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METHODS 

Calculations of Sample Sizes and Power for Future Study Design 

The data were used to estimate variance parameters corresponding to parallel group (PG) and 

cross over designs (XO). Two Generalised Linear Mixed Models were fitted to the total 

daytime cough count using PROC GLIMMIX (PC SAS v9.2). Each model had a fixed effect 

for recording session, used length of daytime recording as a log offset term and each model 

assumed the responses followed a Negative Binomial distribution (log link function). The 

cross over design model had an additional random subject effect term fitted on the linear 

predictor. The corresponding variance parameter estimates were used to obtain the standard 

error of a treatment effect under simple future PG and XO study designs. This standard error 

was used to compute the power of detecting a 50% reduction in cough rate on active relative 

to the cough rate on placebo (2-sided test, 5% alpha). Since the standard error of the 

treatment effect (and hence power) also depends upon the placebo response, several power 

curves are shown that cover a range of plausible future placebo response rates.  

Table E1 Variance parameter estimates appropriate to future Parallel Group and Cross 
Over study designs 
Future study type Subject Allocation Estimate for Variance Parameter 

k (over-
dispersion) 

Between Subject 
Variability 2

betweenσ  
Parallel Group (2 
Arm) 

Equal allocation to 
Active (A) and 
Placebo (P) arms 

0.6809 n/a 

Cross Over (2x2) Equal allocation to 
sequences  
Seq. #1: A P 
Seq. #2: P A 

0.1147 0.6993 
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Discussion about Statistical Analysis Models for cough count data 

By their nature coughs are discrete counts, not continuous responses (e.g. one would not 

observe 2.5 coughs in an individual). Historically, a typical statistical analyses of cough count 

data involved log transformation of the observed cough counts (or cough rates); with 

subsequent statistical analyses assuming that these transformed responses are continuous with 

an approximately normal distribution. A general linear model would then be used to model 

the data. Advantages of this approach are its simplicity (less statistical expertise required to 

implement it), and the widespread availability of statistical analysis packages and routines to 

implement general linear models. Disadvantages of this approach occur with zero cough 

counts, because the log transformation is undefined, and the choice of constant to add onto 

each value prior to transformation can have a strong influence on the analysis results. 

Today however, many commercially available statistical analysis packages contain routines 

to perform generalised linear modelling. This allows a more appropriate distribution to be 

used to model the cough count data (e.g. the Poisson, or Negative Binomial distributions). 

The advantage of generalised linear modelling is that it reflects the nature of the response 

variable and can model zero responses. Given the dearth of new chemical entities in the 

cough arena, it would be good to see the establishment of generalised linear models as the de-

facto statistical analysis technique for modelling cough count data.  

A large obstacle to the wider use of generalised linear modelling is the additional level of 

statistical expertise required, since basic statistical training courses may not cover them in 

great detail. A certain amount of pragmatism is also required, because when cough counts are 

large, general linear modelling and generalised linear modelling should give similar 

conclusions. For example, if developing a new chemical entity with a long duration of action 

the epoch of interest may be a 24 hour period and either modelling approach should suffice. 

However, if the duration of action of a new chemical entity is expected to be short the epoch 
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of interest may only be one hour, in which case there is a large possibility of observing zero 

coughs, so the use of generalised linear models would be preferable.  

In this paper, the power calculations have been performed assuming generalised linear 

modelling will be used in the subsequent studies. 

RESULTS 

Table E2: Correlations between objective and subjective measures of cough at each 24HR 

study session, Spearman’s correlation coefficients 

 

SESSION 1 SESSION 2 

 Day 1 Objective 
Cough Frequency  Day 2 Objective 

Cough Frequency 
Day 1 VAS 
frequency 

r=0.46 
p<0.001 

Day 2 VAS 
frequency 

r=0.59 
p<0.001 

Day 1 VAS severity r=0.28 
p=0.03 Day 2 VAS severity r=0.42 

p=0.001 
  

 Night 1 Objective 
Cough Frequency  Night 2 Objective 

Cough Frequency 
Night 1 VAS 

frequency 
r=0.43 

p=0.001 
Night 2 VAS 

frequency 
r=0.47 

p<0.001 

Night 1 VAS severity r=0.50 
p<0.001 Night 2 VAS severity r=0.43 

p=0.001 
Night 1 VAS sleep 

latency 
r=0.29 
p=0.03 

Night 2 VAS sleep 
latency 

r=0.49 
p<0.001 
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Figure E1: Bland Altman plot of 24hr cough rates. Solid line shows median difference in 

cough rates between sessions 1 and 2, with the interquartile range represented by the dotted 

lines. 
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Figure E2: Bland Altman plot of daytime VAS measures of cough frequency. Solid line 

shows median difference in cough rates between sessions 1 and 2, with the interquartile range 

represented by the dotted lines. 
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Figure E3: Bland Altman plot of night VAS measures of cough frequency. Solid line shows 

median difference in cough rates between sessions 1 and 2, with the interquartile range 

represented by the dotted lines. 

 


