HANDBOOK OF PROCEDURES FOR SPECIFIC INHALATION CHALLENGE TESTING IN THE DIAGNOSIS OF OCCUPATIONAL ASTHMA # **European Taskforce on SIC June 2013** Compiled by Katri Suuronen, Hille Suojalehto and Paul Cullinan, on behalf of the ERS Task Force on Specific Inhalation Challenges with Occupational Agents (to be updated 2018) We gratefully acknowledge the expert input from Erika Aguado, Lygia Budnik, Julie Cannon, Danilo Cottica, Maria Jesus Cruz Carmona, Geneviève Evrand, Bernadette Fitzgerald, Marie Paule Gancarski, Manuela Garcia, Vickie Moore, Joan Ponton and Brigitte Sbinne to the production of this handbook. #### INTRODUCTION This handbook is a product of a pan-European taskforce on specific inhalation challenge (SIC) testing in the diagnosis of occupational asthma. It was compiled from information provided by twelve specialist clinical centres under the direction of Katri Suuronen. Our purpose was to provide to others information on the techniques used in each centre for SIC with different occupational agents. The tables below include information on the form and nature of the active and control agents and on methods, quantities and duration of delivery; where appropriate 'comments' and references are provided. The information here is not intended as a set of full 'recipes' but as a guide; the handbook should be read in concert with the full taskforce report (reference). Readers are reminded that the general safety requirements, contra-indications and precautions described in the full report should be strictly applied in order to minimise the risk of severe adverse events; that the duration and/or concentration of exposure to occupational agents should only be gradually increased under close monitoring of functional parameters; that the starting doses listed here are a guide only and should be adjusted in light of a particular patient's circumstances; and that a control challenge test with a 6-8 hour period of spirometric monitoring on a separate day is required for the interpretation of the SIC results. Further information can be obtained from any of the centres listed and contact details are provided (page 3). # **LIST OF TABLES** | CENTRES: abbreviations and contact details | 4 | |---|---------| | HIGH MOLECULAR WEIGHT AGENTS | | | Flours: wheat, rye, oats, barley, soy, buckwheat | 6 | | Grains and animal feed | 8 | | Enzymes: amylases, lipases, proteases, cellulases, xylanases, enzyme mixtures etc | 11 | | Natural rubber latex (NRL): gloves | 13 | | Wood dusts: obeche, teak, iroko, western red cedar, ebony; ash, beech, pine; also mediu | m | | density fibreboard (MDF) | 14 | | Animal derived proteins | 16 | | Miscellaneous plant derived materials | 19 | | LOW MOLECULAR WEIGHT AGENTS | 23 | | Diisocyanates | 23 | | Other plastic chemicals: epoxy resins, acrylic resins, powder paints, acid anhydrides, etc. | 29 | | Metals and metal salts: welding fumes, nickel, cobalt, chromium, platinum, etc | 37 | | Other chemicals in metal and electronics industry: metalworking fluids (MWF), soldering | fluxes, | | etc | 45 | | Hairdressing chemicals | 49 | | Antimicrobials, disinfectants and detergents | | | Pharmaceutical agents etc | 56 | #### List of abbreviations: EA Ethanolamines HDI Hexamethylene diisocyanate HMW High molecular weight IPDI Isophorone diisocyanate LMW Low molecular weight MDF Medium density fibreboard MDI Methylenediphenyl diisocyanate MIG Metal inert gas MMA Metylmethacrylate MWF Metalworking fluid NA Data not available NCO Reactive isocyanate group (-N=C=O) NDI 1,5-naphthalene diisocyanate NM Not measured NRL Natural rubber latex NSBHR Nonspecific bronchial hyperresponsiveness OEL Occupational exposure limit PBS Phosphate buffered saline PE Polyetylene PM Particle measurement pMMA Polymetylmethacrylate PP Polypropylene ppb Parts per billion PVC Polyvinyl chloride RT Room temperature SIC Specific inhalation challenge TDI Toluene diisocyanate TGIC Triglycidyl isocyanurate TIG Tungsten inert gas TLV Treshold limit value TPU Thermoplastic urethane VOC Volatile organic compounds # **CENTRES: abbreviations and contact details** | Abbreviation | Centre | Contact person: name and email | |--------------|---|---| | ВНН | Birmingham Heartlands Hospital, Occupational Lung | Vicky Moore | | | Disease Unit, Birmingham, UK | vicky.c.moore@heartofengland.nhs.uk | | CHUM | Department of Chest Medicine, Centre Hospitalier | Olivier Vandenplas | | | Universitaire de Mont-Godinne; Université Catholique de | olivier.vandenplas@uclouvain.be | | | Louvain, Yvoir, Belgium | Geneviève Evrand | | | | Geneviève.evrard@uclouvain.be | | CIOM/ IOMM | Institute for Occupational Medicine, Charité University, | Xaver Baur xaver.baur@charite.de | | | Berlin, Germany | Lygia Therese Budnik <u>L.Budnik@uke.de</u> | | | Institute for Occupational and Maritime Medicine, | | | | Hamburg, Germany | | | FIOH | Occupational Medicine Team, Finnish Institute of | Katri Suuronen | | | Occupational Health, Helsinki, Finland | katri.suuronen@ttl.fi | | FJDM | Allergy Department, Fundacion Jimenez Diaz-Capio, CIBER | Dominguez Joaquin Sastre | | | de Enfermedades Respiratorias (CIBERES), Madrid, Spain | JSastre@fjd.es | | FSM | Allergology and Immunology Unit, Fondazione Salvatore | Gianna Moscato | | | Maugeri, Institute of Care and Research, Scientific Institute | gianna.moscato@fsm.it | | | of Pavia, Pavia, Italy | | | SUH | Division of Asthma and Allergy, Department of Chest | Frédéric de Blay | | | Diseases, Strasbourg University Hospital, Strasbourg, France | Frederic.DEBLAY@chru-strasbourg.fr | | NIOM | Nofer Institute of Occupational Medicine, Depatrment of | Jolanta Walusiak-Skorupa | | | Occupational Diseases&Clinical Toxicology, Lodz, Poland | jolantaw@imp.lodz.pl | | NMGH | Department of Respiratory Medicine North Manchester | Jennifer Hoyle | | | General Hospital, Manchester, United Kingdom | Jennifer.hoyle@pat.nhs.uk | | RBHT | Department of Occupational and Environmental Medicine, | Julie Cannon | | | Imperial College, National Heart and Lung Institute, London, | j.cannon@rbht.nhs.uk | | | United Kingdom | | | UNIPD | Department of Cardiologic, Thoracic, and Vascular Sciences, | Piero Maestrelli | | | University of Padova, Padova, Italy | piero.maestrelli@unipd.it | |------|---|---------------------------| | VHIR | Institut de Recerce, Hospital Vall d'Hebron, Barcelona, | Xavier Muńoz | | | Spain | xmunoz@vhebron.net | ### **HIGH MOLECULAR WEIGHT AGENTS** # Flours: wheat, rye, oats, barley, soy, buckwheat - most centres use a dust-tipping method but nebulisation is an alternative - particle size and/or particle mass may be measured during active challenges - flours from the workplace are preferred, because shop-bought flours may lack relevant allergens | Physical form | Control agent | Method of delivery | Approximate | Duration | Comments | Centre | |---------------------------------|---|--|--|---|--|--------| | | | | amount used | | | | | Dust tipping | | | | | | | | Powder | Lactose powder (dusting with pressured air) | Dusting with pressured air (1 blow/minute) | 100-300 g as
such or
diluted in
lactose | 30 –60 min | If IgE sensitization is strong, dilution to 10-50% in lactose in the first challenge | FIOH | | Powder | Lactose or starch powder | Tipping and dusting 30 centimetres away from patient's face | ~500- 1000 g | Up to 60 min
(1, 15, 30, 60
min) | | NIOM | | Powder
diluted in
lactose | Lactose powder | Dust tipping from one tray to another 30 centimetres away from the patients face | 10 - 100 g
diluted in
150g of
lactose | Exposure gradually increasing up to a maximum of 60 min | The quantity of flour mixed with lactose depends on clinical criteria according to patient sensitization and respiratory functional status | VHIR | | Powder | Lactose | Tipping and dusting with pressured air | 500 g flour
used at work | Up to 120 min
(1, 4, 10, 15, 30,
60 min) | | CHUM | | Physical form | Control agent | Method of delivery | Approximate | Duration | Comments | Centre | |---------------|--------------------------|------------------------------------|---------------|--------------------|------------------------------------|---------------| | | | | amount used | | | | | Powder | Lactose powder | Dust tipping | Up to 1kg | Up to 70 min | | ВНН | | | | | | (10+20+40) | | | | Powder | Lactose powder, | Mixing with lactose powder, | 1% to 10% in | 20 min | | RBHT | | | sieved and baked | then tipping repeatedly by patient | 250 g lactose | | | | | Powder | Lactose or tapioca flour | Tipping from one tray to another | ~500 g | Up to 30 min | | IOMM/
CIOM | | Powder | Lactose powder | Tipping and dusting with | 100-300 g as | Up to 120 min | | FSM | | | | pressured air | such | (1, 4, 10, 15, 30, | | | | | | | | 60 min) | | | | Powder | Lactose powder | Tipping from a small vase | 250-500 g | Up to 60 min, | Starting with weak mixture in | NMGH | | | | through a sieve 30 cm from | | starting with | suspicion of strong sensitization | | | | | the patient | | 1,2,5,10,15,30, | based on clinical history and IgE | | | | | | | etc. | | | | Powder | Lactose | Close-circuit delivery | | Up to 30 min | | FJDM | | | | machine | | | | | | Nebulisation | | | | | | | | Homemade | Saline | Nebulisation by tidal volume | | 2 min each | | FJDM | | /commercial | | method with home-made | | concentration |
 | | extracts | | extracts/commercial extracts | | | | | | Commercially | Saline diluent | Nebulisation in increasing | Commercial | 2 min each | In case of strong sensitization or | IOMM/ | | available | | concentrations | standardized | concentration | strong NSBHR initial dilution is | CIOM | | extracts | | | conc. | | 1/10,000 or higher; stepwise | | | | | | | | increase: 1/1,000, 1/100, 1/10 | | # **Grains and animal feed** - seeds or large particles may be ground smaller prior to SIC - particle size and/or particle mass may be measured - dust tipping or nebulisation methods may be used | Physical | Control | Method of delivery | Approximate amount | Duration | Comments and references | Centre | |--|-------------------|--|---|------------------------------------|--|--------| | form | agent | | used | | | | | Wheat, rye, | oats, barley an | d their mixtures | | | | | | Powder,
