Skip to main content

感谢您访问Nature.com。您使用的是浏览器版本,对CSS的支持有限。为了获得最佳体验,我们建议您使用更多最新的浏览器(或在Internet Explorer中关闭兼容模式)。同时,为了确保继续支持,我们将展示该网站没有样式和JavaScript。

Assembly of endocytic machinery around individual influenza viruses during viral entry

抽象的

Most viruses enter cells via receptor-mediated endocytosis. However, the entry mechanisms used by many of them remain unclear. Also largely unknown is the way in which viruses are targeted to cellular endocytic machinery. We have studied the entry mechanisms of influenza viruses by tracking the interaction of single viruses with cellular endocytic structures in real time using fluorescence microscopy. Our results show that influenza can exploit clathrin-mediated and clathrin- and caveolin-independent endocytic pathways in parallel, both pathways leading to viral fusion with similar efficiency. Remarkably, viruses taking the clathrin-mediated pathway enter cells via the从头formation of clathrin-coated pits (CCPs) at viral-binding sites. CCP formation at these sites is much faster than elsewhere on the cell surface, suggesting a virus-induced CCP formation mechanism that may be commonly exploited by many other types of viruses.

这是订阅内容的预览

Access options

租用或购买文章

在ReadCube上获取Time Limited或全文访问。

$ 8.99

All prices are NET prices.

图1:表达EYFP-clathrin的BS-C-1细胞中网格蛋白涂层结构的荧光图像。
Figure 2: Internalization of influenza viruses through different pathways.
图3:形成的CCP和CCV的动力学从头在病毒结合部位。
Figure 4: The effect of neuraminidase (NA) inhibitors on the endocytosis of influenza viruses.
图5:内吞作用后成功融合的病毒的时间轨迹。

参考

  1. 1

    Matlin,K.S.,Reggio,H.,Helenius,A。&Simons,K。犬肾细胞系中流感病毒的传染性进入途径。J. Cell Biol.91,601–613(1981)。

    CASArticleGoogle Scholar

  2. 2

    Doxsey,S.J.,Brodsky,F.M.,Blank,G.S。&Helenius,A。抗加拉蛋白抗体抑制内吞作用。Cell50,,,,453–463 (1987).

    CASArticleGoogle Scholar

  3. 3

    Anderson, H.A., Chen, Y.Z. & Norkin, L.C. Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae.Mol. Biol. Cell7,1825- 1834年(1996年)。

    CASArticleGoogle Scholar

  4. 4

    Carbone,R。等。EPS15和EPS15R是内吞途径的重要组成部分。Cancer Res.57,5498–5504(1997)。

    CASPubMedPubMed CentralGoogle Scholar

  5. 5

    Stang, E., Kartenbeck, J. & Parton, R.G. Major histocompatibility complex class I molecules mediate association of SV40 with caveolae.Mol. Biol. Cell8,,,,47–57 (1997).

    CASArticleGoogle Scholar

  6. 6

    De Tulleo, L. & Kirchhausen, T. The clathrin endocytic pathway in viral infection.EMBO J.17,,,,4585–4593 (1998).

    CASArticleGoogle Scholar

  7. 7

    Pelkmans,L.,Kartenbeck,J。&Helenius,A。Simian Virus 40的Caveolar内吞作用,揭示了ER的新两步囊泡通道途径。Nat. Cell Biol.3,,,,473–483 (2001).

    CASArticleGoogle Scholar

  8. 8

    Sieczkarski,S.B。&Whittaker,G.R。在没有网格蛋白介导的内吞作用的情况下,流感病毒可以进入和感染细胞。J. Virol。76,10455–10464(2002)。

    CASArticleGoogle Scholar

  9. 9

    Pelkmans,L。&Helenius,A。内部信息:病毒告诉我们有关内吞作用的信息。Curr. Opin. Cell Biol.15,,,,414–422 (2003).

    CASArticleGoogle Scholar

  10. 10

    Nichols, B.J. & Lippincott-Schwartz, J. Endocytosis without clathrin coats.Trends Cell Biol.11,,,,406–412 (2001).

    CASArticleGoogle Scholar

  11. 11

    Conner, S.D. & Schmid, S.L. Regulated portals of entry into cells.Nature422,,,,37–44 (2003).

