.001 for MHCII+ CD206− cells, table S3). While the AM population consistently increased
with time (figure 3a), MHCII+ CD206− cells peaked between 30 and 75 days after transplantation (figure 3b).
Concomitantly, myeloid cells (CD11b+) that expressed neither MHCII nor CD206 nor the neutrophil
marker CD66b expanded early after transplantation and then declined (FDR<0.05) (figure S4b, table S3).
Neutrophils, on average, were surprisingly abundant at all timepoints, but showed high variability between
patients (figure 3c). None of the remaining populations significantly associated with time after
transplantation (figure S4c and d, table S3) and all investigated cell populations were independent of
transplant indication (FDR>0.1 for all) (table S3). Together, we discovered a gradual increase in the
proportion of AMs, indicating a transition towards a pattern similar to that observed in healthy lungs [19].

To investigate whether the dynamics of microbial and cellular compositions correlated with BAL metabolic
profiles, we performed metabolome and lipidome profiling on a subset of 61 recipients and nine donor
samples (table 1). Principal component analysis separated samples according to time after transplantation
(figure 3d–e). Samples collected within the first week after transplantation differed most from later
samples, suggesting that the most pronounced changes occur early after transplantation (PERMANOVA
p<0.05 for 0–7 days after transplantation versus all other time bins) (tables S4 and S5). To determine
whether pre-implantation profiles were more similar to profiles observed early or late after transplantation,
we compared donor lavages to recipient lavages. Donor samples differed significantly (PERMANOVA
p<0.05) from all time bins except the first (0–7 days after transplantation) for both lipids and metabolites
(tables S4 and S5), suggesting that lung adaptation after transplantation, rather than the implantation
procedure, was responsible for the observed early changes in lipid and metabolite profiles.

Having shown that the global pulmonary lipid and metabolite profile changed after lung transplantation,
we next determined which lipid and metabolite species accounted for these changes. Controlling for
transplant indication and patient identity, 28 lipid species and eight metabolites showed significant
(FDR<0.1) associations with time after transplantation (figure 3f, tables S6 and S7). Of these, 13 lipid
species and four metabolites positively correlated with time, whereas 15 lipid species and four metabolites
showed a negative correlation with time (figure 3f, figure S4E). None of the tested lipid species were
affected by transplant indication (FDR>0.1 for all) (table S6). Transplant indication was significantly
associated with leucine concentrations (FDR<0.1), which were higher on average in patients with COPD or
A1ATD than in patients receiving transplantation due to other diseases (figure S4f, table S7). These results
show that alterations in pulmonary microbial profiles after transplantation were accompanied by changes in
intra-alveolar cellular composition and molecular profiles.
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FIGURE 3 Changes in pulmonary cellular and molecular state after lung transplantation. a, b, c) Relative
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assessed by flow cytometry. Boxplots are indicative of median, interquartile range (IQR) (boxes) and 1.5×IQR
(whiskers). False discovery rate (FDR)<0.001 for (a), FDR<0.01 (b), FDR>0.1 for (c), linear mixed model. d, e)
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Machine learning predicts future lung changes in lung function
CLAD is defined as a persistent decline in FEV1 of more than 20% compared to the mean of the two best
postoperative values (obtained at least three weeks apart) in the absence of other explanations for declining
lung function (e.g. acute cellular/antibody-mediated rejection, infection, airway stenosis, tracheomalacia) [2].
Several recent studies [3, 20–22] support the importance of the early diagnosis of a decline in lung
function, as this knowledge might be utilised to prevent progression and CLAD development. To address
this medical need, our secondary objective was to assess whether microbiome, lipidome and metabolome
profiles exhibited any predictive value for future changes in FEV1. We hypothesised that an earlier
identification of patients at risk might help in preventing CLAD development and assessed whether the
microbiome, lipidome and metabolome profiles exhibited any predictive value for future changes in FEV1.
We included 19 recipients where lung function tests were repeatedly performed over an interval of up
to 90 days and all relevant data modalities (microbiome, lipidome, metabolome) and clinical
meta-information were available for model building (tables 1 and 2).

Employing a machine learning approach, we trained ridge regression models using clinical metadata,
microbiome, metabolome and lipidome data sets as predictors, and changes in FEV1 at 30, 60 or 90 days
after sample collection as response variables (figure 4a). Predictive performance was evaluated using
samples collected from patients not included in the training cohort (supplemental methods). To prevent
overfitting, we used a nested cross validation scheme by iteratively removing individual patients from the
model.

