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Summary 

DCE-MRI quantitative perfusion and semi-quantitative transit time metrics identified regional 
deficits in IPF lung disease relative to healthy control subjects and in IPF progression. 



 

Dynamic Contrast Enhanced MRI for the Evaluation of Lung Perfusion in 

Idiopathic Pulmonary Fibrosis 

Abstract 

Objectives: The objective of this work was to apply quantitative and semi-quantitative dynamic 

contrast enhanced MRI (DCE-MRI) methods to evaluate lung perfusion in idiopathic pulmonary 

fibrosis (IPF). 

Materials and Methods: In this prospective trial 41 subjects, including healthy control (control) 

and IPF subjects, were studied using DCE-MRI at baseline. IPF subjects were then followed for 

1 year, progressive IPF (IPFprog) were distinguished from stable IPF (IPFstable) subjects based on 

a decline in percent predicted FVC (FVC%p) or DLCO (DLCO%p) measured during followup 

visits. 35/41 subjects were retained for final baseline analysis at  (control: N=15; IPFstable: N = 

14; IPFprog: N=6). Seven measures and their coefficients of variation (CV) were derived using 

temporally resolved DCE-MRI. Two sets of global and regional comparisons were made: control 

vs IPF groups, and control vs IPFstable vs IPFprog groups, using linear regression analysis. Each 

measure was compared to FVC%p, DLCO%p, and the lung clearance index (LCI%p) using a 

Spearman rank correlation. 

Results: DCE-MRI identified regional perfusion differences between control and IPF subjects 

using first moment transit time (FMTT), contrast uptake slope (SLOPE), and pulmonary blood 

flow (PBF) (p 0.05), while global averages did not. FMTT was shorter for IPFprog compared to 

both IPFstable (p = 0.004) and control groups (p = 0.023). Correlations were observed between 

PBF CV and DLCO%p (rs = -0.48, p = 0.022) and %LCI (rs=+0.47, p = 0.015). Significant group 

differences were detected in age (p < 0.001), DLCO%p (p < 0.001), FVC%p (p = 0.001), and 

LCI%p (p = 0.007). 

Conclusions:  Global analysis obscures regional changes in pulmonary hemodynamics in IPF 

using DCE-MRI in IPF. Decreased FMTT may be a candidate marker for IPF progression.  



 

INTRODUCTION 

Idiopathic Pulmonary Fibrosis (IPF) is a fatal progressive disease affecting 

approximately 5 million people worldwide1. However, the pathology of IPF is difficult to 

characterize using conventional pulmonary function tests (PFTs), and disease progression is 

especially difficult to evaluate with current clinical tools. The standard of care for IPF is high-

resolution computed tomography (HRCT) for initial diagnosis, and often this is accompanied by 

an invasive histological analysis. Longitudinal monitoring is performed using PFTs, including the 

change in forced vital capacity (FVC) and diffusing capacity of the lungs for carbon monoxide 

(DLCO). A significant drop in FVC and DLCO at 6-12 months has been shown to be moderately 

correlated with disease progression and mortality2,3. However, these are global lung 

measurements that might be insensitive to subtle regional changes in IPF. Additionally, 

significant progression of the disease must occur before changes in HRCT, FVC, and DLCO are 

detectable, reducing their overall clinical prognostic value4. Consequently, improved biomarkers 

for accurate monitoring and early detection of IPF progression are needed. 

Pulmonary Magnetic Resonance Imaging (MRI) is a promising technique with the ability 

to provide longitudinal and regional information on pulmonary function5. Spatially resolved 

pulmonary perfusion is typically evaluated using dynamic contrast enhanced MRI (DCE-MRI), 

although various non-contrast methods are increasingly applied. DCE-MRI can provide 

quantitative and semi-quantitative measures and has been used to explore pulmonary 

hemodynamics in healthy and diseased subjects6–10. Despite the growing use of pulmonary 

contrast enhanced MRI, prior work in IPF is not extensive, and most research focuses on semi-

quantitative analysis11–15. To our knowledge, there are no fully quantitative estimates of 

pulmonary hemodynamics in IPF using DCE-MRI techniques. 

Quantitative measures based on indicator-dilution methods16 provide physiological 

estimates of pulmonary blood flow (PBF), pulmonary blood volume (PBV), and mean transit 



 

time (MTT)17–19, while semi-quantitative measures are characteristics of the contrast 

enhancement time series such as contrast time-of-arrival (TOA), time-to-peak (TTP), first-

moment-transit-time (FMTT), full width at half maximum (FWHM)14, and wash-in slope 

(SLOPE)10. Advantages of more quantitative measures such as PBF, PBV, and MTT are offset 

by challenges in obtaining accurate measures of the arterial input function (AIF), increased 

computational complexity, and longer scan times required to obtain enough data to solve the ill-

posed problem. Consequentially this leads to longer sustained breath-holds and increased 

potential for motion corruption. This makes accurate quantitation especially difficult in severely 

diseased or non-compliant subjects (e.g., pediatric) who have a significant imaging failure rate. 

