Altitude illness is related to low hypoxic chemoresponse and low oxygenation during sleep

By

Hugo Nespoulet, Bernard Wuyam, Renaud Tamisier, Carole Saunier, Denis Monneret, Judith Remy, Olivier Chabre, Jean-Louis Pépin, Patrick Lévy.

Online Data Supplement

E-add 1 Sleep studies in normoxia and hypoxia.

To achieve appropriate level of hypoxic exposure, we used a commercially available altitude tent (Hypoxico[®], Colorado). Hypoxic environment was created by a compressor (oxygen extractor, Hypoxico[®]). The F_iO_2 was continuously monitored using an O_2 sensor (Maxtec OM-25MEI). A continuous flow of hypoxic gas through the tent minimized CO₂ build up.

Two full night polysomnographies were performed. O₂ saturation was monitored continuously and recorded for each subjectovernight throughout the exposure (BlueNight[®], SleepInnov Technology, Moirans, France). This allowed real-time monitoring of the exposure by the investigators. Polysomnographies were performed with an ambulatory system (Cidélec, Sainte-Gemmes sur Loire, France), analyzed manually with the added software package (Cidélec, Sainte-Gemmes sur Loire, France). Physiological signals included 2 electroencephalogram channels (CZ-O1 and C3-A2), submental electromyogram, and electro-oculogram. Chest wall and abdominal movements were assessed by non-calibrated inductive plethysmography and oxygen saturation by pulse oximetry. Airflow was monitored with a nasal cannula connected to a pressure transducer.

Sleep stages were analyzed manually using the standard criteria of Rechtschaffen and Kales. Microarousals were scored manually using ASDA criteria. Hypopneas were scored as either central or obstructive according to the following: a central hypopnea was scored when flow exhibited a decrease of more than 30% during at least 10 seconds, with a visually assessed proportional decrease in thoracic and abdominal movement without flow limitation and/or phase decay; if none of the preceding could be applied to the event, an obstructive hypopnea was scored. The obstructive or central nature of respiratory events was according to the occurrence of flow limitation, hypopnoea and/or apnoea on the nasal pressure trace and whether coexisting phase decay or opposite movement on thoracic and abdominal captors was observed or not.

E-table 1. High-altitude illness symptoms in « altitude intolérant » subjects and paired AMS-s.

AMS: Acute Mountain Sickness, HAPE/HACE : High Altitude Pulmonary/Cerebral Edema. AMS severity was estimated with Lake Louise Score.

AMS+ 'altitude-intolerant' subjects or paired AMS- subjects	LLS
AMS- (maximal altitude ever reached = 4810 m)	0
AMS- (maximal altitude ever reached = 6700 m)	0
AMS- (maximal altitude ever reached = 5700 m)	0
AMS- (maximal altitude ever reached = 5000 m)	0
AMS- (maximal altitude ever reached = 4400 m)	0
AMS- (maximal altitude ever reached = 4810 m)	0
AMS- (maximal altitude ever reached = 5400 m)	0
AMS- (maximal altitude ever reached = 5100 m)	0
AMS- (maximal altitude ever reached = 5600 m)	0
AMS- (maximal altitude ever reached = 6800 m)	0
AMS- (maximal altitude ever reached = 4810 m)	1
AMS- (maximal altitude ever reached = 4810 m)	1
AMS+ (recurrent severe Acute Mountain Sickness and one HAPE at 4000m)	12
AMS+ (recurrent severe AMS at 3500m)	10
AMS+ (severe AMS. Three HAPE between 3500 and 4000m)	9
AMS+ (recurrent severe AMS at 3400m)	8
AMS+ (severe AMS. HAPE at 3600m)	12
AMS+ (recurrent severe AMS at 3000m)	9
AMS+ (severe AMS and two HAPE around 4000m)	10
AMS+ (recurrent severe AMS at 3500m)	8
AMS+ (recurrent severe AMS at 3500 m and one HACE at 4800m)	12
AMS+ (recurrent severe AMS at 3000m)	6
AMS+ (recurrent severe AMS at 3500m)	12

AMS+ (recurrent severe AMS at 3600m)

