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Data analysis 

We started the CT data analysis investigating the possible relationships between 

%LAA-950 and AWT-Pi10. We evaluated the presence of a linear association between the 

two variables by the Pearson’s correlation index [1]. A r value of 0.25 (p<0.05) was found, 

indicating a poor linear association.  The distribution of CT data is plotted in Figure 1A of 

the paper. Visual exploration of this data set reveals the absence of structured relationships 

between the two CT parameters. Accordingly, it appears quite difficult to define a 

parametric procedure to classify patients according to these direct measures. For this reason, 

we merged the information of the original measurements (%LAA-950 and AWT-Pi10) by 

principal component analysis. This permit to obtain two novel numeric variables, that we 

called CT1 and CT2, capable to classify patients considering the two alterations at the same 

time. CT1 is proportional to the difference between the original CT variables (%LAA-950 

and AWT-Pi10), hence representing the prevailing mechanism of airflow limitation 

(parenchymal destruction or conductive airway obstruction). CT2 is proportional to the sum 

of the two original variables, hence representing the overall COPD severity as resulting from 

both parenchymal destruction and conductive airway obstruction. 

The novel CT indexes can be introduced as a linear combination of the primary CT 

variables according to the following equations: 

CT1= (%LLA-950 – AWT-Pi10)/√2   (1) 
CT2= (%LLA-950 + AWT-Pi10)/√2   (2) 
As a direct consequence of CT1 and CT2  indexes definition we can assert: 
1)  increasing CT1 values means that the parenchymal destruction (%LLA-950 contribution) 
is predominant on airway obstruction (AWT-Pi10 contribution), and vice-versa. 
2)  increasing CT2 values means that the overall severity is increased (%LLA-950 and 
AWT-Pi10 contributions). 
From a mathematical point of view these transformations correspond to project the original 

standardized data onto the Principal Components plane as briefly explained in the following 

paragraphs (the √2 quantity is a normalization factor deriving from the math argumentation.) 



Principal components analysis is a mathematical method often used to reduce the 

dimensionality of the data while retaining most of the variation in the data set. The reduction 

is performed by identifying those directions called principal components along which the 

variation in the data is maximal [2]. The goal of this method is to concentrate the 

information about the differences between samples into a small number of dimensions. In 

particular a set of n-dimensional vector samples x = {x1, x2, x3 …, xm} should be 

transformed into another set y = {y1, y2, …, ym} of the same dimensionality, but having the 

property that most of their information (in terms of variance) content is stored in the first 

few dimensions. This will allow us to reduce the data set to a smaller number of dimensions 

with low information loss. 

Formally, if x is a random vector with covariance matrix Σ and mean µ, then we 
define the principal component transformation (or Karhunen-Loewe transformation) [3] as 
follows: 

( )µ′→ = Γ −x y x  
where Γ is orthogonal, ′Γ ΣΓ = Λ  is a diagonal matrix and the eigenvalues are ordered  as 
follow: 
λ λ λ λ λ≥ ≥ ≥ ≥ ≥1 2 3 4 ... 0...p .  

The i-th principal component of x is defined as the i-th element of the vector y: 

( )γ µ= −i i xy  

where γ i  is the i-th column of the matrix Γ.   

In general, there are as many components as variables. However, because of the way 

they are calculated, it is usually possible to consider only a few of the principal components 

which together explain most of the information contained in the primary data matrix. Many 

criteria have been suggested for deciding how many principal components to retain [3]. 

Principal components analysis is a complex theme [3] and a specific knowledge of linear 

algebra is required to understand the mathematical details underlying principal components 

analysis-related techniques. However, we introduced here only the basic concepts to 

introduce a simple geometrical interpretation of equations 1 and 2. Figure 1 (on-line 



depository) shows the distribution of the standardized CT data (each dot represents a patient 

's AWT-Pi10 value plotted against its corresponding %LAA-950) together with the two 

principal components. Principal components analysis identifies the two directions (red and 

blue lines) along which the data have the largest spread. In particular, it is possible to see 

that the first component (red) is the direction along which the samples show the largest 

variation. The second component (blue) is the secondary direction, uncorrelated and 

orthogonal to the first component, along which the samples show the largest variation 

(obviously in our example we have only two components since the CT measures are 

represented by two variables). 

 
Figure1 (on-line depository) 

From an algebra point of view, if data are standardized such that each variable is 

centered to zero average, the principal components are the normalized eigenvectors of the 

covariance matrix and ordered according to how much of the variation present in the data 

they contain. Each component can then be interpreted as the direction, uncorrelated to 

previous components, which maximizes the variance of the individual samples when 

projected onto the component itself. Since in our example we have only two standardized 

variables, the two principal components directions are simply represented by the two lines 

explained by the following equations: 

Std %LLA-950=Std AWT-Pi10 (red line) 



 and 

 Std %LLA-950= -Std AWT-Pi10 (blue line) 

The calculation proposed in (1) and (2) correspond to transform the original CT data points 

by projecting each couple of CT measures in the principal components space. In facts the 

new coordinates are simply the distances of each point from the two lines representing the 

two principal components. Figure 1B of the paper represents the transformed data after 

applying the equations 1 and 2. Each patient is represented in the new graph by the two 

indexes CT1, CT2 instead of the original CT measures. 