rough
particles,
pellets,
etc. | Lactose
powder | Dust tipping or dusting with pressurised air (1 blow/minute) | 100-300 g as such or diluted in lactose | 30 –60 min | If IgE sensitization is strong, dilution to 10-50% in lactose in the first challenge | FIOH | | Powder,
rough
particles,
etc. | Lactose
powder | Dust tipping | ~500- 1000 g | 30 –60 min | | NIOM | | Powder,
rough
particles,
etc. | Lactose
powder | Dust tipping | 100-300 g as such | 1, 4, 10, 15,
30, 60,
120min | | FSM | | Liquid
home-
made
extracts | Saline | Nebulisation (tidal volume method) | Starting concentration based on skin endpoint titration | 2 min each
concentrati
on | Starting concentration by end-point skin titration (Vereda et al. Allergy 2007;62:211-2) | FJDM | | Soy hull | | | | | | | | Powder diluted in | Lactose powder, | Dust tipping | 1% in 250 g lactose | Exposure gradually | | RBHT | | Physical form | Control agent | Method of delivery | Approximate amount used | Duration | Comments and references | Centre | |---|---------------------|------------------------------------|---|---|--|--------| | lactose | sieved and
baked | | | increasing
up to a
maximum
of 20 min | | | | Liquid
home-
made
extracts | Saline | Nebulisation using a dosimeter | Increasing concentrations from 1:1000; 1:100; 1:10; 1:1 and no of inhalations up to 40 | 2 min each
concentrati
on. | Starting concentration by end-point skin titration | FSM | | Liquid in-
house
antigen
extract | Saline | Nebulisation using a nebulizer | 2 ml of each concentration, the starting conc. being based on metacholine PC20 and skin prick test reactivity | - | -Antigen extract made according to Gomez-Olles S et al. Clin Exp Allergy 2006; 36: 1176-83 -The starting conc. is calculated from methacholine PC20 and the smallest antigen conc provoking a positive skin response (Cockcroft DW, et al. Am Rev Respir Dis 1987;135:264-267) | VHIR | | Other Liquid lima Bean (P. lunatus) extract | Saline | Nebulisation using a dosimeter | Dilution 1:100 | 1, 4, 10, 15,
30, 60 min | Tonini S et al. Letters/Ann Allergy Asthma
Immunol 2012;108:60-67 | FSM | | Mushroom spores, liquid homemade extracts | Saline | Nebulisation using a dosimeter | Increasing concentrations from 1:1000; 1:100; 1:10; 1:1 and n° of inhalations up to 40 | 2 min each
concentrati
on. | Starting concentration by end-point skin titration | FSM | | Mushroom
spores,
liquid
homemade | Saline | Nebulisation (tidal volume method) | Starting concentration based on skin endpoint titration | 2 min each
concentrati
on | Vereda et al. Allergy 2007;62:211-2 | FJDM | | Physical form | Control agent | Method of delivery | Approximate amount used | Duration | Comments and references | Centre | |---------------|---------------|--------------------|-------------------------|----------|-------------------------|--------| | extracts | | | | | | | # Enzymes: amylases, lipases, proteases, cellulases, xylanases, enzyme mixtures etc. - enzymes are potent allergens and testing should be started with a low concentration - while most centres use a dust-tipping method, some use nebulisation | Physical form | Control agent | Method of delivery | Approximate amount used | Duration | Comments | Centre | |---------------------------|--|---|--|--|--|---------------| | Dust tipping | | | | | | | | Powder diluted in lactose | Lactose
powder | Dusting | 0.03 - 3% enzyme in
100 g lactose | 30 min | Usually started with the lowest concentration (0.03%). | FIOH | | Powder | Lactose
powder
sieved and
baked | Enzyme dust added to 250g lactose powder, then tipped repeatedly by patient | 0.1% to 2.5% in lactose | 20 min | Can be extremely potent at small doses | RBHT | | Powder diluted in lactose | Lactose
powder | Dusting | Increasing dilutions in
100 g lactose
(1/1.000, 1/100, 1/10,
pure powder) | 1, 4, and 10 min for each dilution, then pure powder up to 120 min ((1, 4, 10, 15, 30, 60 min) | Starting dilution
determined by end-
point skin titration | CHUM | | Powder | Lactose | Close-circuit delivery machine | | Up to 30 min | | FJDM | | Nebulisation | | | | | | | | Liquid, diluted in saline | Saline | Nebulisation in increasing concentrations | 1 ml of each concentration | 2 min of each concentration | Starting concentration is usually from 0.00001 mg/ml; stepwise increase to | IOMM/
CIOM | | Physical form | Control | Method of delivery | Approximate amount | Duration | Comments | Centre | |-------------------|---------|---------------------------|--------------------|---------------------|-------------------|--------| | | agent | | used | | | | | | | | | | 0.1 mg/ml; | | | | | | | | depending on the | | | | | | | | level of IgE | | | | | | | | sensitization and | | | | | | | | NSBHR | | | Homemade extracts | Saline | Nebulisation Tidal volume | | 2 min each dilution | Starting | FJDM | | | | method with extracts | | | concentration by | | | | | | | | end-point skin | | | | | | | | titration | | # Natural rubber latex (NRL): gloves ### Notes: - most centres use whole, powdered latex gloves but nebulisation of a commercial extract is an alternative | Control | Method of | Approximate | Duration | Comments and references | Centre | |----------------|---|--|---|---|--| | agent | delivery | amount used | | | | | k gloves | | | | | | | PVC gloves | Handling gloves | 6-10 gloves | 30 min | Number of gloves depends on the level of IgE | FIOH | | _ | | | | sensitization | | | PVC gloves | • | 2 gloves per 5 | | | NIOM | | | shaking gloves | min | 60, 120 min | | | | PVC or nitrile | Handling gloves | Up to 15 gloves | Up to 70 min | | ВНН | | gloves | | | | | | | PVC gloves | Handling gloves | 10 gloves | 20 min | | RBHT | | | | | | | | | PVC gloves | Handling gloves | 1-10 gloves | Up
to 30 min | Number of gloves depends on the level of IgE | IOMM/ | | | | | | sensitization and NSBHR | CIOM | | PVC gloves | Handling and | 2 gloves per 5 | Up to 120 min | Vandenplas O. Occupational asthma caused by | CHUM | | | shaking gloves | min | (1, 4, 10, 15, 30, | natural rubber latex. Eur Respir J. 1995;8:1957- | | | | | | 60 min) | 65. | | | PVC or nitrile | Handling gloves | 6 – 15 gloves | 30 -60 min | Number of gloves depends on the level of IgE | FSM | | gloves | | _ | | sensitization | | | | | | | | 1 | | Saline | Administered by | 2 ml of each | | The starting concentration is calculated from | VHIR | | | aerosol using a | concentration | | methacholine PC ₂₀ and the smallest antigen | | | | nebuliser | | | _ | | | | | | | · - · | | | | | | | 1 | | | | PVC gloves PVC gloves PVC or nitrile gloves PVC gloves PVC gloves PVC gloves PVC gloves PVC gloves | gloves PVC gloves Handling gloves PVC gloves Handling and shaking gloves PVC or nitrile gloves PVC gloves Handling or nitrile gloves Saline Administered by aerosol using a | agent delivery amount used gloves PVC gloves Handling gloves 6-10 gloves PVC gloves Handling and shaking gloves min PVC or nitrile gloves Handling gloves PVC gloves Handling gloves 10 gloves PVC gloves Handling gloves 1-10 gloves PVC gloves Handling and shaking gloves 2 gloves per 5 min PVC or nitrile gloves 4 gloves 6 - 15 gloves PVC or nitrile gloves 6 - 15 gloves Saline Administered by aerosol using a concentration | agent delivery amount used Regloves PVC gloves Handling gloves 6-10 gloves 30 min PVC gloves Handling and shaking gloves min 60, 120 min PVC or nitrile gloves Handling gloves Up to 15 gloves Up to 70 min PVC gloves Handling gloves 10 gloves 20 min PVC gloves Handling gloves 1-10 gloves Up to 30 min PVC gloves Handling and shaking gloves min (1, 4, 10, 15, 30, 60 min) PVC gloves Handling and shaking gloves 6 - 15 gloves 30 - 60 min PVC or nitrile gloves Administered by aerosol using a concentration | agent delivery amount used regloves PVC gloves Handling gloves 6-10 gloves 30 min Number of gloves depends on the level of IgE sensitization PVC gloves Handling and shaking gloves PVC gloves Handling gloves Up to 15 gloves Up to 70 min gloves PVC gloves Handling gloves 10 gloves 20 min PVC gloves Handling gloves 1-10 gloves Up to 30 min Number of gloves depends on the level of IgE sensitization and NSBHR PVC gloves Handling and shaking gloves min (1, 4, 10, 15, 30, 60 min) PVC gloves Handling and shaking gloves (1, 4, 10, 15, 30, 60 min) PVC or nitrile gloves Administered by aerosol using a 2 ml of each concentration The starting concentration is calculated from methacholine PC ₂₀ and the smallest antigen | # Wood dusts: obeche, teak, iroko, western red cedar, ebony; ash, beech, pine; also medium density fibreboard (MDF) - some woods contain HMW (protein) allergens, while in some materials (Western red cedar, MDF) the suspected agent is a LMW compound - almost all centres use a form of dust-tipping | Physical form | Control agent | Method of delivery | Approximate amount used | Duration | Comments and references | Centre | |--|---------------------------|--|--|---|---|--------| | Dust tipping | • | • | | | | | | Neat wood
dust | Lactose or starch powder | Dust tipping | 500- 1000 g | Up to 60 min | | NIOM | | Neat wood
dust/shavings
or diluted in
lactose | Lactose
powder | Dust tipping | 10 - 100g
diluted in 150g
of lactose | Gradually increasing to a maximum of 60 min | The quantity of dust mixed with lactose depends on clinical criteria according to patient sensitisation and respiratory functional status (Munoz X et al. Scand J Work Environ Health 2007;33(2):153–158) | VHIR | | Neat wood
dust | lactose
powder | Dust tipping | 100g | 30 min | | FJDM | | Neat wood
dust | Lactose
powder | Sanding piece of wood using an electric sander | | 1, 4, 10, 15,
30, 60, 120
min | Malo JL, Cartier A, Desjardins A, Van de Weyer R, Vandenplas O. Occupational asthma caused by oak wood dust. Chest. 1995;108:856-8. | CHUM | | Neat wood
dust | Pine | Sanding piece of wood using an electric sander | | 5 – 20 min | , | RBHT | | Neat wood
dust | Pine or
spruce
wood | Manual or electrical sanding | | 1, 4, 10, 15,
30, 60, 120
min | | UNIPD | | Neat wood
