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ABSTRACT: Idiopathic pulmonary fibrosis (IPF) is characterised by myofibroblast proliferation

leading to architectural destruction. Neither the origin nor the continued proliferation of

myofibroblasts is well understood.

Explanted human IPF lungs were stained by immunohistochemistry for calretinin, a marker of

pleural mesothelial cells (PMCs). Chronic obstructive pulmonary disease (COPD) and cystic

fibrosis (CF) lungs acted as controls. The number of PMCs per 100 nucleated cells and per

photomicrograph was estimated along with the Ashcroft score of fibrosis. Mouse PMCs

expressing green fluorescent protein (GFP) or labelled with nanoparticles were injected into

the pleural space of mice given intranasal transforming growth factor (TGF)-b1. Mouse lungs were

lavaged and examined for the presence of GFP, smooth muscle a-actin (a-SMA) and calretinin.

Calretinin-positive PMCs were found throughout IPF lungs, but not in COPD or CF lungs. The

number of PMCs correlated with the Ashcroft score. In mice, nanoparticle-laden PMCs were

recoverable by bronchoalveolar lavage, depending on the TGF-b1 dose. Fluorescent staining

showed a-SMA expression in GFP-expressing PMCs, with co-localisation of GFP and a-SMA.

PMCs can traffic through the lung and show myofibroblast phenotypic markers. PMCs are

present in IPF lungs, and their number correlates with IPF severity. Since IPF presumably begins

subpleurally, PMCs could play a pathogenetic role via mesothelial–mesenchymal transition.

KEYWORDS: Cell trafficking, epithelial–mesenchymal transition, idiopathic pulmonary fibrosis,

mesothelial–mesenchymal transition, pathogenesis, pleural mesothelial cells

I
diopathic pulmonary fibrosis (IPF) is a pro-
gressive lung disease characterised by cellular
and structural changes in the parenchyma

caused by proliferating myofibroblasts. For reasons
that are not well understood, this process is thought
to begin in the subpleural region, and then extend
centrally. Proliferating myofibroblasts expressing
smooth muscle a-actin (a-SMA) are thought to be
the key cells responsible for the pathological changes
of IPF, which are characterised by increased deposi-
tion of extracellular matrix components, including
collagen [1–3]. Neither the origin of these myofibro-
blasts nor the molecular mechanisms involved in
their formation in the fibroblastic foci are clearly
understood. A variety of sources have been postu-
lated as origins for these myofibroblasts, including
circulating progenitor cells [4] and resident mesen-
chymal cells [1, 4].

It is currently believed that the fibroblasts are
derived, in part, from local tissues following the

process of epithelial–mesenchymal transition (EMT)
[5]. We have recently demonstrated in vitro that
pleural mesothelial cells (PMCs) have the capacity
to transition into a myofibroblast phenotype and
undergo haptotactic migration in response to trans-
forming growth factor (TGF)-b1 [6]. We therefore
hypothesised that such a process could also occur in
vivo, leading to the characteristic findings seen on
histopathology of IPF. This process can be denomi-
nated as ‘‘mesothelial–mesenchymal transition’’, a
specialised form of EMT.

The pleural mesothelium is a metabolically active
monolayer of cells that blankets the chest wall
and lungs in parietal and visceral covers. During
parenchymal inflammation, the PMCs are exposed
to a microenvironment with high levels of cyto-
kines, chemokines and growth factors, including
TGF-b1 [7–9]. TGF-b1 is considered to be a master
switch for the induction of fibrosis by a process of
EMT in various organs, including the lung [10–13].
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With stress or injury, PMCs attain plasticity, losing their polarity
and mesothelial markers. The cellular transition of PMCs leads
to cytoskeletal reorganisation, such that these cells acquire a
spindle shape and express mesenchymal markers. The trans-
formed PMCs lose the expression of adherens junctional proteins
E-cadherin and N-cadherin, as well as cytokeratin.

Because of its intimate proximity to the lung parenchyma, the
pleura can respond to inflammatory cytokines released by
exogenous inhaled agents in animals [14] as well as humans [15].
Thus, IPF may be a disease in which inhaled mediators cause
parenchymal release of cytokines, such as TGF-b1, leading to
mesothelial activation, EMT and subsequent haptotaxis of acti-
vated myofibroblasts that form a cascading network of fibrosis,
starting at the subpleural region and invaginating towards the
hilum [16, 17].

