
EDITORIAL

Emigration and immigration of mesenchymal cells: a multicultural
airway wall

A.G. Stewart

Chronic inflammatory disease is accompanied by structural
changes that appear to relate to disease severity and duration,
and are often considered to be poorly reversible, if at all. The
processes underpinning the structural changes are varied,
complex and not well understood. It is clear that these
structural changes contribute to tissue dysfunction.

In asthma, remodelling comprises changes in all compart-
ments of the airway wall, with the epithelium potentially
orchestrating a persistent cycle of inflammatory injury and
repair [1]. The epithelium is thought to influence the under-
lying mesenchymal cell network through the release of
transforming growth factor-b resulting in the activation of
myofibroblasts that secrete excessive amounts of collagen and
contribute to the burden of pro-inflammatory cytokines. Such
changes in the superficial aspect of the airway recapitulate
aspects of the pathogenesis of neointima formation, in which
damage to the endothelium initiates a repair response that
ultimately may compromise vessel function [2].

The most significant cellular component of the airway wall
remodelling is an increase in the volume of airway smooth
muscle (ASM), which is considered to play a dominant role in
the consequences of the airway wall thickening for airway
reactivity [3]. The mechanisms of the increase in volume of
ASM remain ill-defined despite extensive investigation over
the last 15 yrs. Hyperplasia of ASM is well evidenced, but
there is also evidence for a more limited hypertrophy [4, 5].
The hyperplasia has been ascribed to proliferation in situ of
ASM in response to growth factors and inflammatory
mediators released during exacerbations of chronic asthma.
Several investigations of antigen-induced airway inflamma-
tion in experimental animals, particularly those in Brown
Norway rats, have demonstrated an increase in proliferation
of ASM [6] resulting in an increase in the total number of
ASM cells [7]. More recent evidence suggests that a decrease
in the rate of ASM apoptosis may also contribute to the
hyperplasia [8]. However, recent findings suggest the need to
re-evaluate in situ proliferation as the major mechanism
underlying the ASM hyperplasia. Neither we [9], nor others
[10] have been able to detect increased rates of proliferation of
ASM cells in biopsies using Ki67, proliferating cell nuclear
antigen or cyclin D1 expression. It may be argued that in
chronic asthma the rates of proliferation would be too small
to detect an increase over the baseline level of cell turnover.
Nevertheless, the lack of evidence for in situ proliferation of
ASM in human asthmatic airways is consistent with the

antiproliferative nature of the laminin and proteoglycan-rich
extracellular matrix (ECM) surrounding the ASM cells in
muscle bundles [11, 12]. An alternative mechanism for the
hyperplasia was identified in a biopsy study by GIZYCKI et al.
[13], in which an increase in the number of myofibroblasts was
detected within 24 h of segmental challenge of the airways.
These myofibroblasts were considered to have differentiated
from pre-existing fibroblasts, or more speculatively, to be
the result of ASM migration and de-differentiation to the
myofibroblast. Thus, hyperplasia of ASM could be the
result of migration of mesenchymal cells from environments
that are more conducive to proliferation, such as the collagen-
rich subepithelial region. This region would be bathed in
growth factors and cytokines derived from resident fibro-
blasts, mast cells and epithelium, and from infiltrating
leukocytes and or lymphocytes. A third, and equally
intriguing, explanation of the rapid increase in myofibroblasts
is offered by a study of allergen challenge, demonstrating the
appearance of CD34z procollagen expressing cells in the
airway within 24 h [14]. In parallel studies in vitro, these
cultured fibrocytes were shown to have the capacity to
subsequently express a-smooth muscle actin. In a murine
model of allergic inflammation CD34z, pro-collagen I
expressing fibroblasts could be recruited from a circulating
pool of fibrocytes [14]. Regardless of the origins of the
myofibroblasts, it seems reasonable to speculate that these
cells could migrate towards the muscle bundle and differ-
entiate further towards the smooth muscle pole of the
mesenchymal phenotypic spectrum. Migration in and out of
the ASM bundle would be expected to generate hetereogene-
ity of ASM phenotype. In a recent study in the Brown
Norway allergen-induced inflammation and remodelling
model, chronic inflammation was associated with a decrease
in content of the a-smooth muscle actin in the airway [15],
consistent with the notion that some of the increase in ASM
bulk in this model results from newly recruited and
incompletely differentiated ASM.

