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Fibrocytes: potential new therapeutic targets for

pulmonary hypertension?
K.R. Stenmark, M.G. Frid and M.E. Yeager

P
ulmonary arterial hypertension (PAH) is a progressive
fatal disease [1, 2]. All forms of chronic pulmonary
hypertension are characterised by cellular and struc-

tural changes in the walls of the pulmonary arteries. Intimal
thickening and fibrosis, medial hypertrophy and fibroproli-
ferative changes in the adventitia are common [3]. Virtually all
of these changes are characterised, to a greater or lesser degree,
by increased numbers of cells expressing smooth muscle a-
actin (a-SMA), as well as the accumulation of inflammatory
cells [4–7]. At present, neither the origin of the accumulating
cells, particularly those expressing a-SMA, nor the molecular
mechanisms operating to cause their accumulation has been
fully delineated. Traditionally, it has been thought that the a-
SMA-expressing and/or collagen-producing cells accumulat-
ing in vascular lesions were exclusively derived from resident
vascular cells. However, since the late 1990s, this concept has
been extended by the fact that bone-marrow-derived circulat-
ing progenitor cells are recruited to sites of vascular injury and
contribute to both the vascular repair and pathological
remodelling by differentiating into cells expressing mesen-
chymal or even smooth-muscle-like characteristics [8–10].

Among the many populations of progenitor cells that may be
recruited to the vessel wall and assume mesenchymal cell
characteristics are fibrocytes. These cells were initially
described by BUCALA et al. [11] as circulating bone-marrow-
derived cells with the ability to adapt a mesenchymal
phenotype. They share certain features with both fibroblasts
and monocytes, and this combination of connective tissue cell
and myeloid cell characteristics permits their identification by
a number of markers. Fibrocytes express the stem cell marker
CD34, the pan-haematopoietic marker CD45 and monocyte
markers, such as CD14 and CD11, and produce components of
the connective tissue matrix, including collagen I, collagen III
and vimentin [12, 13]. Fibrocytes display many properties that
are important for wound repair. Upon entry into diseased
tissues, fibrocytes are believed to adapt the phenotype of a
myofibroblast, as evidenced by acquisition of a-SMA expres-
sion [12, 14, 15]. However, the extent to which fibrocytes
transition into a-SMA-expressing cells in different settings
of tissue repair and injury remains unclear and may be

exquisitely injury- and/or organ-specific. In addition, fibro-
cytes display other properties that are important for wound
repair. They secrete pro-inflammatory cytokines, including
tumour necrosis factor (TNF), macrophage inflammatory
protein (MIP)-1a/b and interleukin (IL)-6, -8 and -10, as well
as matrix metalloproteinase-2 and -9. In addition, fibrocytes
can exhibit a pro-angiogenic phenotype both in vitro and in
vivo [16]. Fibrocytes also express a number of chemokine
receptors, including CXC chemokine receptor (CXCR) 4 and
CC chemokine receptor (CCR) 7, which regulate their recruit-
ment and trafficking [17, 18]. Furthermore, fibrocytes express
major histocompatibility complex class II and demonstrate
antigen-presenting capabilities in vitro and in vivo [16, 19].