Indeed, a recent study has shown that the hallmark lesion of
IPF, the fibroblastic focus, is not a discrete site of epithelial
injury and repair [18]. Instead, the fibroblastic foci seen on two-
dimensional histopathological sections are part of a complex
and highly interconnected reticulum of polyclonal fibrous tissue
that is reactive rather than malignant. Three-dimensional recon-
struction showed that the leading edge of this invasion extends
from the pleura to the underlying parenchyma.

Interestingly, in a mouse model of intrapleural bleomycin and
carbon black co-administration, pleural fibrosis was demon-
strated to extend into the parenchyma [19]. The subpleural
distribution of fibrosis recapitulated the histopathology of IPF.
The carbon particles were thought to be the ‘‘second hit,’’
similar to cigarette smoke, that can, with the appropriate
phenotype, predispose patients to IPF [20].

All of these findings suggest that pleural EMT can be a source
of fibroblastic proliferation that invades the lung in IPF. There-
fore, in our study, we hypothesised that PMCs traffic through
IPF lungs while undergoing EMT leading to fibrosis. We also
hypothesised that key elements of this paradigm that are
difficult to study in human tissues can be recapitulated in a
TGF-b1 mouse model of pulmonary fibrosis, further validating
our proposed pathogenetic mechanism.

MATERIALS AND METHODS
Explanted IPF lungs
After informed consent was obtained, lungs of patients with
IPF, chronic obstructive pulmonary disease (COPD), cystic
fibrosis (CF) and idiopathic pulmonary arterial hypertension
(IPAH) were preserved following lung transplantation at Inova
Fairfax Hospital (Falls Church, VA, USA) and Shands Hospital
at the University of Florida (Gainesville, FL, USA). One patient
who underwent a pneumonectomy for haemorrhage from a
broncholith was also included as a control. The specimens
were fixed in formalin, embedded in paraffin and sectioned
with a microtome before immunohistochemical staining on
standard microscope slides. All biopsies were taken from the
lower lobes and included the pleura and subjacent tissue.

Immunohistochemistry for calretinin and mesothelin in
human lungs
Explanted lung slides were incubated with antibodies to
calretinin (Cell Marque, Rocklin, CA, USA) and mesothelin
(Invitrogen, Carlsbad, CA, USA) at dilutions of 1/500 and 1/100,

respectively, for 30 min at room temperature before washing
and incubation with a secondary biotinylated anti-mouse
immunoglobulin G antibody (Vector Labs, Burlingame, CA,
USA) for 30 min at room temperature. Colour was developed
using VectaStain kit (Vector Labs) with VIP substrate, to give a
magenta/pink colour, and diaminobenzidine (DAB), to give a
brown colour. A light green counterstain was used to enhance
the parenchyma with VIP and haematoxylin was used as a
counterstain with DAB. The slides were visualised at 4006
magnification. Any slides in which the pleura did not stain
strongly for calretinin were rejected as inadequately stained and
a new slide from the same tissue was stained. Fluorescence
microscopy was also performed with these two antibodies, using
Texas Red- and fluorescein isothiocyanate (FITC) (green)-
labelled secondary antibody staining, as described later.

Calretinin-positive cell counts
Two observers visualised each slide from explanted IPF lungs.
The pleura was identified first so that the adequacy of calretinin
staining could be confirmed. Five photomicrographs were then
taken randomly, and the number of calretinin-positive cells per
photomicrograph and the total number of nucleated cells were
recorded.

Ashcroft score
For all IPF lungs, the Ashcroft fibrosis score [21] was assigned
for each photomicrograph where calretinin-positive cells were
counted. As with calretinin-positive cell counts, two observers
determined the Ashcroft score.

Clinical data
After institutional review board approval, demographic data,
pulmonary function tests, and details of the clinical course of
IPF, COPD and CF patients were extracted from the electronic
medical records at Inova Fairfax Hospital and Shands Hospital
at the University of Florida.

Green fluorescent protein-positive mouse mesothelial cells
After approval from the institutional animal care committee,
lungs of C57BL/6J mice (Jackson Laboratories, Bar Harbor, ME,
USA) that constitutively express green fluorescent protein (GFP)
were harvested following euthanasia. The mesothelial cells were
extracted by trypsinisation, as we have previously described
[22], and resuspended in Media-199 (Gibco Laboratories, Grand
Island, NY, USA) containing 10% fetal bovine serum (FBS)
(Atlanta Biologicals, Lawrenceville, GA, USA), 100 U?mL-1

penicillin and 100 mg?mL-1streptomycin (Cellgro; Mediatech,
Herndon, VA, USA). The cells were plated in 75-cm2 culture
flasks (Corning Costar Corporation, Lowell, MA, USA) and
incubated at 37uC in 5% CO2 and 95% air. The medium was
changed on alternate days or as needed.