    CASArticleGoogle Scholar

  12. 12

    Brodsky,F.M.,Chen,C.-Y.,Knuehl,C.&Wakeham,D.E。生物篮编织:涂有网格蛋白涂层囊泡的形成和功能。安努。Rev. Cell Dev。生物。17,,,,517–568 (2001).

    CASArticleGoogle Scholar

  13. 13

    Kirchhausen,T.Clathrin。安努。生物化学牧师。69,,,,699–727 (2000).

    CASArticleGoogle Scholar

  14. 14

    Nabi,I.R。&le,P.U。小窝/筏依赖性内吞作用。J. Cell Biol.161,673–677(2003)。

    CASArticleGoogle Scholar

  15. 15

    Scott, M.G.H., Benmerah, A., Muntaner, O. & Marullo, S. Recruitment of activated G protein–coupled receptors to pre-existing clathrin coated pits in living cells.J. Biol。化学277,3552–3559(2002)。

    CASArticleGoogle Scholar

  16. 16

    Santini, F., Gaidarov, I. & Keen, J.H. G protein–couple dreceptor/arrestin3 modulation of the endocytic machinery.J. Cell Biol.156,665–676(2002)。

    CASArticleGoogle Scholar

  17. 17

    Gaidarov,I.,Santini,F.,Warren,R.A。&Keen,J.H。生物细胞中涂层坑动力学的空间控制。Nat. Cell Biol.1,,,,1–7 (1999).

    CASArticleGoogle Scholar

  18. 18

    Skehel, J.J. & Wiley, D.C. Receptor binding and membrane fusion in viral entry: the influenza hemagglutinin.安努。生物化学牧师。69,531–569(2000)。

    CASArticleGoogle Scholar

  19. 19

    White, J., Helenius, A. & Gething, M.-J. Haemagglutinin of influenza virus expressed from a cloned gene promote membrane fusion.Nature300,658–659(1982)。

    CASArticleGoogle Scholar

  20. 20

    Yoshimura, A. & Ohnishi, S. Uncoating of influenza-virus in endosomes.J. Virol。51,497–504(1984)。

    CASPubMedPubMed CentralGoogle Scholar

  21. 21

    马丁(K.J. Virol。65,,,,232–244 (1990).

    Google Scholar

  22. 22

    兰姆,R.A。&Krug,R.M。Orthomyxoviridae:病毒及其复制。在田间病毒学(编辑Knipe,D.M。&Howley,P.M.)1487–1531(Lippincott Williams和Wilkins,费城,2001年)。

    Google Scholar

  23. 23

    Klasse,P.J。,Bron,R。&Marsh,M。被包膜病毒进入动物细胞的机制。ADV。药品。Deliv。修订版34,65–91(1998)。

    CASArticleGoogle Scholar

  24. 24

    Helenius, A., Kartenbeck, J., Simons, K. & Fries, E. On the entry of Semliki Forest viruses into BHK-21 cells.J. Cell Biol.84,,,,404–420 (1980).

    CASArticleGoogle Scholar

  25. 25

    Marrifield, C.J., Feldman, M.E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits.Nat. Cell Biol.4,691–698(2002)。

    ArticleGoogle Scholar

  26. 26

    Volonte, D., Galbiati, F. & Lisanti, M.P. Visualization of caveolin-1, a caveolar marker protein, in living cells using green fluorescent protein (GFP) chimeras: the subcellular distribution of caveolin-1 is modulated by cell-cell contact.FEBS Lett.445,431–439(1999)。

    CASArticleGoogle Scholar

  27. 27

    吴x等。网格蛋白在clathrin-me交换diated endocytosis.J. Cell Biol.155,291–300(2001)。

    CASArticleGoogle Scholar

  28. 28

    Rappoport,J.Z。&Simon,S.M。网格蛋白介导的细胞迁移过程中的内吞作用。J. Cell Sci。116,847–855(2003)。

    CASArticleGoogle Scholar

  29. 29

    Pelkmans,L。,Punterner,D。&Helenius,A。SV-40诱导的Caveolae内在化中的局部肌动蛋白聚合和动力蛋白募集。科学296,,,,535–539 (2002).