Based on these properties, it is not unexpected that fibrocytes
or related circulating mesenchymal precursor cells have been
shown to participate in both systemic and pulmonary vascular
remodelling processes. In the systemic circulation, fibrocytes
have been identified in the fibrous cap of human athero-
sclerotic lesions [20, 21]. Further, one of the subsets of
monocytes that are preferentially recruited into the arterial
wall during experimentally induced arteriosclerosis in mice
represents the murine counterpart of the human inflammatory
subset of CD14+/CD16- mononuclear cells that express the CC
chemokine ligand (CCL) 2/monocyte chemoattractant protein
(MCP)-1 receptor CCR2 [22]. Consistent with findings from the
murine models are studies demonstrating that the intimal
hyperplasia in an ovine carotid artery patch graft model is
partially due to haematopoietic circulating fibrocytes that
acquire mesenchymal features as they mature at the site of
injury [23]. Other studies demonstrate that fibrocytes or
fibrocyte-like cells (CD14+-derived mesenchymal cells) play
an important role in the remodelling that characterises
transplant vasculopathy [24–27]. Importantly, these observa-
tions in the systemic circulation are supported by epidemio-
logical data showing that CCL2/MCP-1 plays a major role in
the pathogenesis of atherosclerosis and may promote recruit-
ment of fibrocytes (known to express CCR2 and CCR7) to the
vessel wall [28]. In the pulmonary circulation, a critical
contribution of fibrocytes to vascular remodelling has been
described in the large mammalian model (neonatal calf), and in
the rat model of chronic-hypoxia-induced pulmonary hyper-
tension [29]. In the latter (rat) model, it has been shown that
sustained hypoxia leads to the development of a complex
pulmonary-artery-specific pro-inflammatory microenviron-
ment that promotes recruitment, retention and differentiation
of circulating fibrocytes to the pulmonary circulation [30].
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The study of NIKAM et al. [31] in the current issue of the European
Respiratory Journal provides further support that fibrocytes
accumulate in the pulmonary arteries of animals with chronic
hypoxic pulmonary hypertension. This work builds on previous
studies demonstrating that, in both a large animal model
(neonatal calf) and hypoxic rats and mice, fibrocytes accumulate
in the perivascular lesions of the vessel wall under chronically
hypoxic conditions [29, 32]. Accumulations of other mesench-
ymal progenitor cells have also been described in the hypoxic
vessel wall and are characterised by the expression of mast/
stem cell growth factor receptor [33, 34]. More importantly,
previous studies have demonstrated a causal link between
fibrocyte accumulation and vascular wall remodelling by
showing that depletion of the circulating population of mono-
nuclear phagocytic cells, comprising among others the fibrocyte
population, abrogate pulmonary perivascular remodelling in
the rat model of hypoxic pulmonary hypertension [29]. These
observations are consistent with observations of fibrotic
remodelling in a variety of other organs [35], where cells that
express the combination of CD45 and procollagen I have been
consistently observed. However, since recent studies [13, 36]
demonstrate some overlap in the markers used to identify
fibrocytes and other monocyte-derived collagen-expressing
cells, it should be considered that there is a range of monocytic
cell subpopulations, which may best be described as mono-
nuclear phagocytic cells, capable of expressing mesenchymal
markers and contributing to vascular/fibrotic remodelling.
Collectively, the results identify bone-marrow-derived mesen-
chymal precursors as important contributors to the vascular
pathology that characterises pulmonary hypertension. It is thus
clear that strategies aimed at the inhibition of recruitment or
function of these cells could be important as a treatment for the
disease process itself, a possibility explored in the study of
NIKAM et al. [31].

Prostacyclin (PGI2) is a commonly used agent for the treatment
of severe pulmonary hypertension. The initial rationale for its
use was based largely on its ability to act as a potent
vasodilator and vascular protective agent. It has been shown
to improve symptoms and survival in patients with idiopathic
PAH, as well as scleroderma-associated PAH [37, 38]. NIKAM et
al. [31] examined the possibility that the stable PGI2 analogue
treprostinil would attenuate pulmonary hypertension and
vascular remodelling by inhibiting the recruitment of fibro-
cytes to the vessel wall and/or their differentiation.
Intriguingly, they found that treprostinil treatment exhibited
moderate but significant inhibition of remodelling and a
reduction in the number of fibrocytes recruited to the hypoxic
vessel wall. The mechanisms responsible for these effects were
not explored in the manuscript, but they are perhaps not
entirely surprising. Recent studies have demonstrated that
PGI2 exhibits significant anti-inflammatory actions. For
instance, PGI2 inhalation suppressed asthma in the mouse
ovalbumin-induced model by reducing both the migration of
dendritic cells to sites of inflammation and the type-2 T-helper
cell (Th2) response (reduced IL-4, -5 and -13) [39]. Independent
studies corroborated these findings by demonstrating that
iloprost suppresses CCL17, CCL11, lung eosinophil accumula-
tion and the recruitment of CD4+ Th2 to the airways in asthma
models [40, 41]. PGI2 counteracts the capacity of T-cells to
produce the pro-inflammatory cytokines IL-12, p70, TNF-a,