Mouse mesothelial cell culture
Mouse mesothelial cells in primary culture were plated in 75-
cm2 culture flasks with F12K medium (Gibco Laboratories)
supplemented with 10% heat-inactivated FBS, 100 U?mL-1 peni-
cillin, 100 mg?mL-1 streptomycin, 1% amphotericin B (Gibco
Laboratories), 1 mM sodium pyruvate (Gibco Laboratories) and
10 mM 4-(2-hydroxyethyl)-1-piperazine ethane sulfonic acid
buffer (Sigma-Aldrich, St Louis, MO, USA). Cells were maintained
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at 37uC in a humidified atmosphere with 5% CO2 and 95% air. The
medium was changed on alternate days or as needed.

Labelling mouse mesothelial cells with nanoparticles
Mesothelial cells (16106) from C57BL/6J mice were plated in
60-mm dishes with serum-free F12K medium. Cells were
incubated with silica nanoparticles coated with tetramethyl
rhodamine isothiocyanate (TRITC) dye at 37uC in a humidi-
fied atmosphere with 5% CO2 and 95% air for 24 h. Silica
nanoparticles are nontoxic to cultured cells [23, 24]. After
incubation, cells were washed and centrifuged for 5 min at
4006g (1,500 rpm), and the pellet was resuspended in 200 mL
PBS to remove any free nanoparticles and injected into the
pleural space of the mice using an Angiocath (Becton Dickinson,
Franklin Lakes, NJ, USA), as previously described [25].

TGF-b1 mouse model
Labelled or GFP-positive mouse mesothelial cells were injected
into the pleural space of C57BL/6J mice using our previously
described techniques [22]. Accidental injection into the lung
parenchyma leads to bilateral pneumothorax and death, since
the mouse has only one pleural cavity. TGF-b1 (PeproTech,
Rocky Hill, NJ, USA) was delivered nasally to the lungs at vary-
ing doses. Lungs were harvested after euthanasia at different
time-points. The lungs were carefully examined and no injection
injury was found in any lung.

Mouse bronchoalveolar lavage, serum collection and tissue
harvest
Bronchoalveolar lavage (BAL) was performed at different
time-points after intrapleural injection of TRITC-laden PMCs
into mice given intranasal TGF-b1 or saline. Fluid was collected
by injecting 800–1,000 mL Hank’s balanced salt solution (HBSS)
into the lungs via tracheal cannulation. The fluid was aspirated
and the process was repeated until a total of 1,600–2,000 mL BAL
fluid was collected. BAL fluid was centrifuged at 4006g
(1,500 rpm) for 5 min to pellet the cells and separate the
supernatant. BAL cells were analysed for fluorescence by
reading the optical density at 541 nm. The lungs were then
perfused via the pulmonary artery with HBSS to clear the red
blood cells. Optimal cutting temperature (OCT) compound
(800 mL) was injected into the lungs via tracheal cannulation to
preserve lung architecture. Lungs were harvested and stored in
OCT for frozen section analysis.

Fluorescent microscopy
After washing twice with PBS, frozen mouse lung tissue
sections were fixed with 4% paraformaldehyde for 10 min at
room temperature. The slides were incubated with anti-a-SMA
rabbit anti-mouse antibody (Biocare, Concord, CA, USA) for
1 h and Texas Red goat anti-rabbit antibody (Invitrogen) for
30 min. The nuclei were stained for 49,6-diamidino-2-phenyl-
indole (Molecular Probes, Eugene, OR, USA) for 10 min in the
dark. The sections were then washed twice with PBS and the
cover slide was mounted using the SlowFade Antifade kit
(Molecular Probes). The GFP and Texas Red signals were
analysed in each tissue using a specific filter on a fluorescent
microscope (Zeiss LSM 510 Axiovert 200M; Zeiss, Thornwood,
NY, USA).

Statistical analysis
Data analyses were performed by using Excel 12.2 software
(Microsoft, Redmond, WA, USA).