dust | Pine | Sanding piece of wood using an | | Up to 60 min | | NIOM | | Physical form | Control agent | Method of delivery | Approximate amount used | Duration | Comments and references | Centre | |--|---|---|---|---|---|--------| | | | electric sander | | | | | | Neat wood
dust | Lactose
powder | Sanding piece of wood using an electric sander or Dust tipping | | 5 – 20 min | | FSM | | Neat wood
dust or diluted
in lactose | Lactose
powder | Dusting with pressurised air (1 blow/minute) | 10-50% wood
dust in ~100g
lactose | 30 min | Dilution in lactose in the 1 st SIC; the 2 nd SIC possibly with 100% wood dust | FIOH | | 1) Solid wood sanded2) Powder | Another wood species (sanded or powder depending on the active SIC) | 1) Sanding the wood, electric sander 2) Tipping from one tray to another | 1) wood block
2) 250-500g | Gradually increasing up to total 60 min | The method depends on the mode of usage at work | NMHG | | MDF | Pine | Sanding piece of
MDF using an
electric sander | | 5 – 20 min | Burton C et al. Medium density fibreboard and occupational asthma. A case series. Occup Med 2011;61:357-364 | RBHT | | MDF dust | Formaldehy
de painted
on to
cardboard | Sanding with electric or hand sander | | Up to 60 min | | ВНН | | Nebulisation | | | | | | | | Home-made
extracts | Saline | Nebulisation (tidal volume method) with home-made extracts | | 2 min each dilution | | FJDM | # **Animal derived proteins** #### Notes: - a variety of methods are used: dust-tipping, mimicking work tasks, nebulisation of commercial or home-made extracts, quasi-controlled workplace challenges | Active agent | Physical form | Control agent | Method of delivery | Approximate amount used | Duration | Comments and references | Centre | |--------------------------------------|--|--|--|---|---|--|--------| | Animal epithe | lium and urin | ne (cow, pig, mouse, r | at, rabbit, mites, fur anim | als etc.) | | | | | Mouse and rat epithelium and urine | Animal
beddings
(flakes +
powder) | Lactose powder or unused beddings (dusting or tipping) | Tipping used animal beddings containing fresh urine and epithelium beddings from vase to another | 500-1000 ml | 30-45 min | | FIOH | | Rat, mouse
epithelium
an urine | Animal
beddings | Unused beddings | Beddings containing fresh urine and epithelium | Approx. 500g | 1-60 min | | SUH | | Laboratory
animals
(mice) | Live
animals as
such | Unused beddings | Patient undergoing prolonged exposure inside the animal facilities | Approximately
100 mice are
housed | 30 and 60
min on
successive
days | Munoz X et al. Respiration
2007;74(4):467-470 | VHIR | | Live
laboratory
mice | Live
animals in
cage with
bedding | Monitoring patient over 1 day without animal exposure | Handling the animals, cleaning them out as in normal working day | | 10 – 30 min | This is done in the animal research facility, not in the challenge lab | RBHT | | Furs (blue fox, mink, etc.) | As such | Lactose powder or | Handling (dusting,
brushing etc) of furs | 3-7 furs | 30-45 min | | FIOH | | Fur animals and feathers, | As such | Lactose powder or starch powder | Handling (dusting, brushing, pulling, | 3-5 furs | Up to 60
min | | NIOM | | Active agent | Physical form | Control agent | Method of delivery | Approximate amount used | Duration | Comments and references | Centre | |---|---------------|-----------------------------|--|--|---------------------------------|---|--------| | etc. | | | tousling etc.) of furs | | | | | | Homemade
or
commercial
allergen
extracts of
hair, dander,
mites, etc. | Liquid | Saline | Nebulisation of with tidal volume method | | 2 min each
dilution | Starting concentration by end-
point skin titration | FJDM | | Commercial
allergen
extracts of
cow or dog
danders | Liquid | Saline | Through dosimeter | Increasing concentrations from 1:1000; 1:100; 1:10 and n° of inhalations up to 40 | 2 min each
concentrati
on | | FSM | | Commercial
extract of
sheep wool | Liquid | Saline | Through dosimeter | Increasing concentrations from 1:1000; 1:100;
1:10; 1:1 and n° of inhalations up to 40 | 2 min each
concentrati
on | | FSM | | Commercial allergen extracts of cow epithelium, storage mites, etc. | Liquid | Commercial allergen diluent | Spira Elektro 2
dosimeter | 1-20 breaths | 15-60 min | -Allergen dilution 5-50 BU/ml or 10 000-100 w/w -Stepwise increase in the number of inhalations, depending on the level of IgE sensitization and symptoms during the test | FIOH | | Active agent | Physical form | Control agent | Method of delivery | Approximate amount used | Duration | Comments and references | Centre | |--------------|---------------|---|---|---------------------------------------|------------------|--|--------| | Other | | | | | | | | | Fish | Solid | Other fish with negative IgE | Mimicking the patients job | | Up to 60–120 min | | FJDM | | Carmine | Powder | Lactose powder or in-house control solution | Dusting or mixing or pouring carmine diluted in lactose from a vase to another | ~100 g
lactose/carmin
e mixture | 15-30
minutes | carmine colour derived from cochineal insect if IgE sensitization is strong, dilution to 10-50% in lactose is done | FIOH | | Carmine | Liquid | Saline | Nebulizing solutions with increasing concentrations of carmine with a nebulizer | 2 ml of each
concentration | | - method: Cockcroft DW, et al. Am Rev Respir Dis 1987;135:264-267 - protein concentration of carmine determined by the BCA protein assay -The starting concentration is based on metacholine PC ₂₀ and the skin prick test reactivity | VHIR | # Miscellaneous plant derived materials - a wide variety of methods are used: tipping, dusting, work mimicking, nebulisation of home-made extracts, etc - processing the material (e.g. boiling) may affect the allergenicity of the proteins | Active agent | Physical form | Control agent | I agent Method of delivery a | | Duration | Comments and references | Centre | |--------------------------------|---------------------|---|--|------------------------------------|--------------|--|--------| | Decorative pla | ants and ve | getables | | | | | | | Fresh
plants/veget
ables | Solid | Cutting lettuce or in-
house control solution
(nebulised) | Handling (cutting, ripping, turning) plants | e.g. 3-15
decorative
flowers | 30 min | | FIOH | | Fresh plants/veget ables | Solid | Saline control solution or cutting lettuce | Handling plants (cutting, ripping, turning) | 3-15 decorative flowers | Up to 60 min | | NIOM | | Fresh
vegetables | Solid | Saline | Boil fresh vegetable in pot in a chamber | 3-5 fresh
vegetables | Up to 60 min | | NIOM | | Fresh
vegetables | | | Boil fresh vegetable in glass jar into a chamber | | Up to 60 min | - Quirce et al. Allergy 2005; 60: 969-970 - blinding is difficult due to odour | FJDM | | Foodstuffs an | d spices | | | 1 | 1 | | | | Spices | Powder
or flakes | Lactose powder (dusting with pressured air) | Dusting powder or flakes mixed in lactose with pressured air or handling (1 blow/minute) | ~100 g lactose
mixture | 30 min | Cardamom,
pepper,
oregano,
coriander, etc. | FIOH | | Spices | Powder | Lactose powder | | ~100-500 g | | Pepper, | NIOM | | Active agent | Physical form | Control agent | Method of delivery | Approximate amount used | Duration | Comments and references | Centre | |--|---------------|---|--|---|--|--|---------------| | | or flakes | | | spice mixture | 30 min | oregano, basil, cardamon etc. | | | Spices,
homemade
extracts | Liquid | Saline | Nebulisation by tidal volume method with home-made extracts | | 2 min each dilution, starting with end-point titration | Starting concentration by end-point skin titration | FJDM | | Spices | Liquid | Saline | Nebulisation by tidal volume method with home-made extracts | | 2 min each dilution | Starting concentration by end-point skin titration | CHUM | | Food additives: gum arabicum, carob tree, etc. | Powder | Lactose powder
(dusting with pressured
air) | Dusting with pressured air (1 blow/minute) | ~100 g
lactose/additive
mixture | 30 min | Dilution to 10-
50% in lactose
in the first
challenge | FIOH | | Raw coffee | Powder | Lactose powder | Dusting with pressured air (1 blow/minute) | ~100 g
lactose/coffee
mixture | 30 min | Dilution to 10-
50% in the first
challenge | FIOH | | Raw coffee | Powder | Lactose or tapioca flour | Shaking the beans | c. 500 g | Up to 30 min | _ | IOMM/
CIOM | | Raw coffee | Powder | Lactose powder | Dusting tipping | 100 g coffee | 30 min up to 2 h | | FSM | | Raw coffee
(green coffee
bean) | Liquid | Saline | Handling | Increasing concentrations from 1:1000; 1:100; 1:10; 1:1 | 30 min up to 2 h | | FSM | | Tea dust,
herbal teas | Powder | Lactose powder, sieved and baked | % dust added to 250g lactose powder, then tipped repeatedly by | 1% to 10 % | 20 min | | RBHT | | Active agent | Physical form | Control agent | Method of delivery | Approximate amount used | Duration | Comments and references | Centre | |--|---------------------|----------------|---|---|--|---|--------| | | | | patient | | | | | | Cacao
(grained raw
cacao beans) | | Lactose powder | Dust tipping | 100 g cacao | 30 min up to 2 h | | FSM | | Mushroom
spores | Powder and pieces | Lactose powder | Tipping from one tray to another | | 10 – 15 – 30 – 60
min.
Up to 2 h | | FSM | | Mushroom
spores,
home-made
extracts | Liquid | Saline | Nebulisation using a dosimeter with homemade extracts | Increasing concentrations from 1:1000; 1:100; 1:11 and n° of inhalations up to 40 | 2 min each concentration. | Starting
concentration
by end-point
skin titration | FSM | | Fungi on
salami
surface | Solid/
powder | Lactose powder | Mimicking the patients
job = brushing of the
salami surface | | 10 – 15 – 30 – 60
min.
Up to 2 h | | FSM | | Ephestia
kuehniella
(flour moth)
in flour | Powder
or flakes | Lactose powder | Tipping from one tray to another | | 10 – 15 – 30 – 60
min.
Up to 2 h | | FSM | | Plantago
ovata | Powder | Lactose powder | Dust tipping from one tray to another 30 cm away from the face | 10 g diluted in
150g of lactose | 15 min | Munoz X et al. Ann Allergy Asthma Immunol 2006;96:494–6. | VHIR | | Other | | | | | | | | | Black Henna | Powder | Lactose powder | Mimicking the patients job | Diluted powder 1:10 | 10 – 15 – 30 – 60
min. Up to 2 h | Scibilia E et al.