CT indexes modeling and COPD patient classification 

The two CT indexes are candidate to represent a valid diagnostic decision making support to 

classify patients according to their specific phenotype and overall severity (see the published 

paper for details). To make accessible this kind of classification to/for patients with no CT 

data available, we trained and validated two predictive models to estimate these scores 

considering clinical and functional variables as independent variables. In particular we 

identified a couple of simple multivariate linear models to classify prospectively COPD 

patients on the basis of their estimated CT parameters instead of the true features extracted 

from expensive imaging techniques. For each CT index, a subset of optimal predictors was 

defined using a forward stepwise process (F-statistics was evaluate to enter or remove 

parameters [4]). The prediction performances of the models were then evaluated through a 

ten-fold cross-validation process [5]. The obtained models, regression coefficients and cross 

validation R-shrinkage are summarized in Table 4 of the paper. 

The estimated CT1 and CT2 scores can be written as: 

CT1= -0.018xDLco + 0.011xTLC – 0.58xSputum + 0.324 

CT2=-0.03xFEV1/VC + 0.013xFRC + 0.775xSputum-0.575 

Sputum is a boolean variable defined as “1” if chronic purulent sputum is present, “0” 

otherwise. Other parameters are numerical variables derived directly by PFT.  



Using the two CT indexes as linear classifiers for prospective COPD patients, they could 

implement the following decision rule: - Decide “phenotype A” if CT1 > 0 or “phenotype 

B” if CT1 < 0 and “major severity” if CT2>0 or “minor severity” if CT2<0 (see the paper 

for the clinical interpretation of the CT indexes). If CT1, CT2 = 0, the corresponding patient 

can ordinarily be assigned to either class, but for simplicity we shall leave the assignment 

undefined here. Higher values of the CT scores will take to a strongest membership to the 

corresponding class. 

Following this interpretation the equations CT1 = 0 and CT2 = 0 define the decision 

surfaces that separates patients assigned to the different classes. Since we trained two linear 

models, these surfaces are simple hyper planes depending by the predictors and the scores 

CT1 and CT2 represent the distances of each patient from the two decision surfaces.  

Let us write the two boundary-equations CT1=0 and CT2=0 as: 

0.02 x DLco + 0.56 x Purulent sputum = 0.01 x TLC + 0.48 

and 

0.03 x FEV1/VC = 0.01 x FRC + 0.57 x Purulent sputum + 0.01 

The interpretation of the two decision planes is now straightforward; in fact one patient will 

lay on the decision surface (CT1 equilibrium) if the weighted TLC value is able to contrast 

the mixed effects of Dlco and Sputum characteristics. The result is that Dlco and Purulent 

sputum are two aligned co-factors in phenotype determination in opposition with TLC. 

Similar considerations can be done for CT2 where FEV1/VC seems to be in opposition to 

Purulent sputum and FRC mixed contributions in determining the COPD severity index 

CT2. 

Obviously, the reliability of a linear classifier is deeply influenced by the robustness of the 

coefficients identification process and by the capacity of the learning set to be representative 

of the whole population. In this study, the decision boundaries have been defined following 

a data-driven approach, training the two CT models on a learning dataset derived directly 



from true CT images. In opposition to other well-known aprioristic COPD indexing 

techniques where the various scores are assigned arbitrarily, each patient is classified here 

on the basis of a set of clinical co-factors. In addition, the contribution of each factor to the 

CT1 and CT2 scores is properly weighted through coefficients obtained after an 

optimization approach. In this manner we have realized a well calibrated and bias-free 

classification system for prospective COPD patients. 

However, to correctly classify the various prospective patterns, we strongly suggest to 

consider the obtained indexes as fuzzy scores and to consider an ambiguous region near the 

zero to take in account of the wide spectrum of this pathology and the variability of the 

measures.  

As an applicative example, after model validation, CT indexes were estimated in 373 COPD 

patients who did not undergo CT, using their clinical and PFT data as predictors. Fig. 2 of 

the paper shows their distribution plotted into the PCs space, each patients is represented by 

a couple of estimated CT indexes. Also for these patients we investigated the relationships 

between the predicted scores and their clinical parameters calculating the Pearson 

correlation coefficient between CT indexes and PFTs variables. ANOVA was performed to 

analyze means variability of CT indexes compared with some categorical parameters. Table 

E1 reports the distribution of the categorical variables in the four subsets of patients 

identified in Figure 2.   

TABLE E1. Percent prevalence of categorical variables in the four subsets of the 373 patients of the 
testing set subdivided according to the values of predicted CT1 and CT2. 

 
A 

n=143 
B 

n=77 
C 

n=80 
D 

n=73 

 CT1<0 CT2<0 CT1>0 CT2<0 CT1<0 CT2>0 CT1>0 CT2>0 

Cough   0 = absent  17,5 36,4 1,3 24,7 
Cough   1 = occasional 23,1 33,8 20 32,9 
Cough   2 = chronic 59,4 29,9 78,8 42,5 
Sputum 0 = absent/occasional 24,5 57,1 3,8 47,9 
Sputum 1 = chronic non 
purulent 27,3 41,6 1,3 17,8 



Sputum 2 = chronic purulent 48,3 1,3 95 34,2 
mMRC  0 = none 11,2 11,7 3,8 1,4 
mMRC  1 = slight 22,4 19,5 17,5 8,2 
mMRC  2 = moderate 39,9 31,2 46,3 31,5 
mMRC  3 = severe 23,1 31,2 27,5 39,7 
mMRC  4 = very severe 3,5 6,5 5 19,2 

mMRC: modified Medical Research Council dyspnoea score; Chronic cough and chronic 
purulent sputum prevail (p<.01) in A and C; Severe and very severe mMRC dyspnoea scores 
prevails in B and D.  
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