RESULTS
Demographic characteristics of the study group
28 patients were included in the study. Their ages ranged from
8 to 71 yrs. All of the patients underwent lung transplantation
between 2006 and 2009. 16 patients were diagnosed with IPF,
eight patients with COPD, two patients with CF and one patient
with IPAH. Tissue from one patient who suffered from severe
haemorrhage due to a broncholith and required a pneumonect-
omy was also included. Diagnoses were made based upon
generally accepted criteria for each disease. Table 1 shows the
characteristics of the human subjects included in this study.

Calretinin-positive cells correlate with the degree of fibrosis
in human lung tissue
We stained IPF human lung sections for calretinin and obtained
five photomicrographs for each specimen. The calretinin-positive
cells were found predominantly in the areas of interstitial fibrosis.
Rarely, they could also be seen in and around bronchioli. Two
observers estimated the Ashcroft score of the degree of fibrosis,
the number of calretinin-positive cells and the total number of
nucleated cells in each photomicrograph. In cases where there
was minor disagreement between the two observers, the Ashcroft
score and/or the number of calretinin-positive cells were
averaged. If the disagreement in the number of calretinin-positive
cells was .15%, the cells were counted again. Altogether, each
observer counted .40,000 nucleated cells.

We found a significant positive correlation between the number
of calretinin-positive cells and the degree of fibrosis in a given
photomicrograph (fig. 1a). We also found that the number of
calretinin-positive cells per 100 nucleated cells correlated with
the Ashcroft score for that patient (fig. 1b).

Immunohistochemistry for calretinin in human lung tissue
Figure 2 shows the positive calretinin staining of mesothelial
cells in the fibrotic lungs from patients with IPF. The pleura
stained intensely (pink), indicating the presence of calretinin
(fig. 2a). When the parenchyma was stained, calretinin-positive
cells were found throughout the parenchyma (fig. 2b). When the
lung samples from patients with COPD were analysed, only

TABLE 1 Demographics characteristics of the study
population

Aetiology Patients Mean age yrs Males %

IPF 16 61 88

COPD 8 58 38

CF 2 23 50

IPAH 1 8 0

Normal 1 48 0

The normal lung tissue was taken from a patient who suffered severe

haemorrhage from a broncholith requiring a pneumonectomy. IPF: idiopathic

pulmonary fibrosis; COPD: chronic obstructive pulmonary disease; CF: cystic

fibrosis; IPAH: idiopathic pulmonary arterial hypertension.
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rare calretinin-positive cells were noted in emphysematous lung
tissue. Similarly, only rare calretinin-positive cells were noted in
CF, IPAH and normal lung tissue.

Immunohistochemistry for mesothelin in human lung tissue
Calretinin is only 95% sensitive and 86% specific for cells of
mesothelial origin [26]. To confirm that the cells detected by
calretinin staining were of mesothelial origin, a second stain,
mesothelin, was employed. Mesothelin is 73% sensitive and
55% specific for the mesothelium [26], but combined with
calretinin, further increases the sensitivity and specificity for
cells of pleural origin. Consecutive microtome sections were
obtained from IPF lungs. Adjacent sections were stained with
calretinin and mesothelin using exactly the same reagents,
concentrations and incubation times. The same clusters of cells
that stained positively for calretinin (fig. 3a and c) also stained
for mesothelin (fig. 3b and d).

Fluorescence microscopy for calretinin and mesothelin in
human lung tissue
Figure 3e–h show that IPF lungs, when stained for calretinin,
demonstrated positivity in the parenchyma (Texas Red).
Furthermore, when the same section was stained for mesothe-
lin (FITC), the same cells show positivity for mesothelin. The

concordance of staining was not 100%, as would be expected
from mesothelial markers that have different sensitivities and
specificities for mesothelial origin.

Mouse mesothelial cells laden with TRITC nanoparticles
were present in the BAL fluid of TGF-b1-treated mice
Figure 4a shows the increase of fluorescence in a dose- and
time-dependent manner in BAL from TGF-b1-treated mice
compared with saline control mice. The results represent the
mean of three mice for each group. Figure 4b and c shows
fluorescence imaging of BAL fluid from TGF-b1- and saline-
treated mice. The BAL fluid from mice treated with 1.5 ng
TGF-b1 contained nanoparticles at 24 h while the fluid from
saline control mice did not. Figure 4d–f demonstrates fluores-
cence imaging of lung histopathology. The nanoparticles were
found inside the parenchyma with 1.5 ng TGF-b1 at 12 h
(fig. 4e), while none were seen with saline (fig. 4d). Even at
48 h, the nanoparticles remained at the pleural surface with
saline (fig. 4f). Together, these data indicate that these cells,
when injected into the pleural space, migrate though the
parenchyma, under the influence of TGF-b1.