Allergy | FSM | | Active agent | Physical form | Control agent | Method of delivery | Approximate amount used | Duration | Comments and references | Centre | |---|---------------|---|--------------------|---------------------------------------|------------|--|---------------| | | | | | | | 1997;52:231-
232 | | | Liquid,
standardized
commercial
extracts of
appropriate
material | Liquid | Diluent of the commercially available extract | Use of a nebuliser | Commercial standardized concentration | 2 min each | - allergen extracts by Bencard Allergi Gmbh - Stepwise increase of concentration, starting with 1/1,000, higher dilutions if strong degree of IgE sensitization and/or NSBHR | IOMM/
CIOM | ### **LOW MOLECULAR WEIGHT AGENTS** # Diisocyanates - either diisocyanate-containing products or in-house solutions of pure diisocyanates may be used - for some agents e.g. paint hardeners containing both hexamethylene diisocyanate(HDI) and HDI-prepolymers, the use of relevant workplace products is preferred | Physical form | Control agent | Method of delivery | Approxi-
mate | Duration | Approximate target | Exposure monitoring | Comments and references | Centre | |---|------------------------------------|--|---------------------|--------------------------------------|---|---|---|--------| | | | | amount
used | | concentration | | | | | Methylen | ediphenyl diis | ocyanate (MDI) | | | | | | | | Liquid | 1,5 ml
toluene
nebulised | Nebulisation of an in-
house MDI solution
(in toluene) from a
small glass jar with
pressured air | 1,5 ml | 15 min | level I: 0.0035
mg/m³ NCO
(1/10
of the OEL)
level II: 0,010
mg/m3 NCO (1/3 of
the OEL) | Filter collection + analysis of NCO (isocyanate groups) in the air : ISO 16702 (2001) | Suojalehto H et al.
Am J Ind Med. 2011
Dec;54(12): 906-10 | FIOH | | Liquid
solution
with
olive oil | Solvent
nebulised
for 30 min | Heating to 120°C:
mimicking the
patients job- painting
or spraying | 5-10ml | 1, 15, 30,
60 min | | NM | | NIOM | | Liquid | Solvent | Nebulisation from glass jar (heated) | NA | 10 min
20 min
30 min
60 min | 15-20 ppb | Continuously. measured by Honeywell SPM monitor | Sastre et al. Chest
2003; 123:1276-
1279. | FJDM | | Liquid | Solvent
nebulised | Heating to 120°C | 50 ml or adapted to | 1, 4, 10,
15, 30, | ~10 ppb (below 20 ppb) | MDA 7100
monitor | Vandenplas O,
Malo JL. Eur Respir | CHUM | | Physical
form | Control
agent | Method of delivery | Approxi-
mate
amount
used | Duration | Approximate target concentration | Exposure
monitoring | Comments and references | Centre | |-------------------|---|---|--|--------------------------------------|------------------------------------|--|-------------------------|---------------| | | for 30 min | | generate 10
and 15 ppb | 60 min | | | J. 1997;10:2612-29. | | | Solid
crystals | Solvent or if
a 2-part
system, the
paint alone | Heating to 120 °C | <1g | Up to 70
min
(10+20+
40) | < 20ppb | Toxic gas
detector | | ВНН | | Liquid | Non-
hazardous
liquid
component | Mimicking work, eg. Painting liquid onto surface Adding 2 components to make foam | Variable,
but enough
to achieve
up to 20
ppb | 30 -60
sec | 20 ppb max | MDI monitor
(TLD-1 toxic gas
detector) | | RBHT | | Solid
crystals | 120°C
heated
clean sand | Heating to 120 °C | 2 g | 60 min | ~10 ppb (below 20 ppb) | MDA 7100
monitor
Polymetron | | UNIPD | | Liquid | Atmospheri
c (pure) air | Evaporation at 80°C | Variable,
but enough
to achieve
up to 10
ppb | 10 min
20 min
30 min
60 min | 2.5 ppb
5 ppb
5 ppb
5 ppb | Continuously.
measured by
Honeywell SPM
monitor | | IOMM/
CIOM | | Liquid | Isobuthylac
etate | Evaporation at 60°C | Variable,
but enough
to achieve
up to 10
ppb | 10 min
20 min
30 min
60 min | 2.5 ppb
5 ppb
5ppb
5 ppb | Continuously.
measured by
Honeywell SPM
monitor | | FSM | | Physical
form | Control
agent | Method of delivery | Approxi-
mate
amount
used | Duration | Approximate target concentration | Exposure
monitoring | Comments and references | Centre | |---|---|--|------------------------------------|--------------------------------------|---|---|---|--------| | Hexameth | nylene diisocya | nate (HDI) (usually in a բ | paint or glue l | hardener or d | a related product) | | | | | Liquid | 2 ml butyl
acetate
nebulised | Nebulisation of HDI-
containing paint
hardener from a
small glass jar with
pressured air | 2 ml | 15 min | HDI monomers < 0.0035 mg/m ³ | Filter collection + analysis of NCO (isocyanate groups) in the air : ISO 16702 (2001) | | FIOH | | Liquid
solution
with
olive oil | Paint
without HDI
component | Mimicking the patients job - painting onto cardboard or spraying (depending on work) | | Up to 60
min | _ | NM | | NIOM | | Liquid | Saline | Nebulisation from nebuliser | 4 ml | 10 min
20 min
30 min
60 min | 15-20 ppb | Continuously
measured by
Honeywell SPM
monitor | Sastre et al. Chest
2003; 123:1276-
1279. | FJDM | | Liquid | Solvent
nebulised
for 30 min | Diluted 1/10 in appropriate solvent and nebulised in the challenge room | | 1, 4, 10,
15, 30,
60 min | ~10 ppb (below 20 ppb) | MDA 7100
monitor | | CHUM | | Liquid | Solvent or if
a 2-part
system, the
paint alone | Painting onto
cardboard or spraying
depending on work
exposure or levels
achieved | | Up to 70
min
(10+20+
40) | < 20ppb | Toxic gas
detector | | ВНН | | Physical
form | Control
agent | Method of delivery | Approxi-
mate
amount
used | Duration | Approximate target concentration | Exposure
monitoring | Comments and references | Centre | |------------------|---------------------------------------|--|--|--------------------------------------|-----------------------------------|---|---|---------------| | Liquid | Paint
without HDI
component | Mimicking work -
Spray painting | Enough to
achieve up
to 20 ppb | 15 sec –
3 min | 20 ppb max | HDI monitor
(model TLD-1
toxic gas
detector) | | RBHT | | Liquid | Water at
80°C | Evaporation at 80°C | 5 ml | 60 min | 10-20 ppb | MDA 7100
monitor
Polymetron
Sieger | | UNIPD | | Liquid | Atmospheri
c (pure) air | Evaporation at 60°C | Variable,
but enough
to achieve
up to 10
ppb | 10 min
20 min
30 min
60 min | 2.5 ppb
5 ppb
5ppb
5 ppb | Continuously. measured by Honeywell SPM monitor | Solution of pure
HDI | IOMM/
CIOM | | Liquid | Isobuthylac
etate | Evaporation at 60°C | Variable, but enough to achieve a ppb of up to 10 ppb | 10 min
20 min
30 min
60 min | 2.5 ppb
5 ppb
5ppb
5 ppb | Continuously. measured by Honeywell SPM monitor | | FSM | | Toluene d | liisocyanate (TI | (וכ | | | | | | | | Liquid | 1 ml
toluene
(evapora-
tion) | Evaporation of inhouse TDI solution (in toluene) from a small glass cup at 175°C | 1 ml | 15 | < 0. 0035 mg/m ³ | Filter collection + analysis of NCO (isocyanate groups) in the air : ISO 16702 (2001) | -Level 1 solution:
0.18 mg/ml in
toluene
-Level 2 solution:
3.1 mg/ml in
toluene | FIOH | | Physical
form | Control
agent | Method of delivery | Approxi-
mate
amount
used | Duration | Approximate target concentration | Exposure
monitoring | Comments and references | Centre | |---|---|---|--|---------------------------------------|--|---|---|--------| | Liquid
solution
with
olive oil | Solvent or if
a 2-part
system, the
paint alone | Mimicking the patients job - painting onto cardboard or spraying (depending on work) | | Up to 60
min | _ | NM | | NIOM | | Liquid | Water
mixed with
lactose | Nebulisation in a
volumetric flask with
pressured air. The
flask contains 60 ml
of TDI solution
(SIGMA, Ref: T39853) | 60 ml. After
the test it is
possible to
recover
most of the
product | 5 – 120
min | level of TDI
between 10 – 15
ppb | TDI concentration controlled by a MDA 7100monitor (MDA Scientific, Inc, Glenview, Illinois, USA). | Concentration is very temperature dependent. It is necessary to maintain the temperature of the chamber between 22-24°C | VHIR | | Liquid | Saline | Nebulisation by an
aerosol generator
GENASIC°
The flask contains 1.5
ml (TDI, SIGMA) | ~ 0.1 mL | 1 min 2 min 4 min 8 min 15 min 30 min | 0 – 20 ppb | Continuously. measured by ppbRAE 3000 by RAE system monitor | Based on our own and the Canadian experience | SUH | | Liquid | Solvent
nebulised
for 30 min | Evaporation at room temperaturein a glass flask + airflow | | 1, 4, 10,
15, 30,
60 min | ~10 ppb (below 20 ppb) | MDA 7100
monitor | Vandenplas O et al.
Eur Respir J.