    CASArticleGoogle Scholar

  30. 30

    汤姆森(P.Mol. Biol. Cell13,238–250(2002)。

    CASArticleGoogle Scholar

  31. 31

    Schnitzer, J.E., Oh, P., Pinney, E. & Allard, J. Filipin-sensitive caveolae-mediated transport in endothelium-reduced transcytosis, scavenger endocytosis, and capillary-permeability of select macromolecules.J. Cell Biol.127,1217–1232(1994)。

    CASArticleGoogle Scholar

  32. 32

    Georgi, A., Mottola-Hartshorn, C., Warner, W., Fields, B. & Chen, L.B. Detection of individual fluorescently labelled reovirions in living cells.Proc. Natl. Acad. Sci. USA87,6579–6583(1990)。

    CASArticleGoogle Scholar

  33. 33

    Suomalainen, M. et al. Microtubule-dependent plus- and minus end–directed motilities are competing processes for nuclear targeting of adenovirus.J. Cell Biol.144,657–672(1999)。

    CASArticleGoogle Scholar

  34. 34

    Seisenberger, G. et al. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus.科学294,,,,1929–1932 (2001).

    CASArticleGoogle Scholar

  35. 35

    McDonald,D。等。活细胞中HIV的细胞内行为的可视化。J. Cell Biol.159,441–452(2002)。

    CASArticleGoogle Scholar

  36. 36

    Lakadamyali, M., Rust, M.J., Babcock, H.P. & Zhuang, X. Visualizing infection of individual influenza viruses.Proc. Natl. Acad. Sci. USA100,,,,9280–9285 (2003).

    CASArticleGoogle Scholar

  37. 37

    Wagner,R.,Matrosovich,M。&Klenk,H.-D。流感病毒感染中血凝素和神经氨酸酶之间的功能平衡。牧师。维罗尔。12,159–166(2002)。

    ArticleGoogle Scholar

  38. 38

    Babu, Y.S. et al. BCX-1812 (RWJ-270201): discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure-based drug design.J. Med. Chem.43,3482–3486(2000)。

    CASArticleGoogle Scholar

  39. 39

    Sidwell, R.W. et al.In vivo环戊烷神经氨酸酶抑制剂RWJ-270201的流感病毒 - 抑制作用。Antimicrob. Agents Chemother.45,,,,749–757 (2001).

    CASArticleGoogle Scholar

  40. 40

    Rothberg,K.G.,Ying,Y.S.,Kamen,B.A。&Anderson,R.G。胆固醇控制5-甲基四氢叶酸的糖磷脂锚定膜受体的聚类。J. Cell Biol.111,,,,2931–2938 (1990).

    CASArticleGoogle Scholar

  41. 41

    N.N.N.N.,Weigert,R。&Donaldson,J.G。非加拉蛋白和网格蛋白衍生的内体的收敛涉及ARF6失活和磷酸肌醇的变化。Mol. Biol. Cell14,,,,417–431 (2003).

    CASArticleGoogle Scholar

  42. 42

    Sieczkarski,S.B。&Whittaker,G.R。Differential requirements of Rab5 and Rab7 for endocytosis of influenza and other enveloped viruses.交通4,,,,333–343 (2003).

    CASArticleGoogle Scholar

  43. 43

    康诺利(J.L.J. Cell Biol.90,176-180(1981)。

    CASArticleGoogle Scholar

  44. 44

    Wilde,A。等。EGF受体信号传导刺激网格蛋白的SRC激酶磷酸化,影响网格蛋白重新分布和EGF摄取。Cell96,,,,677–687 (1999).

    CASArticleGoogle Scholar

  45. 45

    Grimes, M.L. et al. Endocytosis of activated TrkA: evidence that nerve growth factor induces formation of signaling endosomes.J. Neurosci。16,,,,7950–7964 (1996).

    CASArticleGoogle Scholar

  46. 46

    Beattie, E.C., Howe, C.L., Wilde, A., Brodsky, F.M. & Mobley, W.C. NGF signals through TrkA to increase clathrin at the plasma membrane and enhance clathrin-mediated membrane trafficking.J. Neurosci。20,,,,7325–7333 (2000).