MIP-1a, MCP-1 and IL-6 [42, 43]. PGI2 has also been
demonstrated to reduce lipopolysaccharide-induced cytokine
production in leukocytes through the inhibition of nuclear
factor-kB [44]. PGI2 has also been demonstrated to exert anti-
inflammatory capabilities in vascular diseases. In patients with
type-2 diabetes, PGI2 reduced circulating levels of the vascular
inflammatory marker vascular cell adhesion molecule-1, as
well as arterial intimal thickness [45]. In the setting of PAH,
PGI2 therapy has been demonstrated to clearly reduce the
increased levels of MCP-1 found in these patients [46].
Moreover, a recent study demonstrates insight into the
mechanism(s) whereby PGI2 inhibits cytokine production by
monocytes by showing that PGI2 limits pro-inflammatory
cytokine production by reducing transactivation-domain-
dependent recruitment of histone acetylase cAMP response
element-binding protein-binding protein to transcription fac-
tors driving pro-inflammatory gene transcription [47].

The fact that PGI2 did not provide complete protection against
hypoxia-induced remodelling is perhaps not unexpected. As
stated, several chemokines and signalling pathways have been
implicated in fibrocyte recruitment and differentiation within
tissue sites. It has been demonstrated that fibrocyte differentia-
tion from CD14+ monocytic precursors is augmented by the
Th2 cytokines IL-4 and IL-13, and is inhibited by the Th1
cytokines interferon-c, TNF and IL-10 [48]. Further, fibrocytes
are capable of producing a number of cytokines and growth
factors that could cause resident cells to undergo hypertrophy,
proliferate or recruit other inflammatory cells. Thus alternative
and/or combinatorial therapies to PGI2 would seemingly be
necessary for more complete prevention and probably for
regression of established vascular lesions. Signalling pathways
implicated in fibrocyte growth have included immunoreceptor
tyrosine kinase motifs, mammalian target of rapamycin
(mTOR), phosphatidylinositol-3’-kinase and angiotensin II
receptor. Treatment of fibrocyte precursors with the Fc
receptor antagonist serum amyloid P, the mTOR inhibitor
rapamycin or the angiotensin II receptor antagonist valsartan
has been demonstrated to attenuate fibrocyte accumulation in
mouse models of fibrosis [49, 50]. Serum amyloid P has shown
encouraging results in pre-clinical studies of lung, heart and
renal fibrosis, and in a phase-I clinical trial for the prevention
of corneal scarring. Interventions that target the receptors and
chemokines mediating fibrocyte trafficking and accumulation,
such as MCP-1/CCL2 and stromal-cell-derived factor-1/CXC
chemokine ligand (CXCL) 12, may also be beneficial in selected
circumstances [49]. The latter is especially intriguing as a
number of studies have shown that targeting the CXCL12/
CXCR4 axis blocks the pulmonary hypertensive response
induced by hypoxia [1, 2, 34].

Thus, given the fact that most currently available therapeutic
options for pulmonary hypertension have not shown dramatic
success in reducing the remodelling process, it is becoming
increasingly clear that fibrocyte-directed therapies may need to
target not one but several checkpoints, which would include
the trafficking, differentiation and function of these cells.

The current study compels consideration of combinatorial
approaches to research and treatment aimed at improving
vasodilation, decreasing vascular remodelling and extending
the ability to therapeutically modulate fibrocyte biology.
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