GFP-expressing mouse mesothelial cells migrate into the
lung parenchyma in TGF-b1-treated mice
To further confirm the results with nanoparticle-laden mesothelial
cells found in the BAL in TGF-b1-inoculated mice, we repeated
the same experiment but injected GFP-expressing mesothelial
cells into the pleural space of TGF-b1 or saline pre-treated mice.
Figure 5 shows a GFP-positive signal inside the lung parenchyma
of mice treated with TGF-b1 as compared with saline-inoculated
mice. This indicated the migration of GFP-expressing mesothelial
cells from the pleural space to the parenchyma when mice were
treated with TGF-b1. Furthermore, when stained with Texas Red
for the presence of a-SMA, the GFP-labelled cells demonstrated a
yellow colour, indicating that the GFP-labelled PMCs had begun
to express a-SMA.

DISCUSSION
In this study, we demonstrated the presence of calretinin-
positive cells in explanted lung tissue in IPF. This phenomenon
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FIGURE 1. For each individual lung specimen stained for calretinin, 10 photomicrographs were taken (4006 magnification). a) The number of calretinin-positive cells for

each photomicrograph was correlated with the Ashcroft score of that micrograph (r250.52713, p,0.0001). b) The total number of nucleated cells per photomicrograph was

also counted and then the percentage of calretinin-positive cells was correlated with the Ashcroft score (r250.40295, p,0.0001).

a) b)

FIGURE 2. Calretinin staining of explanted human lungs. a) In an explanted

lung from a patient with idiopathic pulmonary fibrosis (IPF), the pleural surface

shows intense calretinin staining. However, calretinin-positive cells can also be

seen subpleurally. b) Calretinin-positive cells can also be seen in the parenchyma of

IPF lungs, albeit in lesser numbers. Scale bars550 mm.
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appeared to be specific to patients with IPF, since we observed
only rare calretinin-positive cells in normal lung tissue, emphy-
sematous lung tissue and CF lung tissue. Just as leukocytes
gravitate to areas of infection and inflammation via chemotaxis,
these PMCs appeared to be attracted to areas of fibrosis.

We were able to demonstrate a correlation between the
number of calretinin-positive cells and the degree of fibrotic
change in the parenchyma, as measured by the Ashcroft score.
Whether the number of calretinin-positive cells was measured
as a raw number or as percentage of the total nucleated cells
seen in a photomicrograph, the correlation with the degree of
fibrosis was highly significant. The Ashcroft score was
originally described in 1988, but over more than 20 yrs, it has
remained the best and most enduring score for histopatholo-
gical grading of pulmonary fibrosis [27–32]. The scale starts at
0, which indicates a normal lung; a score of 1 represents
minimal fibrosis, 3 represents minimal fibrosis with preserved
architecture, 5 indicates definite distortion with fibrous bands,
7 denotes severe distortion with honeycomb change and 8
connotes total fibrous obliteration.

The fact that these cells could originate from the pleural surface,
invading the lung parenchyma, is borne out by our TGF-b1
mouse model. This process was dose- as well as time-dependent.
Whether we looked at PMCs labelled with GFP or nanoparticles,
these cells invade the lung parenchyma in response to TGF-b1, a
well-known growth factor that induces fibrosis in murine models.

This work is a follow-up study to our recent article showing
haptotactic migration of PMCs in vitro [6]. When cultured
PMCs were exposed to a profibrotic stimulus, such as TGF-b1,
they underwent EMT in a Smad2-dependent manner. The
phenotype of these cells changed to a fibroblastic morphology
with simultaneous expression of a-SMA, fibroblast specific

protein-1, and collagen type I. This transition was accompa-
nied by migration of these cells along the TGF-b1 gradient.

There are important differences between the murine and
human pleura. In mice, the mesothelial layer lies in close
proximity to the parenchyma, but in humans, it has subjacent
vasculature and stroma. Thus, mesothelial trafficking in the
human condition needs to overcome more anatomical barriers
than the murine situation. Therefore, extrapolation of results
from the mouse to human must be done with caution.