Measurements		Mean ± SD	Statistical comparisons
			P value
Number of intra-sleep arousal	AMS+	29.8 ± 10.0	0.25
(>30s)	AMS-	26.7 ± 12.4	0.23
Total duration of intra-sleep	AMS+	70.4 ± 45.1	0.03
wake time (min)	AMS-	44.9 ± 31.1	0.03
Number of miero erousels (/h)	AMS+	31.3 ± 17.3	0.1
Number of micro-arousals (/h)	AMS-	39.1 ± 15.9	0.1
Number of legs periodic	AMS+	26.2 ± 65.3	0.44
movements	AMS-	30.5 ± 68.9	0.44
Number of micro-arousal related	AMS+	19.8 ± 54.2	0.5
to legs periodic movements	AMS-	20.3 ± 50.5	0.5
Number of micro-arousal related	AMS+	3.4 ± 9.6	0.5
to legs periodic movements /h	AMS-	3.4 ± 8.4	0.5

E-table 2. Polysomnographic measurements during hypoxic night in both groups.

Measurements		Mean ± SD	Statistical comparisons
ivieasui ements		Mean ± SD	P value
AHI (events.h ⁻¹)	AMS+	18.2 ± 18.1	0.038
AHI (events.ii)	AMS-	33.4 ± 24.8	0.038
Appendinder (/h)	AMS+	3.5 ± 9.4	0.037
Apnea index (/h)	AMS-	12.3 ± 13.7	0.057
Stage 1 Appendinder /h	AMS+	8.2 ± 14.3	0.008
Stage 1 Apneas index /h	AMS-	75.2 ± 82.3	0.008
Stage II Appendinder /h	AMS+	15.7 ± 40.4	0.049
Stage II Apneas index /h	AMS-	59.8 ± 76.9	0.049
Stage III/IV Appage index /h	AMS+	8.3 ± 27.2	0.16
Stage III/IV Apneas index /h	AMS-	0.1 ± 0.4	0.10
DEM Sloop Appage index /h	AMS+	0.4 ± 0.9	0.003
REM Sleep Apneas index /h	AMS+	16.2 ± 15.9	0.005
Number of appage (/TST)	AMS+	20.8 ± 51.4	0.026
Number of apneas (/TST)	AMS-	78.9 ± 86.8	0.020
Cumulated duration of	AMS+	1.1 ± 3.2	0.028

apneas (%TST)	AMS-	5.0 ± 5.9	
	AMS+	11.3 ± 5.6	0.16
Apneas mean duration (s)	AMS-	13.8 ± 4.6	0.16
	AMS+	13.8 ± 7.1	0.04
Apneas longest duration (s)	AMS-	20.6 ± 7.6	0.04
Number of obstructive sleep	AMS+	0.5 ± 1.4	0.000
apneas	AMS-	2.4 ± 2.3	0.028
Number of mixed sleep	AMS+	0.4 ± 1.4	0.15
apneas	AMS-	1.6 ± 3.6	0.17
Number of central sleep	AMS+	19.8 ± 49.5	
apneas	AMS-	74.8 ± 85.5	0.03
	AMS+	14.7 ± 11.6	0.1
Hypopneas index /h	AMS-	21.1 ± 14.2	0.1
	AMS+	27.2 ± 21.5	
Stage 1 Hypopneas index /h	AMS-	68.4 ± 66.5	0.03
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	AMS+	67.2 ± 60.7	0.1.1
Stage II Hypopneas index /h	AMS-	95.4 ± 84.8	0.14
Stage III/IV Hypopneas	AMS+	2.1 ± 3.4	0.00 -
index /h	AMS-	10.6 ± 20.9	0.097
REM Sleep Hypopneas	AMS+	53.2 ± 49.6	0.00 -
index /h	AMS-	88.5 ± 70.4	0.097
	AMS+	87.2 ± 68.5	
Total number of hypopneas	AMS-	135.2 ± 92.5	0.07
Number of central	AMS+	49.8 ± 53.2	0.00
hypopneas	AMS-	80.9 ± 90.7	0.09
Number of obstructives	AMS+	34.1 ± 63.4	
hypopneas	AMS-	52.3 ± 61.8	0.2
	AMS+	1.5 ± 1.5	0.2
Limitation index /h	AMS-	1.9 ± 1.9	0.3
AHI + flow limitation	AMS+	19.7 ± 36.4	0.00
(events.h ⁻¹)	AMS-	35.3 ± 42.9	0.03
AHI + nasal flow limitation	AMS+	19.5 ± 18.0	0.00
(events.h ⁻¹)	AMS-	35.4 ± 24.9	0.03
m 1 1 1 1 1	AMS+	9.2 ± 6.6	0.05
Total number of limitations	AMS-	14.3 ± 8.5	0.09
a · · ·	AMS+	67.0 ± 103.7	<u> </u>
Snoring /h	AMS-	74.7 ± 114.3	0.4