1999;13:1144-50. | CHUM | | Liquid | Solvent or if
a 2-part
system, the
paint alone | Painting onto cardboard or spraying depending on work exposure or levels | Up to
20ppb | Up to 70
min
(10+20+4
0) | < 20ppb | Toxic gas
detector | | ВНН | | Physical
form | Control
agent | Method of delivery | Approxi- Duration mate amount used | | Approximate target concentration | Exposure
monitoring | Comments and references | Centre | |--------------------|--|--|--|--------------------------------------|-------------------------------------|--|-------------------------|---------------| | | | achieved | | | | | | | | Liquid | Water
flushed
with
medical O2 | Evaporation of TDI liquid solution from a flask flushed with medical O2. | 20 ml | 60 min | 10-20 ppb | Continuously. measured by Polymetron Sieger monitor | | UNIPD | | Liquid | Atmospheri
c (pure)
air | Evaporation at 80°C | Variable,
but enough
to achieve
up to 10
ppb | 10 min
20 min
30 min
60 min | 5 ppb
10 ppb
10 ppb
10 ppb | Continuously. measured by Honeywell SPM monitor | | IOMM/
CIOM | | Liquid | Isobuthylac
etate | Evaporation at 60°C | Variable,
but enough
to achieve
up to 10
ppb | 10 min
20 min
30 min
60 min | 2.5 ppb
5 ppb
5ppb
5 ppb | Continuously. measured by Honeywell SPM monitor | | FSM | | Other Iso | phorone diisoc | yanate (IPDI), 1,5-napht | halene diisocy | anate (NDI) | | | | | | Liquid | Atmospheri
c (pure) air | Evaporation of pure IPDI at 60°C | Variable,
but enough
to achieve
up to 10
ppb | 10 min
20 min
30 min
60 min | 2.5 ppb
5 ppb
5ppb
5 ppb | Continuously. measured by Honeywell SPM monitor | | IOMM/
CIOM | | NDI Solid
(Wax) | Atmospheri
c (pure) air | Evaporation of wax-
like crystals of NDI at
120°C | Variable,
but enough
to achieve
up to 10
ppb | 10 min
20 min
30 min
60 min | 2.5 ppb
5 ppb
5ppb
5 ppb | Continuously.
measured by
Honeywell SPM
monitor | | IOMM/
CIOM | # Other plastic chemicals: epoxy resins, acrylic resins, powder paints, acid anhydrides, etc. - in resin systems containing solvents, the solvent alone may be used as the control agent - many resin systems contain irritant ingredients - on heating, PVC may release hydrochloric acid that is irritating to the airways - cyanoacrylates polymerise with water vapour, monomer exposures are higher on less humid days - with phthalic acid anhydrides care is needed if heated or nebulised; start with very short exposures | Active agent | Physical
form | Control agent | Method of delivery | Approximat
e amount
used | Duration | Approxi
mate
target
concentr
ation | Exposure
monitoring | Comments and references | Centre | |---------------------------|------------------------------------|--|---|--|----------|--|------------------------|--|--------| | Epoxy resins | | | | | | | | | | | Epoxy paint +
hardener | Liquid
paint
and
hardener | 2 ml
butylacetate
(nebulisation) | Mixing the paint
and the hardener
in a bowl | Paint 100
ml +
suitable
amount of
hardener | 30 min | _ | NM | The patient may also spread the mixture on a plate Hannu T et al. Int Arch Allergy Immunol. 2009;148(1):41-4 | FIOH | | Epoxy paint +
hardener | Liquid
paint
and
hardener | Saline | Mixing the paint
and the hardener
in a bowl | Paint 100
ml +
suitable
amount of
hardener | 30 min | _ | NM | The patient may also spread the mixture on a plate | NIOM | | Active agent | Physical
form | Control agent | Method of delivery | Approximat
e amount
used | Duration | Approxi
mate
target
concentr
ation | Exposure
monitoring | Comments and references | Centre | |--------------------------------|-----------------------------------|---|---|-----------------------------------|---------------------------------------|--|------------------------|------------------------------------|--------| | Epoxy resin paints or glues | Liquid | Non- hazardous paint, other workplace product e.g. cleaning agent | Mimicking work –
painting or
spraying | Strength as used in the workplace | Up to 60
min | | | | NIOM | | Epoxy resins | Solid
form
(lentil
form) | Lactose | The resin in solid
form is placed in
a container in a
heated (80 - 90
°C) water bath. | 100 mg in a
tray | 5-30 min
or
20-60
min | - | NM | Gases are
released with
heat | VHIR | | Epoxy resins | Liquid | Saline | Liquid | 50 to 100
ml | 1 min 2 min 4 min 8 min 15 min 30 min | - | NM | | SUH | | Epoxy resin
paints or glues | Liquid | Other workplace product e.g. cleaning agent, body filler (styrene) or other | Painting or spraying | As used in workplace | Up to 70
min | - | NM | | ВНН | | Active agent | Physical
form | Control agent | Method of delivery | Approximat
e amount
used | Duration | Approxi
mate
target
concentr
ation | Exposure
monitoring | Comments and references | Centre | |------------------------------------|--|--|---|---|----------------------|--|----------------------------|--|--------| | | | | | | | | | | | | Epoxy resin | Liquid | Non- | Mimicking work – | Strength as | 15 sec- 2 | _ | NM | | RBHT | | paints | · | hazardous
paint | painting or spraying | used in the workplace | min | | | | | | Acrylic resins: ac | rylates, met | · · | roducts based on the | • | | | | | | | Artificial nail
(meth)acrylates | Sculpturi
ng gels,
glues
and nail
tips | In-house
control
solution
(nebulised) | Work mimicking preparing nails | Enough
materials
for 4 -6
nails or | 30-45
min | - | VOC method:
ISO 16000-6 | Sauni R et al.
Am J Ind Med.
2008 51(12):968-
74. | FIOH | | Prosthesis
methacrylates | Powder
+ liquid | In-house
control
solution
(nebulised) | Work mimicking:
mixing prosthesis
pMMA powder
and MMA liquid | 5-10 ml
liquid and
suitable
amount of
powder | 30 min | - | VOC method:
ISO 16000-6 | | FIOH | | Dental
(meth)acrylates | Liquid | In-house
control
solution
(nebulised) | Evaporation at room temperature | 2 x 10-20
drops of a
dental
adhesive (at
0 and 15
min) | 30 min | _ | VOC method:
ISO 16000-6 | Lindström M et
al. Allergy.
2002;57(6):543-
5. | FIOH | | Acrylates | Liquid | Nebulised
solvent | Mimicking the patients job | As used in the patients workplace | Up to 60
min | _ | NM | | NIOM | | Acrylates | Liquid | Nebulised solvent | Mimicking the patients job | Strength as used in the | 1, 4, 10,
15, 30, | - | NM | | CHUM | | Active agent | Physical
form | Control agent | Method of delivery | Approximat
e amount
used | Duration | Approxi
mate
target
concentr
ation | Exposure
monitoring | Comments and references | Centre | |---|------------------|--|--|--|---------------------|--|-----------------------------|---|--------| | | | | | patients
workplace | 60 min | | | | | | Acrylates | Liquid | Nebulised
solvent | Room
temperature,
mixing in an open
vessel | Strength as used in the patients workplace | 20 min
Up to 1 h | | NM | | FSM | | Methyl-
methacrylate
(MMA) | Liquid | Latex gloves,
cleaning
agents | Adding liquid to powder as performed in the workplace and sitting and breathing fumes afterwards | As
workplace | 1 –60
min | _ | NM | Lozewicz S et al. Occupational asthma due to methyl methacrylate and cyanoacrylates. Thorax 1985;40:836-839 | ВНН | | Methyl-
methacrylate
(MMA) | Liquid | Non-
hazardous
liquid
component on
its own | Adding 2 liquids together and breathing in fumes, mixing or stirring, as used in the workplace | Strength as
used in the
patients
workplace | 1 – 5 min | - | NM | | RBHT | | Cyanoacrylate: | instant glue. | s and related prod | lucts | | | | | | | | Cyanoacrylate-
based instant
glue | Liquid
glue | In-house
control
solution
(nebulised) | Evaporation at room temperature or spreading glue on | 3 x 3 drops
of eye lash
glue (at 0,
15 and 30 | 45 min | <1 mg/ ^{m3} | VOC method:
ISO 16000-6; | Lindström et al.
Occup. Med,
2013 | FIOH | | Active agent | Physical
form | Control agent | Method of delivery | Approximat
e amount
used | Duration | Approxi
mate
target
concentr
ation | Exposure
monitoring | Comments and references | Centre | |--|-------------------|--|---|--|---------------------------------------|--|---|--|--------| | | | | a plate | min) or 2-4
ml of
industrial
glue | | | | | | | Cyanoacrylate-
based instant
glue | Liquid
glue | Nebulised
solvent | Mimicking the patients job | As used in the patients workplace | Up to 60
min | - | NM | | NIOM | | Cyanoacrylate | Glue | Food gelatine | Mimicking the patients job | - | 30 min | _ | - | Andujar R et al.
Am J Ind Med
2011; 54:714-8. | VHIR | | Cyanoacrylate-
based instant
glue | Glues
and gels | Saline | Work mimicking=
mixing liquid | 1-10 mL | 1
min 2 min 4 min 8 min 15 min 30 min | - | NM | | SUH | | Cyanoacrylate | Glue | Isobutylacetat
e | Mimicking the patients job | - | 30 min | _ | _ | | FSM | | Phthalic acid anh | nydrides | | | | | | | | _ | | Phthalic acid
anhydrides (in
epoxy resin
hardeners or as
such) | Liquid | In-house
control
solution
(nebulised) | Evaporation at room temperature and if negative, at 40-80 °C on the following day | 50 ml of
hardener | 30 min | < 0.035
mg/m ³ | Collection into
Tenax tubes,
analysis
according to
Pfäffli et al. J
Environ
Monit. 2004
Apr;6(4):295-9 | -IgE-mediated allergy - anhydrides evaporate easily upon heating, thus conc. is difficult to control | FIOH | | Active agent | Physical
form | Control agent | Method of delivery | Approximat
e amount
used | Duration | Approxi
mate
target
concentr
ation | Exposure
monitoring | Comments and references | Centre | |--|------------------|--|--|--------------------------------------|--------------------------------|--|------------------------|--|--------| | Tetrahydrophth alic anhydride | Powder | Lactose | Tipping 5% in lactose | | 30 min | < 5
mg/m ³ | PM
(Dustrack®) | | FJDM | | Acid anhydrides | Pure
(powder) | Lactose | Tipping powder diluted 1/10 in lactose | ~200 g | 1, 4, 10,
15, 30,
60 min | | NM | | CHUM | | Tetrahydrophth alic anhydride | Powder | Lactose | Evaporation | Up to 5
mg/m3 | 20 min | < 5
mg/m3 | | | FSM | | Other/miscellane | eous plastic | s and resins | | | | | | | | | Powder coatings (epoxy and/or polyester) | Powder | 50-100 ml
lactose
powder
(dusting) | Heating with a soldering iron at 250°C | 50-100 ml | 30 min | _ | PM | | FIOH | | Powder
coatings, TGIC | Powder | Lactose
powder tipped
or other
powder e.g.
TGIC heated | Tipping or
heating to 250°C
using a boiling
tube in a heated
block | 5g heated,
approx.
200g tipped | Up to 70
min | - | PM | Anees W et al. Occupational asthma caused by heated triglycidyl isocyanurate Occupational Medicine 2011;61:65-67 | ВНН | | Triglycidyl
isocyanurate | Powder | Lactose | Tipping 4% in lactose | | 30 min | < 5
mg/m ³ | PM
(Dustrack®) | Sastre J et al. Int
Arch Occup
Environ Health.