We first tested this approach on individual data sets (i.e. microbiome, lipidome or metabolome,
respectively) or clinical metadata (sex, age, time after transplantation, current FEV1 and serum CRP
concentration) alone. Doing so, we observed the most accurate short-term predictions of FEV1 (30 days)
when the algorithm was trained on microbiome data (Pearson r=0.76, p<0.001). For mid-term changes
(60 days), microbiome data and clinical metadata performed similarly well (Pearson r=0.47, p<0.01 for
microbiome, r=0.49, p<0.01 for clinical metadata) while long-term changes (90 days) were most accurately
predicted by clinical metadata (Pearson r=0.42, p<0.05) (figure 4b). Lipidome data performed poorly in
comparison to microbiome data, and metabolome data alone could not predict changes in FEV1. When
testing whether combining these individual omics data sets with clinical metadata would improve
predictive performance, we found metabolome data in combination with clinical metadata more accurate
than any other tested data set in predicting mid-term changes of FEV1 values (Pearson r=0.63, p<0.001 for
60 days) (figure 4c). We furthermore evaluated the predictive performance of data sets generated by
concatenating individual data modalities (figure 4d), as well as the effect of adding clinical metadata to the
combined data sets (figure 4e), which collectively offered superior predictive accuracy over isolated data
sets for short- and mid-term changes in FEV1.

Next, we investigated which specific features contributed to the prediction of FEV1. The best-performing
model for short-term changes in lung function was built on microbiome and metabolome data (Pearson
r=0.78, p<0.001) (figure 4d, f ). Analysis of model coefficients showed that Capnocytophaga gingivalis
received the most positive coefficient (indicating association with improved FEV1), while Veillonella
dispar and L-arginine received the most negative coefficients (figure 4f). We observed a tendency towards
a higher absolute weight of microbiome versus metabolome features (figure S5A). Furthermore, a model
built solely on microbiome data performed similarly well (Pearson r=0.76, p<0.001) (figure 4b, figure

TABLE 2 Characteristics of samples used for prediction of lung function data

Data sets used for predictions

Prediction ΔFEV1 within
30 days

Prediction ΔFEV1 within
60 days

Prediction ΔFEV1 within
90 days

Samples n 32 31 30
Patients n 19 18 17
Females n 8 8 8
Current FEV1, L; median (range) 2.62 (1.09–4.50) 2.68 (1.09–4.50) 2.70 (1.09–4.50)
Percent change in FEV1 within X days; median (range) 3 (−7–27) 5 (−18–32) 5 (−29–42)
Age, years; median (range) 59.4 (20.1–68.9) 59.8 (20.1–68.9) 59.4 (20.1–68.9)
CRP, mg·dL−1; median (range) 0.17 (0.03–7.46) 0.17 (0.03–7.46) 0.16 (0.03–7.46)

CRP: C-reactive protein; FEV1: forced expiratory volume during the first second.
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FIGURE 4 Machine learning enables prediction of changes in lung function from multi-omics data. a) Layout of data collection and preparation.
Change in forced expiratory volume during the first second (FEV1) 30, 60 and 90 days after sampling was expressed as percent change to FEV1
values at the time of sampling. We used our omic data sets to predict these relative changes in FEV1 using machine learning. To estimate the
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S5b). Intermediate-term changes in lung function were most accurately predicted by a combination of
metabolome data and clinical metadata (Pearson r=0.63, p<0.001) with CRP exhibiting the most positive
coefficient (figure 4c, g). Finally, for long-term changes in FEV1, clinical metadata outperformed all other
data sets (Pearson r=0.42, p<0.05), with CRP receiving the most positive coefficient, and time after
transplantation the most negative (figure 4b, h).

In summary, our data reveal a high predictive power of the lung microbiome for changes in lung function
manifesting 30 days after sampling. Surprisingly, clinical metadata including time after transplantation and
CRP levels could not match this predictive power for short-term changes, suggesting that effects of the
lung microbiome on lung function are independent of time (since transplantation) and systemic
inflammation. Long-term changes in FEV1 were more accurately predicted by clinical metadata, albeit with
lower accuracy.

Discussion
Our study provides insight into the pulmonary microbial, cellular and metabolic dynamics after lung
transplantation. The analysis of 117 BAL samples from 78 patients together with 47 donor samples makes
this one of the largest studies on the human lower respiratory tract microbiome.