The migration of mesenchymal cells, therefore, assumes
importance in considering the mechanisms of airway wall
remodelling and how these might be therapeutically targeted.
The study by PARAMESWARAN et al. [16] in the current issue of
the European Respiratory Journal adds to their earlier work
showing that cys-Leukotrienes (cys-LTs) enhanced chemo-
tactic responses to platelet-derived growth factor [17], by
demonstrating that collagens III and V, as well as fibronectin,
induce ASM migration by a process known as haptotaxis and
that these responses are also enhanced by cys-LTs [16].
Several studies have investigated the pathways that underpin
ASM chemotactic/chemokinetic responses. The upstream
signalling mechanisms studied include: the activation of
phosphoinositide-3-kinase, extracellular regulated kinase 1/2,
src and p38 mitogen-activated kinase (MAPK) [18–21]. The
latter kinase phosphorylates and activates MAPK-activated
protein kinases 2 and 3, which phosphorylates heat shock
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protein 27, involved in cytoskeletal actin remodelling
processes that are necessary for cell locomotion [21]. A
number of these pathways are regulated by currently used
anti-asthma agents and by stimuli for adenylate cyclase, such
as prostaglandin E2 [22]. In addition, glucocorticoids, such as
fluticasone propionate, synergise with salmeterol to suppress
chemotaxis. Our recent investigations indicates that a collagen
I-rich ECM reduces glucocorticoid regulation of migration as
well as proliferation [23, 24], but b2-adrenoceptor agonists,
such as salmeterol, retain their efficacy in cells exposed to
collagen I rich matrices [23].

The adhesion molecules/integrins subserving migration of
different mesenchymal cell phenotypes have not been
extensively characterised. Further investigation of the
mechanisms of cell-matrix interactions are required to define
the level of selective block of mesenchymal cell migration that
may be therapeutically feasible. PARAMESWARAN et al. [16]
provide evidence of the importance of the b1 and a5, av

integrins in ASM migration, whereas integrins required for
circulating fibrocytes to migrate into wounded tissue remain
poorly defined. The authors emphasise that monomeric ECM
molecules were used in their study as previous work suggests
that fibrillar ECM may suppress chemotaxis [25]. These
observations are similar to those that have been made in
studies on the impact of ECM on vascular smooth muscle
proliferation, in which fibrillar collagen suppresses and
monomeric collagen enhances proliferation of mesenchymal
cells [26]. In the inflamed airway wall the possible roles of
ECM protein and proteoglycan degradation products should
be examined. Other features of the migration response
requiring attention include the possible selectivity of signal
transduction pathways subserving chemotaxis, chemokinesis,
haptotaxis and haptokinesis. Identification of chemotactic/
haptotactic gradients required in situ for directed mesenchy-
mal cell movement could prove to be difficult, especially as
these gradients would need to reverse if smooth muscle does
indeed migrate off the muscle bundle to proliferate and
migrate back to add to the hyperplasia. Alternatively, the
chemotactic signals may be mesenchymal phenotype-selective,
allowing concurrent bi-directional mesenchymal cell migra-
tion; circulating fibrocytes are insensitive to chemoattractant
actions of a number of chemokines, but show chemotactic
responses to the CXC7 and CCR4 ligands, stromal cell-
derived factor-1a and secondary lymphoid-tissue chomokine,
respectively [27]. There is increasing evidence that the
phenotype of mesenchymal cells (both myofibroblasts and
smooth muscle) derived from asthmatic airways and propa-
gated in cell culture differs from that of cells derived from
subjects without airways disease, showing increased ASM
proliferation [28, 29] and increased airway fibroblast cytokine
production [30, 31]. Thus, it will be important to determine
whether the migratory potential of asthmatic derived
mesenchymal cells is altered.

Whilst the initial investigations of migration of mesench-
ymal cells in the context of airway/lung injury and repair raise
more questions than answers, there is strong circumstantial
evidence to support the contention that mesenchymal cell
migration plays an important role in the dysregulated injury/
repair cycle that initiates and maintains the remodelled
airway. Identification and enumeration of mesenchymal
cells with a migratory phenotype in asthmatic airways
would provide further impetus to this relatively new domain
of airway wall remodelling research.
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