    CASArticleGoogle Scholar

  47. 47

    Peter,B.J。等。条形域作为膜曲率的传感器:两亲蛋白条结构。科学303,,,,495–499 (2004).

    CASArticleGoogle Scholar

下载参考

Acknowledgements

我们感谢J.H.Keen(Thomas Jefferson University)和A. Helenius(瑞士联邦技术学院)分别赋予了GFP-Clathrin-LCA和Caveolin-1-EGFP质粒的礼物。这项工作得到了Searle奖学金,贝克曼青年研究员奖,美国海军研究办公室和美国国家科学基金会(授予X.Z.)的部分支持。M.J.R.是美国国家科学基金会前研究员。

作者信息

Affiliations

作者

Corresponding author

对应小王Zhuang

伦理s declarations

利益争夺

这authors declare no competing financial interests.

补充信息

Supplementary Video 1

视频是在以下成像条件下拍摄的。为了视频1-5,EYFP-clathrin或Caveolin-1-EGFP的激发激光器每1.5 s打开0.5 s,而DID标记的病毒的激发激光始终处于打开状态。每个帧的相机集成时间为0.5 s。所有相机像素均单独读取。为了Videos 6and7,,,,the excitation laser for the EYFP-clathrin was turned on for 0.5 s every 1.5 s while that for the DiD-viruses was turned on for 0.5 s every 1s. The pixels were binned in a 2x2 fashion.Videos 6and7因此,不允许准确确定CCP在病毒结合位点是否形成或关闭病毒结合位点,而仅仅是为了表明依赖性依赖性和非依赖性内吞作用都会导致病毒融合。所有视频均通过减去由细胞质EYFP-CLATHRIN或Caveolin-1-EGFP产生的低空间频率背景信号来处理。这些视频被显着压缩,压缩会损害视频质量。随着病毒添加到细胞中在situthe binding of viruses to cells is highly asynchronous. Thus some viruses appear to move only slowly while the circled viruses show the specified behavior of three-stage movement. These slow-moving viruses in the field of view are either in stage I or in stage III during the exhibited time window. (MP4 1242 kb)

在活细胞中,一部双色的电影结构(绿色)和标记的病毒(红色)的双色电影。

Supplementary Video 2

A dual-color movie of EGFP-tagged caveolin structures (green) and DiD-labeled viruses (red) in a live cell. (MP4 1395 kb)

Supplementary Video 3

通过CCP的流感病毒的内在化。这从头formation of a CCP (green) around the virus (red, in white circles), the gradual increase of clathrin intensity, and the rapid disappearance of the clathrin signal immediately before the virus exhibit a rapid, unidirectional movement towards the perinuclear region (stage II movement). (MP4 2335 kb)

Supplementary Video 4

通过CCP的流感病毒的内在化。这从头formation of a CCP (green) around the virus (red, in white circles), the gradual increase of clathrin intensity, and the rapid disappearance of the clathrin signal immediately before the virus exhibit a rapid, unidirectional movement towards the perinuclear region (stage II movement). (MP4 2919 kb)

Supplementary Video 5

这在ternalization of an influenza virus without association with a CCP. The virus (red, in a white circle) did not associate with a CCP before its stage-II movement inside the cell. (MP4 2995 kb)

Supplementary Video 6

这在ternalization and fusion of an influenza virus (red, in a white circle) after association with a CCP (green). Fusion is indicated by a dramatic increase of the DiD signal (red). (MP4 2785 kb)

Supplementary Video 7

流感病毒的内在化和融合(红色,白色圆圈)与CCP相关。(MP4 4321 KB)

Supplementary Fig. 1 (PDF 190 kb)

Supplementary Fig. 2 (PDF 250 kb)

补充图3(PDF 127 KB)

补充图4(PDF 138 kb)

权利和权限

Reprints and Permissions

关于this article

引用本文

Rust, M., Lakadamyali, M., Zhang, F.等。病毒进入过程中单个流感病毒周围的内吞机械组装。Nat Struct Mol Biol11,,,,567–573(2004)。https://doi.org/10.1038/nsmb769

下载引文

进一步阅读

Search

快速链接

大自然简报

注册大自然简报新闻通讯 - 科学重要的是,每天免费使用收件箱。

Get the most important science stories of the day, free in your inbox. 注册自然简报