Alternatively, semi-quantitative measures are simpler to compute and require fewer temporal 

phases. This can improve the chances of successful imaging, albeit without the advantages of 

consistent hemodynamic physiological interpretation. 

The objective of this work was to develop quantitative and semi-quantitative DCE-MRI 

methods for application in IPF. We hypothesized DCE-MRI could be used to detect global and 

regional perfusion differences between IPF and healthy aging volunteers. In an exploratory 

analysis we also followed IPF subjects for 1 year clinically to monitor progression; we 

hypothesized there would be differences in perfusion measures in a progressive subgroup of 

IPF (IPFprog) compared to a stable subgroup of IPF (IPFstable) and to healthy aging volunteers. 

We tested these hypotheses using a repeated measures linear regression analysis to adjust for 

demographic and technical factors found to be significant covariates. Furthermore, we 

hypothesized our measures of hemodynamics would correlate with clinical PFTs used to 

monitor IPF progression, specifically FVC, DLCO and the Lung Clearance index (LCI), a 

measure of ventilation heterogeneity. 

  



 

Methods 

Study Population 

Our HIPAA-compliant and IRB approved (UW IRB 2013-0266 and UW IRB 2014-1572) 

prospective study included 41 subjects imaged longitudinally (2-4 visits) using DCE-MRI. 

Written and informed consent was obtained from all subjects. Healthy subjects were included for 

study if > 18 years of age, current non-smoker, and no history of cancer or heart disease. The 

Healthy subject population was deliberately enriched for individuals > 50 years and 65% male 

sex to better match the age and sex distribution of the recruited IPF population. IPF subjects 

required age >18 years with clinical diagnosis of IPF and no recent exacerbations. Exclusion 

criteria consisted of MRI contraindication, pregnancy/lactation, or any medical condition that 

could interfere with the ability to comply with the protocol. IPFprog were distinguished from 

IPFstable subjects by a >10% decline in percent predicted FVC (FVC%p) or a >15% decline in 

percent predicted DLCO (DLCO%p) 1 year after baseline PFT measures. For this feasibility 

study we limit analysis to the first visit passing quality control for each subject and leave 

longitudinal analysis for a subsequent report. Subject attrition during the study is summarized in 

Supplemental Table 1. Specifically, two stable IPF subjects withdrew during their first visit due 

to claustrophobia, while technical failure occurred in 4 more subjects (1 healthy, 3 progressive 

IPF) due to either loss of breath-hold during the scan or delayed arrival of contrast agent leading 

to truncation of the contrast kinetic curve; these subject scans were omitted from analysis based 

on the number of frames of wash-out data obtained in the AIF. Each image series was visually 

inspected and excluded if there was a loss of breath-hold. If a subject’s initial baseline visit 

failed quality control, a subsequent passing baseline visit was used in its place. A total of 35 of 

41 subjects were included for analysis (healthy control: N=15, 5 males, 56.3±14.2 years, 

IPFstable: N = 14, 12 males, 69.9±9.3 years, IPFprog: N=6, 5 males, 75.7±4.4 years). Descriptive 



 

statistics and intragroup comparisons for the 35 subjects included in the analysis can be seen in 

Table 1. 

Acquisition and Reconstruction Protocol 

Subjects were scanned while supine at end-expiratory breath hold. Contrast injection 

was performed using a dose of 0.05 mmol/kg of gadobenate dimeglumine (Gd-BOPTA, 

Multihance; Bracco Imaging) at 4 mL/s followed by a 35 mL saline flush to approximate a linear 

relationship between signal intensity and contrast concentration in the lung parenchyma20. 

Due to hardware upgrades during the study, subjects were imaged at both 1.5T and 3T 

field strengths. DCE pulmonary perfusion scans were acquired using 3D spoiled gradient-echo 

sequences. Similar sampling schemes were used for time-resolved acquisition at each field 

strength, including a research pulse sequence,  “interleaved Variable Density” (IVD) 21 at 1.5T 

(Signa HDxt, GE Healthcare), and a commercial pulse sequence, “Differential Subsampling with 

Cartesian Ordering” (DISCO, GE Healthcare)22 at 3T (Discovery MR750, GE Healthcare). Both 

sequences were acquired with full chest coverage i.e., FOV = 40 (S/I) × 28 (A/P) × 40 (L/R) cm3 

and a parallel acceleration factor of 2x2. Spatial (4 mm isotropic) and temporal resolutions 

(nominally 1 s) were matched for each protocol. Other relevant scan parameters can be found in 

Table 2. 