Traditionally, PMCs have been thought to remain relatively
quiescent on the opposing surfaces of the lung and chest wall.
Their primary purpose has been thought to be production of a
lubricating layer of pleural fluid to facilitate expansion of the
lung by reducing friction with the encasing musculoskeletal
structures of the thorax. Their role in host defence and fighting
infections, such as empyema, has also been well recognised [33].
However, despite the proximity to the pulmonary parenchyma,
and despite subpleural patterns seen in several lung diseases,
the pleura has been thought to be an innocent bystander in
parenchymal disease. Pleural plaques from asbestos lung
disease and empyema from parenchymal infections have been
congruent with this notion that the parenchyma can affect the
pleura, but not vice versa. Our study supports the notion that the
reverse may also hold true. Therefore, we speculate that in IPF,
this metabolically active layer of cells may be more pathophy-
siologically important than previously thought.

IPF is also characterised by basal predominance. However,
there is increasing evidence that genetic mutations may be
responsible for the absence of the apicobasal gradient [34–36].
Our study did not address this phenomenon since all the
biopsy specimens were taken from the lower lobes, nor did we
attempt to look for such mutations.

a) b) c) d)

e) f) g) h)

FIGURE 3. Calretinin and mesothelin staining of explanted human lungs. a) An explanted lung with idiopathic pulmonary fibrosis stained with calretinin using

diaminobenzidine (brown). A cluster of calretinin-positive cells is visible in the centre of the field (arrow). Two airways are marked with arrowheads. b) The same explanted lung

paraffin block was sectioned sequentially and stained with a mesothelin antibody. The same airways are again visible and marked with arrowheads. The same region showing

a cluster of calretinin-positive cells now stains positively for mesothelin (arrow). c, d) Higher magnification (4006) images of a) and b). e) Fluorescent microscopy with dual

staining for calretinin and mesothelin shows nuclei staining blue with 49,6-diamidino-2-phenylindole. f) Calretinin-positive cells labelled with Texas Red. g) Mesothelin-positive

cells labelled with fluorescein isothiocyanate. h) Merged photomicrograph confirms that the same cells stain positively for calretinin and mesothelin, but concordance is not

100% given different sensitivities and specificities of these stains for mesothelial origin. Scale bars550 mm.
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FIGURE 4. Mice injected intrapleurally with nanoparticle-labelled pleural mesothelial cells (PMCs) and then administered intranasal transforming growth factor (TGF)-b1

demonstrated migration of PMCs into lung parenchyma in a dose- and time-dependent manner. a) The higher the dose of TGF-b1, the more nanoparticle-laden cells were

recovered by bronchoalveolar lavage (BAL). The number of cells recovered by BAL increased over time, peaking at 24 h. Optical density was measured at 541 nm (OD541) in

BAL cells to quantify the presence of fluorescence signal. n53. **: p,0.01 compared with saline at 24 h. b) BAL cells from saline-injected mice at 24 h. Blue colour indicates

nuclei stained with 49,6-diamidino-2-phenylindole (DAPI). c) BAL cells from mice treated with 1.5 ng TGF-b1 at 24 h. Blue colour indicates nuclei stained with DAPI and red

colour represents the nanoparticles coated with tetramethyl rhodamine isothiocyanate. d) Lung tissue from control mouse at 12 h. e) Lung tissue from mouse treated with

1.5 ng TGF-b1 at 12 h. f) Lung tissue from saline control at 48 h showing that the nanoparticles were still at the pleural surface. Scale bars550 mm.

a) b) c) d)

e) f) g) h)

FIGURE 5. Mice injected intrapleurally with green fluorescent protein (GFP)-expressing pleural mesothelial cells (PMCs) and given intranasal transforming growth factor