2011;84(5):547-
9. | FJDM | | Active agent | Physical
form | Control agent | Method of delivery | Approximat e amount used | Duration | Approxi
mate
target
concentr
ation | Exposure
monitoring | Comments and references | Centre | |--|--|--|---|---|--------------------------------|---|---|---|--------| | Resins and paints (not based on isocyanates) | Liquid or
semi-
solid | Non-hardening
part of the
resin | Mimicking work
(painting or
spraying) | Same
quantity as
at work | 1, 4, 10,
15, 30,
60 min | - | NM | | CHUM | | Phthalate Ester
(dioctyl
phthalate) | Liquid | Isobutylacetat
e | Evaporation to boiling point | Variable but
no more 5
mg/m3 | Up to 30
min | | NM | Dioctyl phthalate
released in
polyethylene
extrusion
process | FSM | | Finished plastics | | • | | | | | | | | | Miscellaneous
plastic materials
(PE, PP, TPU,
etc.) | Solid
(sheets,
pellets,
etc.) | In-house
control
solution
(nebulised) | Heating plastic
with a soldering
iron at ~250°C | 50-150 ml
of plastic
pellets or
sheets | 30 min | formalde
hyde <
0.37
mg/m ³ | - Aldehydes:
US
Environmental
protection
agency EPA
(1999);
method
TO11A | Formaldehyde release is often measured; Particle measurement possible but seldom done | FIOH | | Active agent | Physical
form | Control agent | Method of
delivery | Approximat
e amount
used | Duration | Approxi
mate
target
concentr
ation | Exposure
monitoring | Comments and references | Centre | |-------------------------------|---|---|---|------------------------------------|---|--|------------------------|---|--------| | Shrink wrap
(plastic) | Plastic
film on a
roll with
heat seal
machine | Using heat seal
machine
without plastic
film | Mimicking the patients job by using the heat seal machine | Wrap as
used in the
workpace | Graduall
y
increasin
g up to a
maximu
m of 60
min | _ | NM | Gannon PFG et
al. Occupational
asthma due to
polyethylene
shrink wrapping
(paper wrapper's
asthma)
Thorax
1992;47:759 | RBHT | | Shrink wrap
(plastic) | Solid | Cleaning agents or other agents used in the workplace | Up to 10 cm ² heated in a boiling tube to temp used at work | | Up to 70
min | - | NM | | ВНН | | PVC; Vacuum
packing | Plastic
bags | Use of vacuum packaging machine without plastic bags | Simulation of the working conditions in a provocation chamber with a vacuum packaging machine | - | 60-180
min | - | NM | Muñoz X, et al.
Arch
Bronconeumol
2003;39(7):324-
6 | VHIR | | PVC | Plastic
drops | Isobutylacetat
e | Mimicking the patients job | - | 60-120
min | _ | NM | | FSM | | Polyurethane
mattress foam | Solid
blocks of
foam | A different
type of foam | Cutting the form with an electric kitchen knife | 1m x 0,5 m
block | 1,2,5,10,
30 up to
60 | _ | | Dust difficult to produce enough by cutting | NMGH | ### Metals and metal salts: welding fumes, nickel, cobalt, chromium, platinum, etc. #### Notes - precious metal salts are very potent and very low doses should be used for SIC - metal dusts and welding fumes are irritating to the airways | Active agent | Physical
form | Control agent | Method of delivery | Approxi-
mate
amount
used | Duration | Approxi-
mate
target
concen-
tration | Exposure
monitoring | Comments and references | Centre | |---|---|---|---|--|---------------|---|---|---|--------| | Welding fumes | | | | | | | | | | | Welding fumes
of stainless
steel
(containing Ni
and Cr) | Welding
plate +
electrod
es (solid
metal) | Mild steel
(welding 2,5
electrodes) | Welding | 7,5
electrodes
(4 mm
diameter)
or MIG/TIG
welding | 30 min | Particles:
< 10
mg/m3
Ni < 0,1
mg/m ³
Cr < 0,5
mg/m ³ | Filter collection
(CEN 481:1993)
and
gravimetric/met
al analysis | Hannu T et al. Eur
Respir J. 2007
Jan;29(1):85-90. | FIOH | | Welding fumes | _ | Mild steel | Work mimicking: welding tasks similar to those carried out in the daily work but carried out within the maintenance service of the hospital | not
measured | 15-120
min | Environ mental levels of Fe, Cd, Cu, Cr, Ni, NO ₂ , NO, CO, and O ₃ < Spanish TLV | Absorption
spectrometry,
adsorbent tubes
and UV-VIS
spectrophotom
etry | - Muñoz X, et al. Respiration 2009; 78(4):455-459 - Levels of Fe, Cd, Cu, Cr, Ni, NO₂, NO, CO, and O₃ < Spanish TLV in a pre-test. The highest level was O₃, 0.04 mg/m3 | VHIR | | Active agent | Physical
form | Control
agent | Method of delivery | Approxi-
mate
amount
used | Duration | Approxi-
mate
target
concen-
tration | Exposure
monitoring | Comments and references | Centre | |---------------|------------------|--|--|------------------------------------|-------------------|--|------------------------|---|--------| | Welding fumes | Fumes | Mild steel | Work mimicking | Work mimicking | 30, 30,
60 min | 1, 4, 10,
15, 30 on
the first
day (risk
of
delayed
reactions
)
1, 4, 10,
15, 30,
and 60
on the
second
day | NM | (mean) Vandenplas O, Thorax.
1995;50:587-8: Vandenplas O et al. Eur Respir J. 1998;11:1182-4. | CHUM | | Welding fumes | Solid | Nebulised metal solution e.g. potassium chloride or welding mild steel if other metals are more likely to be the issue | Patient brings in own metal from work and welds in our estates at the hospital | NM | Up to
120 min | | PM | | ВНН | | Active agent | Physical
form | Control
agent | Method of delivery | Approxi-
mate
amount
used | Duration | Approxi-
mate
target
concen-
tration | Exposure
monitoring | Comments and references | Centre | |--------------------------|-------------------------------|--|--|--|---|--|------------------------|--|--------| | Nickel | | | | | | | | | | | Nickel sulphate solution | Liquid | 1 ml/ 10
breaths of
the
commercial
ALK diluent | Spira Elektro 2
dosimeter | 3 x 1 ml (0.1
- 1 - 10
mg/ml
NiSO ₄ in
water) | 45 min | _ | NM | Done with increasing doses upon 45 minutes | FIOH | | Nickel | Nickel
chloride,
powder | Nebulised
solvent | Nebulisation with
a de Vilbiss 646
nebuliser | 0.1-10
mg/ml | 1-5 min | _ | NM | Inhalation for 1
min; if the FEV1 fall
< 10%, another 2
min inhalation
phases up to total
5 min | NIOM | | Nickel chloride | Powder | Saline | Nebulisation with
a de Vilbiss 646
nebulizer | Between
0.1 to 10
mg/ml | Inhalatio n for 1 min; if the FEV1 fall < 10%, another 2 min inhalatio n phases up to total 5 min | _ | NM | - Cruz MJ, et al. Arch Bronconeumol 2006; 42(6):305-9. - Method: Bright P, et al. Thorax 1997; 52:28-32 | VHIR | | Active agent | Physical
form | Control
agent | Method of delivery | Approxi-
mate
amount
used | Duration | Approxi-
mate
target
concen-
tration | Exposure
monitoring | Comments and references | Centre | |---|--------------------|--|--|--|--|--|------------------------|--|--------| | Nickel sulphate | Nickel
sulphate | Saline | Tidal volume
method | 10 mg/ml | 2 min
each
concentr
ation
1/1000-
1/1 | _ | NM | Fernandez et al. Int
Arch Occup
Environ Health.
2006;79(6):483-6. | FJDM | | Nickel chloride | Powder | Normal
saline | Nebulisation with
a de Vilbiss 646
nebulizer | Between
0.1 to 10
mg/ml | 60 min | - | NM | | UNIPD | | Nickel sulphate
solution in
water | Liquid | Isobutyl
acetate | Nebulisation in exposure chamber | 2 ml 1%
Nickel
sulphate
solution | 20 min | - | NM | | FSM | | Cobalt | | | | | | | | | | | Cobalt chloride solution | Liquid | 1 ml/ 10
breaths of
the
commercial
ALK diluent | Spira Elektro 2
dosimeter | 3 x 1 ml (0.1
- 1 - 10
mg/ml
CoCl ₂ in
water) | 45 min | - | NM | Done with increasing doses upon 45 minutes | FIOH | | Cobalt | Powder | Lactose
powder,
sieved and
baked | % Dust added to
250g lactose
powder, then
tipped repeatedly
by patient | 1% to 5% | 20 min | - | NM | | RBHT | | Active agent | Physical
form | Control
agent | Method of delivery | Approxi-
mate
amount
used | Duration | Approxi-
mate
target
concen-
tration | Exposure
monitoring | Comments and references | Centre | |--|------------------|--|--|---|-------------------------|--|------------------------|--|--------| | Cobalt chloride | Liquid | Potassium
Chloride or
other metal
salt
nebulised | Nebulising it directly using a Turboneb II and maxineb 90 nebuliser pot and mask | ~20 ml total
(10mg/ml
CoCl ₂ in
saline) | 35 min
(5+10+
20) | _ | NM | | внн | | Cobalt (in
tungsten
carbide) | Powder | Mixture of lactose + charcoal powders | Tipping pure hard metal dust | | | - | | | CHUM | | Cobalt | Powder | Lactose
powder | Cobalt dust diluted in 250g lactose powder, then tipped repeatedly by patient | 1% to 5% | 60 min | NA | NM | | UNIPD | | Cobalt nitrate solution in water | Liquid | Isobutyl
acetate | Nebulisation in exposure chamber | 0.12 ml 1%
solution | 20 min | - | NM | | FSM | | Chromium | | | | | | | | | | | Chromium:
potassium
dichromate
solution | Liquid | 1 ml/ 10
breaths of
the
commercial
diluent | Spira Elektro 2
dosimeter | 3 x 1 ml (0.1
- 1 - 10
mg/ml
K2Cr2O7 in
water) | 45 min | _ | NM | Done with increasing doses over 45 minutes | FIOH | | Active agent | Physical
form | Control
agent | Method of delivery | Approxi-
mate
amount
used | Duration | Approxi-
mate
target
concen-
tration | Exposure
monitoring | Comments and references | Centre | |--|--|--|--|---|---|--|------------------------|---|--------| | Chromium | Potassiu
m
dichrom
ate
solution,
Liquid | Nebulised
solvent | Nebulisation with
a de Vilbiss 646
nebuliser | 0.1-10
mg/ml | 1-5 min | - | NM | Inhalation for 1 min; if the FEV1 fall < 10%, another 2 min inhalation phases up to total 5 min | NIOM | | Chromium
(Potassium
dichromate). | Powder | Saline | Nebulisation with
a de Vilbiss 646
nebulizer | Between
0.1 to 10
mg/ml | Inhalatio n for 1 min; if the FEV1 fall < 10%, another 2 min inhalatio n phases up to total 5 min | | NM | -ref. Cruz MJ, et al.