Measurements		Mean ± SD	Statistical comparisons
ivicusui cincinis			P value
	AMS+	81.6 ± 2.6	0.005
Sleep mean SpO ₂ (%)	AMS-	85.5 ± 2.4	0.003
Ω_{1}	AMS+	73.6 ± 3.1	0.005
Sleep min SpO ₂ (%)	AMS-	78.0 ± 2.6	0.005
Number of desaturations of	AMS+	106.3 ± 101.9	0.02
more than 3%	AMS-	194.3 ± 133.4	0.03
	AMS+	17.9 ± 16.9	0.049
Number of desaturation /h	AMS-	30.7 ±19.9	0.048
Duration spent under 90%	AMS+	98.7 ± 1.8	0.002
SpO ₂ (% du TST)	AMS-	91.0 ± 8.1	0.003
Maan SnO in stage L(0/)	AMS+	83.2 ± 2.7	0.000
Mean SpO ₂ in stage I (%)	AMS-	86.4 ± 2.6	0.009
Maan SnO in stage H (0/)	AMS+	82.4 ± 2.7	0.006
Mean SpO ₂ in stage II (%)	AMS-	85.9 ± 2.5	0.006
Maan SnO in stage III (0/)	AMS+	82.2 ± 2.3	0.07
Mean SpO ₂ in stage III (%)	AMS-	84.3 ± 3.1	0.07
Mean SpO ₂ in REM sleep	AMS+	80.3 ± 3.0	0.001
(%)	AMS-	85.8 ± 2.6	0.001
Min SpO ₂ in stage I (%)	AMS+	76.2 ± 4.6	0.048
whit SpO_2 in stage 1 (%)	AMS-	79.9 ± 3.7	0.048
Min SpO ₂ in stage II (%)	AMS+	75.3 ± 3.6	0.01
With SpO ₂ in stage if $(\%)$	AMS-	79.5 ± 3.2	0.01
Min SpO ₂ in stage III (%)	AMS+	78.2 ± 3.1	0.007
$\frac{1}{1000} \text{ m stage m } (\%)$	AMS-	82.8 ± 3.9	0.007
Min SpO ₂ in REM sleep (%)	AMS+	74.5 ± 3.1	0.002
with SpO_2 in KEWI sleep (%)	AMS-	79.3 ± 2.1	0.002

E-table 3. Transthoracic echocardiography measurement in both groups during normoxic and hypoxic exposure at rest.

Measurement	Group	Normoxia	Hypoxia	р
LVEF (Left ventricular	AMS+	61.58 ± 6.96	67.44 ± 9.79	0.10
ejection fraction) visual method	AMS-	70.17 ± 5.97	71.50 ± 8.65	0.34
meniou	р	0.003	0.04	

	AMS+	60.75 ± 8.70		
LVEF (Teicholtz method)	AMS-	66.82 ± 6.10		
	р	0.04		
	AMS+	0.34 ± 0.08	0.38 ± 0.08	0.18
LVSF (Left Ventricular Shortening Fraction)	AMS-	0.37 ± 0.05	0.40 ± 0.06	0.01
	р	0.18	0.35	
St	AMS+	16.99 ± 3.82	16.53 ± 3.21	0.33
Systolic myocardial peak velocity of the tricuspid	AMS-	15.71 ± 2.73	15.60 ± 1.22	0.44
annulus in pulse doppler tissue imaging	р	0.15	0.29	
E/A	AMS+	1.34 ± 0.57	0.97 ± 0.41	0.04
Pulse wave-doppler measurements of the early (E)	AMS-	1.44 ± 0.50	1.05 ± 0.25	0.003
and late (A) mitral inflow velocity)	р	0.39	0.29	
E/Ea	AMS+	4.77 ± 1.02	4.58 ± 1.29	0.40
Ea: early diastolic velocity of the medial mitral annulus in	AMS-	5.81 ± 1.62	4.54 ± 0.54	0.02
pulse doppler tissue imaging	р	0.01	0.50	