We demonstrated that richness and diversity of the microbiome increased rapidly in the first month after
lung transplantation and stabilised thereafter, a finding reminiscent of the recently described increase in
lung microbiome diversity after birth [23]. Early compositional shifts were linked to antibiotic therapy, in
particular trimethoprim/sulfamethoxazole, which is routinely given to prevent infections with Pneumocystis
jirovecii. Intriguingly, microbial variability at later time points (>30 days after transplantation) showed the
strongest association with recipient-specific factors, most notably the transplant indication. We
unexpectedly identified several microorganisms that appeared as signature taxa for these lung diseases.
While Pseudomonas species are the typical pathogens associated with CF, we discovered three bacterial
signature strains in IPF patients and one strain associated with A1ATD. Two strains linked to IPF,
(Fusobacterium nucleatum and Streptococcus gordonii), and one strain linked to A1ATD (Rothia
mucilaginosa) are known colonisers of the oral cavity and upper respiratory tract [24–26]. We hypothesise
that these findings may be attributable to recolonisation from the oral flora, which might be altered in IPF
or A1ATD patients. Alternatively, altered communication between the upper gastrointestinal tract and the
lung (e.g. microaspiration) may be responsible, considering the potential association between IPF and
reflux disease [27]. While further studies are needed to elucidate the link between IPF or A1ATD and the
oral microbiome, we here show specific alterations present in the pulmonary microbiome in IPF and
A1ATD patients after lung transplantation.

It is critical to investigate the contribution of the donor microbiome to allograft function, given the fact that
non-sterile organs are transplanted to patients. Previous authors suggested that the established lung
microbiome after transplantation represents an altered donor microbiome, modified by immigration of
microbial species from extrapulmonary sites [28]. This donor microbiome has been proposed as a trigger
of pulmonary immune activation, which may contribute to the development of CLAD [3]. In matched
samples, we discovered that donor-recipient similarity rapidly decreased after transplantation and that the
donor lung microbiome was replaced by a novel bacterial flora in transplanted lungs. These results
emphasise that the post-transplantation lung microbiome was independent of the donor microbiome, and
that instead a microbial community established that was conserved between patients. Based on these
findings, we propose that constant immune activation by the donor microbiome after lung transplantation
does not occur.

Early diagnosis of CLAD might enable treatment before irreversible fibrotic remodelling of the lung
occurs. Unfortunately, the lack of biomarkers is currently hindering such efforts. Here, using a machine
learning approach enabled us to accurately predict changes in FEV1 based on microbial profiles. Despite

performance of our machine learning models on samples which were not included in the data set used to train the model, we employed a nested
cross-validation (CV) scheme. b–e) Prediction accuracy (Pearson r between predicted and observed values) for ridge regression models trained on
different data sets for changes in FEV1 at 30, 60 and 90 days after sample collection. Prediction accuracy was evaluated for models trained on
specified data sets only (b), on specific data sets plus clinical metadata (age, sex, time after transplantation, serum C-reactive protein (CRP)
concentration and current FEV1) (c), as well as on combined data sets (d) or combined data sets plus clinical metadata (e). f–h) Scatter plots
showing observed versus predicted changes in FEV1 and barplots showing the 10 features receiving the highest absolute model coefficients for the
best performing models for f ) 30, g) 60 and h) 90 days after sample collection. Tx: treatment; sp.: species.
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the relatively small-scale sample size used for machine learning, we achieved a highly significant
correlation of 0.76 between predicted and observed outcome values. Interestingly, a recent study illustrated
the prognostic role of lung microbiota in predicting clinical outcomes, as patients with higher bacterial
burdens and the presence of gut-associated taxa were at higher risk of acute respiratory distress syndrome
and poor intensive care unit outcome [29]. The authors suggested that translocation of intestinal bacteria to
the lung might contribute to lung injury in critically ill patients. Interestingly, we found an abundance of
species belonging to the genus Enterococci, which are common commensals of the intestinal tract, to be
associated with subsequent improvements in FEV1. This improvement could be linked to adjustments of
antibiotic therapy occurring after collection of samples, thereby promoting the elimination of pathogenic
bacteria and subsequently improved pulmonary function. Similarly, in predictive models utilising clinical
metadata, we observed higher CRP levels to be associated with subsequent improvements in FEV1, which
might seem counterintuitive at first. Elevated serum CRP is a marker of (systemic) inflammation that
requires close surveillance and instigates clinicians to initiate proactive treatment. We hypothesise that
these activities assist the treatment of potential complications and accelerate resolution, which ultimately
leads to improved lung function. Determining whether predictors in our models are beneficial or harmful
for lung function is difficult because they are based on associations rather than causality. Beyond CRP,
which is a well-understood biomarker, this is particularly true for less well-characterised features such as
microbes or metabolites. Our study shares this limitation with any non-interventional approach, which is
why clinical trials of targeted therapeutic approaches are required for causal interpretations of host–microbe
interplay and lung function to ultimately develop innovative and prophylactic therapies to prevent CLAD.
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