Arch
Bronconeumol
2006; 42(6):305-9.
-Based on the
method described
by Bright P, et al.
Thorax 1997;
52:28-32 | VHIR | | Chromium:
potassium
dichromate | Liquid | Potassium
Chloride or
other metal
salt
nebulised | Nebulising
directly using a
Turboneb II and
maxineb 90
nebuliser pot and
mask | ~20 ml total
(2mg/ml
K2Cr2O7
dissolved in
saline) | 35
min(5+1
0+
20) | - | NM | Bright P et al. Occupational asthma due to chrome and nickel electroplating Thorax 1997;52:28- 32 | ВНН | | Active agent | Physical
form | Control
agent | Method of delivery | Approxi-
mate
amount
used | Duration | Approxi-
mate
target
concen-
tration | Exposure
monitoring | Comments and references | Centre | |--|------------------|---|---|--|-------------------------|--|------------------------|---|--------| | Chromium:
potassium
dichromate
Water solution | Liquid | Isobutyl
acetate | Nebulising it directly | (0,01% in
10 ml of
water)
10 ml total | 20 min | | | | FSM | | Other Platinum salts | Powder | Lactose
powder,
sieved and
baked | Tipped repeatedly by the patient | 0.00004%
to 0.0004%
dust in 250
g lactose
powder | 20 min | - | NM | potent | RBHT | | Palladium,
Iridium | Powder | Lactose
powder,
sieved and
baked | Tipping repeatedly by the patient | 0.0002% to
0.002% dust
in 250 g
lactose
powder | 20 min | - | NM | potent | RBHT | | Zinc Sulphate | Liquid | Other metal
salt
nebulised | Nebulising it
directly using a
Turboneb II and
maxineb 90
nebuliser pot and
mask | ~20 ml total
(up to
10mg/ml
ZnSO ₄ in
saline) | 35 min
(5+10+
20) | | NM | | ВНН | | Aluminium
chloride | Liquid | Potassium
chloride
10mg/ml | Direct
nebulisation | 10mg/ml | 3
minutes | No | NM | Burge PS et al. Occupational asthma caused by aluminium Allergy | ВНН | | Active agent | Physical
form | Control
agent | Method of delivery | Approxi-
mate
amount
used | Duration | Approximate target concentration | Exposure
monitoring | Comments and references | Centre | |--------------|------------------------------------|----------------------|--|------------------------------------|----------|----------------------------------|------------------------|---|--------| | | | | | | | | | 2000;555:779-800 | | | Vanadium | Liquid
(Water
solutions
) | Nebulised
solvent |
Nebulisation with
a de Vilbiss 646
nebuliser | 0.1-10
mg/ml | 1-5 min | - | NM | Inhalation for 1 min; if the FEV1 fall < 10%, another 2 min inhalation phases up to total 5 min | NIOM | Other chemicals in metal and electronics industry: metalworking fluids (MWF), soldering fluxes, etc. #### Notes: - used MWF's may contain unknown, microbiological impurities | Active agent | Physical
form | Control agent | Method of delivery | Approxi-
mate
amount
used | Duration | Comments and references | Centre | |----------------|------------------|---------------------------------------|--|--|----------------------|--|--------| | Metalworking f | luids (MWF) | | | | | | | | MWF, unused | Liquid | In-house control solution (nebulised) | Nebulisation of ~40°C unused MWF from a small glass jar with pressured air | 3 x 1,5 ml
(5% MWF
in water)
at 0 min,
10 min
and 20
min | 30 min | - The target concentrations of EA's and formaldehyde are about 1/10 of the Finnish OEL's -EA: Henriks-Eckerman et al. Ann, Occup. Hyg 2007 - Formaldehyde: US Environmental protection agency EPA (1999); method TO11A - Hannu et al. Int Arch Occup Environ Health. 2013 Feb;86(2):189-97 | FIOH | | MWF, unused | Liquid | Nebulised theatre smoke | Nebulising into room, then patient sits in room surrounded by mist (not nebulised onto patient directly) | Strength as used in the workplace – enough to cause a visible mist | Up to 10
min | | RBHT | | Used MWF | Liquid | Solvent | Nebulised | 200 ml | 1, 4, 10,
15, 30, | | CHUM | | Active agent | Physical
form | Control agent | Method of delivery | Approxi-
mate
amount
used | Duration | Comments and references | Centre | |--|------------------|---|---|---|--------------------------|--|--------| | | | | | | 60 min | | | | Used MWF | Liquid | Unused MWF
with the same
procedure | Nebulising in the
breathing zone
using a Turboneb
II and pari-pot
nebuliser | ~20 ml
total (up
to 8%
MWF in
water, as
used in
workplace | 70 min
(10+20+
40) | Robertson AS et al. Occupational asthma due to oil mists. Thorax 1988;43:200-205 | внн | | Ethanolamines
(in MWF) or
unused MWF | Liquids | Olive oil | Heating in glass
jar | 15 ml | 30 min | -Air concentration < 1 mg/m ³ ,
monitored by (Dustrack®)
-Sastre et al. J Invest Allergol Clin
Immunol 2013 (in press) | FJDM | | Soldering mater | ials & coloph | ony | | | | | | | Soldering/
colophony
fumes | Solid | In-house control
solution
(nebulised) | Soldering with colophony containing wire and/or flux onto a circuit board | 30 min | - | | FIOH | | Colophony,
solder | Solid | Non-colophony
solder wire | Mimicking the patients job-heating and breathing vapours of melting solution | | Up to 30
min | | NIOM | | Colophony | Solid | Saline | Mimicking the patients job | | 1-30 min | | SUH | | Active agent | Physical
form | Control agent | Method of delivery | Approxi-
mate
amount
used | Duration | Comments and references | Centre | |---|--------------------------------------|---|--|--|-----------------|--|--------| | Colophony | Solid | Non-colophony
solder wire | Mimicking the patients job by melting the multicore solder with a soldering iron | inspiration initially, then gradually increasing up to the maximum exposure if necessary | Up to 10
min | | RBHT | | Colophony or
non-colophony
solder fluxes
(dodecanedioic
acid, adipic
acid) | Solid or
liquids if
flux alone | Non-colophony
fluxed wire or
vice versa | Melting with a soldering iron ~300°C or dipping in the flux every 1-2 min | Up to 6
metres of
wire | Up to 70
min | - Burge PS et al. Bronchial provocation studies in workers exposed to the fumes of electronic soldering fluxes. Clinical Allergy 1980;10: 137-149 - Moore VC et al. Occupational asthma caused by dodecanedioic acid. Allergy 2009;64:1099-1100 - Moore VC et al. Occupational asthma to solder wire containing an adipic acid flux Eur Respir J. 2010;36: 962-963 | ВНН | | Soldering/
colophony
fumes | Solid | Soldering with wire without colophony | Soldering with colophony containing wire and/or flux onto a circuit board, or pure colophony | NA | 30-60
min | | UNIPD | | Colophony | Solid | Heated ethanol | Direct heating | 770 mg | 20 min | | FSM | | Active agent | Physical | Control agent | Method of | Approxi- | Duration | Comments and references | Centre | |--------------|----------|---------------|-----------|----------|----------|-------------------------|--------| | | form | | delivery | mate | | | | | | | | | amount | | | | | | | | | used | | | | | | | | | | | | | ## Hairdressing chemicals ### Notes: - hair colour oxidants may irritate the airways | Physical form | Control agent | Method of delivery | Approximate amount used | Duration | Comments and references | Centre | |--------------------|--|---|--|-----------------------------|---|--------| | Bleaching a | gents containing pe | rsulphates | | | | | | Powder +
liquid | 50-100 ml
lactose powder
or oxidant alone
(dusting) | Mixing | 3 doses of bleaching powder + suitable amount of oxidant | 30 min | Liquid oxidant usually ~9% hydrogen peroxide | FIOH | | Powder
+liquid | Water, saline or phosphate buffered saline solution | Mixing and tipping the mixture from one tray to another ~ 30 cm from the face | 30 g bleaching powder
+ 30 ml oxidant | Up to 60 min | | NIOM | | Powder | Lactose powder | Mixing persulphate salt with 150 g lactose, tipping the mixture from one tray to another at 30 cm from the face | Between 5 – 30 g | 5 - 60 min | -Muñoz X, et al. Occup
Environ Med
2004;61:861-6
-The estimated
concentration of this
substance in the air is
between 1 and 6 mg/m ³ | VHIR | | Powder
+liquid | Water | The persulphate salt (30 g) is mixed with oxidant (30 ml) by the patient and applied on a wig | | 2 - 20 min | | SUH | | Powder | Lactose powder | Tipping powder | 200g | 1, 4, 10, 15,
30, 60 min | | CHUM | | Physical form | Control agent | Method of delivery | Approximate amount used | Duration | Comments and references | Centre | |-----------------------|--|--|---|--------------------|--|--------| | Powder | 50-100 g.