	AMS+	60.33 ± 11.40	68.56 ± 5.66	0.01
Heart Rate (HR)	AMS-	56.27 ± 12.31	66.50 ± 14.78	0.04
	р	0.17	0.46	
LV-TVI	AMS+	18.95 ± 2.14	19.47 ± 2.57	0.44
left ventricular outflow time-	AMS-	19.89 ± 3.26	19.64 ± 2.36	0.43
velocity integral	р	0.30	0.41	

	AMS+	3.76 ± 1.02	4.16 ± 0.88	0.09
Stroke volume	AMS-	3.82 ± 0.99	4.46 ± 1.05	0.13
	р	0.39	0.40	

	AMS+	2.01 ± 0.28	2.28 ± 0.56	0.02
TVR (Maximal Tricuspid regurgitation peak velocity)	AMS-	2.20 ± 0.24	2.37 ± 0.21	0.02
	р	0.07	0.43	

	AMS+	16.75 ± 5.14	21.82 ± 12.43	0.04
RV-RA gradient (right ventricle - right atrium)	AMS-	20.33 ± 4.50	22.22 ± 4.29	0.13
	р	0.09	0.44	

	AMS+	22.00 ± 7.04	27.82 ± 11.83	0.03
PASP (pulmonary artery systolic pressure)	AMS-	27.25 ± 6.63	27.22 ± 5.78	0.47
	р	0.20	0.49	

	AMS+	16.49 ± 2.57	14.69 ± 2.26	0.07
Right ventricular outflow time-velocity integral	AMS-	19.33 ± 3.16	17.01 ± 2.86	0.06
	р	0.04	0.03	

	AMS+	1.40 ± 0.14	1.71 ± 0.46	0.09
Pulmonary vascular resistances (PVR)	AMS-	1.24 ± 0.13	1.57 ± 0.33	0.01
	р	0.01	0.16	

	AMS+	26.88 ± 3.27	26.81 ± 2.24	0.49
TAPSE (Tricuspid annular plane systolic excursion)	AMS-	28.11 ± 7.51	26.00 ± 3.67	0.23
	р	0.26	0.44	

E-table 4. Results of univariate conditional logistic regression.

	Odds	Low	High	
Variables (medians)	Ratio	limit	Limit	p-value
Eupneic P _{ET} CO ₂ (>=38/<38)	7	0.861	56.895	0.0687
HCVR Threshold (>=46.8/<46.8)	4	0.849	18.836	0.0795
_i hvr ₅ (>=0.58/<0.58)	0.125	0.016	0.999	0.0499 *
ihvr ₂₀ (>=0.37/<0.37)	1.5	0.251	8.977	0.6569
Vc (>=96/<96)	0.333	0.067	1.652	0.1785
PVR in normoxia (>=0.115/<0.115)	5	0.584	42.797	0.1418
PASP in normoxia (>=23/<23)	0.25	0.028	2.237	0.215
ET-1 after normoxic night (>=0.415/<0.415)	1	0.141	7.099	0.99
LVEF in normoxia (>=65/<65)	0.143	0.018	1.161	0.0687
HCVR slope (>=3.25/<3.25)	0.429	0.111	1.657	0.2195

Significativity is considered when low and high limits values did not cross 1 and p-value < 0.05.

<u>Statistical reference</u>: selection of important variables and determination of fonctional form for continus predictors in multivariable model building. 2007 Statistics in medecine. Willy Sauerbrei. In each analysis, the variable of interest is significantly related with altitude illness, if the odds ratio of the variable in AMS + and – group respectively is (i) either above the higher limit of (positive correlation) and the lower limit of the confidence interval does not cross one or (ii) below the lower limit with a confidence interval above one. Each variable is a distinct and independent variable. A single analysis is performed for correlated variables.

Variable	Kit name	Brand.
Endothelin-1	Endothelin (1-21) ®, BI-20052	Biomedica Gruppe
Big-endothelin	Big endothelin®, BI-20082	Biomedica Gruppe
Aldosterone	DSL-8600 ACTIVE® Aldosterone Coated Tube RIA Kit	Diagnostic Systems Laboratories
Vasopressin	Vasopressin125I RIA Kit®	DiaSorin
Renin	Renin III Generation®	IBL-America

E-table 5. Technical details for biological analysis.