(TGF)-b1 demonstrated that GFP-expressing PMCs invaded the lung parenchyma and expressed smooth muscle a-actin (a-SMA). n53. a) Saline control imaged with 49,6-

diamidino-2-phenylindole (DAPI) fluorescence showing the presence of nuclei in the parenchyma and pleura. b) Saline control imaged for GFP showing the presence of GFP-

expressing PMCs on the pleural surface. c) Saline control imaged with Texas Red fluorescence showing very faint a-SMA in the pleura. d) Merged image of parts a–c showing

no a-SMA in GFP-expressing PMCs. e) TGF-b1 mouse imaged for DAPI fluorescence. f) TGF-b1 mouse showing GFP-expressing PMCs on the pleural surface and at least

one in the parenchyma. Many more fluorescent PMCs adhered to the surface. g) Texas Red fluorescence showing a-SMA expression in the pleura. h) Merged image of parts

e–g showing that PMCs expressed a-SMA in the TGF-b1-treated mice. Scale bars550 mm.
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Interestingly, there have been hints in the literature that
mesothelial cells are not stationary, and are far more responsive
to the local microenvironment than once believed. PMCs can
traffic through the lung parenchyma and appear in mediastinal
lymph nodes [37]. Mesothelioma can be misdiagnosed as
metastatic when, in fact, it is localised [38]. A similar process
has been noted in the peritoneum. Ovarian carcinoma can be
misdiagnosed as metastatic because of the presence of peritoneal
mesothelial cells in pelvic lymph nodes [39–41]. Therefore, it is
quite likely that PMCs traffic through the lungs under patholo-
gical conditions, and perhaps at a slower rate under physiological
conditions.

Our work builds upon the seminal work of DECOLOGNE et al. [42],
who demonstrated congruent findings in a different model of
fibrosis. While our model has used inhaled TGF-b1, DECOLOGNE

et al. [42] used adenovirally mediated transient TGF-b1 expres-
sion in the pleural mesothelium, leading to pleural fibrosis but
no pleurodesis. There was subpleural fibrosis in the paren-
chyma via EMT, but none in the chest wall. Since we believe that
an inhaled stimulus is more likely to cause IPF than a pleural
infection, we chose to deliver TGF-b1 via inhalation in our model
and correlate that with histopathology of human IPF. However,
our model has an important limitation in that it is a short-term
model that is unable to quantify the development of fibrosis,
such as using a hydroxyproline assay.

Recent evidence has shown that the pleural surface reacts to
inhaled antigens very quickly. Inhaled ovalbumin produces
pleural oedema detectable by magnetic resonance imaging and
histopathology within 3 h. Thus, it is quite possible that environ-
mental agents can provoke a cascade of pleural inflammation
that initiates a wave of fibrosis caused by trafficking PMCs,
which undergo EMT as they transform normal parenchyma into
honeycomb lung in a centripetal fashion.

Pulmonary fibrosis caused by asbestos may share certain
similarities with the foregoing hypothesis. Asbestos lung disease
can manifest decades after the original exposure, with the
particles slowly migrating from the parenchyma to the pleura
[43]. In many instances, the fibres may no longer be detectable,
presumably being catabolised by macrophages or tissue enzymes
[44]. However, even in such cases, the changes brought about by
asbestos can eventually lead to mesothelioma, presumably by
chronic parenchymal activation or inflammation. Therefore, the
pleura and the parenchyma can interact to produce pathology in
multiple lung conditions, and IPF may be only one such clinical
paradigm.

Our findings raise the question as to whether or not dysregu-
lated PMCs can cause IPF. It does appear that our data meet at
least some of the criteria for causality [45]. These include the
finding that the presence of mesothelial cells in lung paren-
chyma is relatively specific to IPF, and does not seem to occur in
COPD or CF. We counted a higher number of PMCs in areas
that had higher grades of fibrosis. Moreover, the PMCs made up
a higher percentage of cells in areas with higher grade of
fibrosis. Thus the strength of association between the geo-
graphic heterogeneity of fibrosis and the number of mesothelial
cells suggests that a dose–response relationship could exist. This
is further supported by the dose–response relationship in our
mouse models of TGF-b1 and pulmonary fibrosis. Given the

findings of EMT in mesothelial cells in vitro, it appears
biologically plausible that mesothelial cells could transition into
myofibroblasts in vivo.

Although it is possible, and indeed likely, that other cell
lineages contribute to fibrosis via EMT, the notion that pleural
EMT may cause or contribute to fibrosis is reasoned and
consistent with the natural history and biology of the disease.
Specifically, the disease is known to start subpleurally and
progress into the parenchyma, suggesting a centripetal invading
wave of fibrosis that is accompanied by clinical worsening.
Further supportive experimental evidence will be required,
including the use of selective knock-in mice that permanently
mark adult cell lineages, such as PMCs. Nonetheless, our findings
provide preliminary evidence that the pleural surface may not be
an innocent bystander in the pathogenesis of this deadly disease.
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