lactose powder
(dusting) | Tipping persulphate powder diluted in lactose | 0.1%, 1%, 10%
persulphate in lactose
powder | 60 min | Alternative method: Persulphate mixed with liquid oxidant, usually ~9% hydrogen peroxide | UNIPD | | Powder
plus liquid | Lactose plus peroxide oxidant mixed | Mixing | As used in workplace | Up to 70 min | | ВНН | | Powder | Lactose powder,
sieved and
baked | % dust added to 250g lactose powder, then tipped repeatedly by patient | 0.1% | 5 min to 20
min | | RBHT | | Liquid | Ethanol | Nebulisation | 8 mg of ammonium persulphate in 3 ml water | 30 min | Approximate target concentration 1,1 mg/m3 | FSM | | Other hair d | lyes: oxidated dark | and red hair dyes | | | , 0, - | | | Liquid +
liquid | Oxidant alone or in-house control solution (nebulised) | Mixing | 80 ml of hair dye + suitable amount of oxidant | 30 min | Liquid oxidant usually ~9% hydrogen peroxide | FIOH | | Liquid +
liquid | Water, saline or phosphate buffered saline solution | Mixing | 80 ml of hair dye + suitable amount of oxidant | Up to 60 min | | NIOM | | Liquid | Water | Mixing | | 2 - 20 min | | SUH | | Perm wave | | Te | CO 00 1 | | BA 1 1 . 1 | T ELC. | | Liquid | In-house control solution | Evaporation at room temperature | 60-80 ml | 30 min | May be heated to ~40°C | FIOH | | Physical form | Control agent | Method of delivery | Approximate amount used | Duration | Comments and references | Centre | |---------------|---|------------------------|-------------------------
--------------|-------------------------|--------| | | (nebulised) | | | | | | | Liquid | Water, saline or phosphate buffered saline solution | Painted onto cardboard | As used at work | Up to 60 min | | NIOM | | Liquid | Other workplace products painted | Painted onto cardboard | As used at work | Up to 70 min | | ВНН | ## Antimicrobials, disinfectants and detergents ### Notes: - the irritancy of a cleaning agent is largely dependent on its pH | Physical form | Control agent | Method of delivery | Approximate amount used | Duration | Comments and references | Centre | |---------------|---------------------------------------|--|---|-----------------------------|---|--------| | Formaldehy | ıde | | | | | _ | | Powder | In-house control solution (nebulised) | Heating up
paraformaldehyde
powder in a 65 °C oil-bath | 2.5 g | 15 min | - target conc. < 0.37 mg/m3 - monitoring: formaldehyde and other aldehydes: US Environmental protection agency EPA (1999); method TO11A | FIOH | | Liquid | Water, saline or PBS | Standing in room while breathing in substance in open tray at RT or mixing substance in a bowl | Strength as used in
the workplace
(50-100 ml) | Up to 60
min | | NIOM | | Liquid | Solvent | Evaporation at RT | 200 ml | 1, 4, 10, 15,
30, 60 min | Vandenplas O et al. Persistent asthma following accidental exposure to formaldehyde. Allergy. 2004;59:115-6. | CHUM | | Liquid | Cleaning agent painted onto cardboard | Painting onto cardboard | 100 ml 10%
solution | Up to 70
minutes | Burge PS et al. Occupational asthma due to formaldehyde. Thorax 1985;40: 255-260 | ВНН | | Liquid | Water | Standing in room while breathing in substance in open tray | Strength as used in the workplace | 5 – 15
minutes | | RBHT | | Liquid | Water | Direct nebulisation | 70 µl of
formaldehyde 4%
in 10 ml water | Up to 1 h | | FSM | | Physical
form | Control agent | Method of delivery | Approximate amount used | Duration | Comments and references | Centre | |------------------|---|--|--|-----------------------------|---|--------| | Glutaralde | huda | | | | | | | Liquid | In-house control solution (nebulised) | Mixing at 40 °C | 2-5 ml 25%
glutaraldehyde
solution + 500 ml
water | 30 min | -Target conc. < 0,42 mg/m ³ -Formaldehyde and other aldehydes: US Environmental protection agency EPA (1999); method TO11A | FIOH | | Liquid | Water, saline or
PBS | Standing in room while breathing in substance in open tray at RT or mixing substance in a bowl | Strength as used in
the workplace
(50-100 ml) | Up to 60
min | | NIOM | | Liquid | Saline | Nebulisation in chamber from nebulizer (glutaraldehyde 2%) | | 30 min | Quirce et al. Allergy 1999; 54; 1121-22 | FJDM | | Liquid | Water | Mixing at 25 °C | | 1 - 30 min | | SUH | | Liquid | Water with yellow food dye | Standing in room while breathing in substance in open tray | 2% as used in the workplace | 5 – 15
minutes | | RBHT | | Liquid | Solvent | Evaporation at RT | 200 ml | 1, 4, 10, 15,
30, 60 min | Vandenplas O et al. Persistent asthma following accidental exposure to formaldehyde. Allergy. 2004;59:115-6. | CHUM | | Liquid | Cleaning agent
painted onto
cardboard | Painting onto cardboard | As used in workplace | Up to 70
min | Gannon PFG et al. Occupational asthma due to glutaraldehyde and formaldehyde in endoscopy and X-ray departments Thorax; 1995;50:156-159 | ВНН | | Liquid | Ethanol | Nebulisation in chamber | 0,2 ml 25%
glutaraldehyde in
4,9 ml water | Up to 30
min | | FSM | | Physical form | Control agent | Method of delivery | Approximate amount used | Duration | Comments and references | Centre | |---------------|--|--|---|---------------------|--|--------| | | | | | | | | | Glyoxal | | | | | | | | Liquid | In-house control solution (nebulised) | Spraying | 3 x 1.2 ml 1 mg/ml
Glyoxal solution (at
0, 15 and 30 min) | 30 - 45 min | Target conc. < 0,2 mg/m³ Formaldehyde and other aldehydes: US Environmental protection agency EPA (1999); method TO11A | FIOH | | Liquid | Water, saline or PBS | Spraying at RT or mixing substance in a bowl | Strength as used in
the workplace
(50-100 ml) | Up to 60
min | | NIOM | | Chloramine | T | | | | | | | Liquid | In-house control solution (nebulised) | Spreading on a plate | 50-100 ml | 30 min | Mäkelä R et al. Occup Med (Lond). 2011
Mar;61(2):121-6. | FIOH | | Liquid | Water, saline or
PBS | Spreading on a plate at RT or mixing substance in a bowl | Strength as used in
the workplace
(50-100 ml) | Up to 60
min | | NIOM | | Liquid | In-house control solution (nebulised) | Nebulisation in chamber | 5 ml 0,5%
chloramine T
solution | 30 min up
to 1 h | | FSM | | Chloramine | s and nitrogen trich | loride | | | | | | Vapour | Chlorine c
0.5mg/m³ from
1:20 sodium
hypochlorite | Freshly generated nitrogen trichloride atmosphere | Chamber levels
0.5mg/m3 | Up to 30 minutes | Thickett KM et al. Occupational asthma caused by chloramines in indoor swimming-pool air Eur Respir J 2002;9:827-832 | ВНН | | Physical
form | Control agent | Method of delivery | Approximate amount used | Duration | Comments and references | Centre | |----------------------------------|--|--|---|-----------------------------|---|--------| | Quaternary | ammonium compo | unds | | | | | | Liquid | Solvent | Nebulising commercial dilution of quaternary ammonium compounds "as used" | 200 ml | 1, 4, 10, 15,
30, 60 min | | CHUM | | Other, vario | us detergents, clea | ning agents and preservativ | es | | | | | Liquid
detergents | Water, saline or PBS | Mixing the detergent in a bowl at RT | Strength as used in
the workplace
(50-100 ml) | Up to 60
min | | NIOM | | Liquid
detergents | Water with food coloring to simulate the color of detergent | Mixing the detergent in two vessels | 250 ml in a vessel | 5 – 120 min | | VHIR | | Liquid
detergents | Another similarly irritant cleaning product without the same active chemical | Spraying | 1) 5 sprays 2) Up to 5 sprays, continuing with work simulation (wiping, rubbing as at work) | 1-5
minutes, up
to 35 | Spraying by the hospital personnel beforehand, and taking the patient into the chamber, or if negative, spraying by the patient | NMGH | | Liquid
detergent | Water, saline or
PBS | Evaporating the substance in open tray at RT or mixing substance in a bowl or spraying | Strength as used in
the workplace
(50-100 ml) | Up to 60
min | | NIOM | | Liquid
preservativ
e: 4,4- | Other metal-
working fluid
constituents | Nebulised to challenge chamber | 0.7% | Up to 50
min | This is a biocide used in metal-working fluids | ВНН | | Physical | Control agent | Method of delivery | Approximate | Duration | Comments and references | Centre | |-------------|---------------|--------------------|-------------|----------|-------------------------|--------| | form | | | amount used | | | | | methlyene- | | | | | | | | bismorpholi | | | | | | | | ne | | | | | | | # Pharmaceutical agents etc. ### Notes: - antibiotics may induce isolated late-phase reactions. | Active agent | Physical form | Control agent | Method of delivery | Approximate amount used | Duration | Comments and references | Centre | |--|-----------------------------|---|--|--------------------------------|--------------------------------|--|--------| | Various solid pharmaceuticals | Tablets,
powders
etc. | 50-100 ml
lactose
powder
(dusting) | Diluted usually < 10% in lactose powder and dusted with pressured air every 1 minute | ~100 ml
lactose/drug
mix | 30-45
min | The challenge technique and dose depend on the level of sensitization, symptoms, etc. | FIOH | | Antibiotics Erythromycin Penicillin Augmentin Amoxicillin Flucloxacillin | Powder | Lactose
powder,
sieved and
baked | % Dust added to 250g lactose powder, then tipped repeatedly by patient | 0.1% to 5% | 20
minutes | | RBHT | | Antibiotics | Powder | Lactose
powder | Tipping powder diluted 1/10 in lactose | 200 g | 1, 4, 10,
15, 30,
60 min | | CHUM | | Colistin or other pharmaceutical agents | Colistin,
powder
form | Lactose
powder | One gram of colistin is mixed with 50 g lactose and the patient tipped the mixture from one tray to another at a |
1 gr | 15 min | - Ref. Gómez-Ollés S, et
al. Chest 2010; 137 (5):
1200 – 2
-Based on the method | VHIR | | Active agent | Physical form | Control agent | Method of delivery | Approximate amount used | Duration | Comments and references | Centre | |---|---------------|-----------------------------|--|-------------------------|--------------------------|--|--------| | | | | distance of 30 cm from the face | | | described by Moscato
G, et al. Eur Respir J
1995;8:467-9. | | | Sodium
alendronate | Solid | Lactose
powder | Mimicking the patients job | 10 mg | 60 min | G. Pala, L. Perfetti, I.
Cappelli, M. Carminati,
G. Moscato. Allergy
Net; 2008; 1092 | FSM | | Piperazine | Powder | Lactose | Close-circuit delivery machine | | Up to 30
min | - Target concentration
< 2 mg/m3, PM with
Dustrack®
- Quirce et al. J
Investig Allergol Clin
Immunol 2006; 16:
138-9 | FJDM | | Denatonium
benzoate (1% in
ethanol) | Liquid | Ethanol | Painting and rubbing onto hands (wearing nitrile gloves) | 100 ml | 70 min
(10+20+4
0) | | внн | | Sevofluorane and Isofluorane | Gas | Other
anaesthetic
gas | Gas from anaesthetic machine | 0.25-0.5% in air | 15
breaths | Vellore AD et al. Occupational asthma and allergy to sevoflurane and isoflurane in anaesthetic staff Allergy 2006;61:1485-6 | ВНН | | Thiamine | Powder
or | Lactose
(tipped) or | tipped or nebulised | 100g | 30 min | Drought VI et al. Occupational asthma | ВНН | | Active agent | Physical | Control | Method of delivery | Approximate | Duration | Comments and | Centre | |--------------|----------|---------------|--------------------|-------------|----------|------------------------|--------| | | form | agent | | amount used | | references | | | | solution | normal saline | | | | induced by thiamine in | | | | | (nebulised) | | | | a vitamin supplement | | | | | | | | | for breakfast cereals | | | | | | | | | Allergy 2005;60:1213- | | | | | | | | | 1214 | |