Post Processing 

Semi-Automatic Lung Segmentation and Arterial Input Function Selection 

Segmentation was performed using a combination of ITK-SNAP23 (v3.8) and Python 

(Python Software Foundation, https://www.python.org/, v3.6). Consecutively acquired 

morphological images were used to semi-automatically segment the perfusion datasets similar 

to Kohlmann et al24. Each lung was segmented into 6 regions by volume. An example can be 

seen in supplementary figure 1. To remove potential user error in AIF selection, we 

implemented an automated method where we apply successive image processing steps to our 

https://www.python.org/


 

dynamic images to gradually isolate the pulmonary trunk and pinpoint its branching point
25

. 

Additionally, a cross-correlation analysis with the AIF was performed to suppress large vessel 

influence26. A visualization of these steps is included in supplementary figure 2 and a more 

detailed description of these methods are included in the supplementary text. Because subjects 

with extreme motion are excluded from this analysis, we do not apply additional image 

registration on the DCE timeseries. 

Quantitative and Semi-Quantitative Measures 

PFT measures were performed with a MasterScreen PFT system using reference values 

computed as recommended by the Global Lung Function Initiative27. The computation of each 

measure was performed using MATLAB (MathWorks, Natick, MA, R2018b). Supplementary 

figure 3 outlines the workflow for computing quantitative and semi-quantitative measures as 

well as example parametric maps in a healthy subject. Voxel-wise relative enhancement was 

computed via subtraction of and normalization to the baseline mask signal. Using the principles 

of indicator dilution theory, we can solve for PBF, PBV, and MTT. Specifically, the following 

relationships hold under a few basic assumptions16: 

 

  ( )     [ ( )      ] Eq. 1 
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Eq. 2 
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Eq. 3 

Here  ( ) and  ( ) are the concentration at the volume of interest and the tissue residue 

function at time  , respectively. The main task here is to deconvolve Eq. 1 to solve for     

 ( ). This is an ill-posed problem that requires regularization to reach physiologically plausible 

solutions19,28. Once      ( ) is computed we solve for PBV and MTT using Eq. 2 and Eq.3. In 

this work PBF, PBV, and MTT were estimated by solving a least squares deconvolution problem 



 

with Tikhonov regularization16,29,30. Details on the deconvolution procedure are included in the 

supplemental text. Semi-quantitative parameters are conceptually simpler to compute. The 

contrast kinetic curves were smoothed using a second order Savitsky-Golay filter with a window 

size of 5 frames. Each time-series was up-sampled by a factor of 2 using linear interpolation. 

TOA and TTP were defined as the timepoint at which the signal enhancement curve reaches 

20% and 100% of its peak value, respectively. The TTP of the AIF was subtracted from TOA 

and TTP to remove potential bolus injection timing differences across subjects. Finally, SLOPE 

and FMTT were calculated as follows: 
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Eq. 4 
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Eq. 5 

Here  (   ) is the peak signal and  (   ) is the baseline signal at    . For a visual example 

of how these parameters are associated with the contrast kinetics see supplementary figure 4. 

 

Statistical analysis 

 

Comparison of characteristics between controls, IPFstable and IPFprog was done using 

non-parametric tests (Wilcoxon Rank sum for numeric variables and Fisher’s Exact for 

categorical variables) for every pairwise comparison (IPFstable to controls, IPFprog to controls and 

IPFstable to IPFprog). A Bonferroni p-value correction using n=3 comparisons was applied to 

account for multiple-comparisons bias. 

We evaluated relationships to each DCE measure on both the whole lung and a region-

specific level. Linear regression models were used to evaluate the relationship of cohort to the 

whole lung DCE measure. For region-specific DCE measures, each subject has 12 measures 



 

consisting of 6 regions (3 anterior and 3 posterior) for both the right and left lung. Repeated 

measures linear regression was performed where correlations between observations within a 

subject were modeled using an unstructured covariance matrix. Potential simplifications of the 

variance-covariance structure were assessed using Akaike’s Information Criterion. The most 

parsimonious model considering cohort, region (6 level) and lung (left or right) as well as 

potential interactions was identified and was similar for most measures. The final parameter 

estimates were obtained using the Restricted Maximum Likelihood. Model effects for the 6 level 

region and 2 level “side” (left or right lung) were evaluated and only the region effect improved 

the fit and was retained for the final models. Thus, the final models for region-specific DCE 

measures included terms for cohort, region and the interaction between cohort and region.  

For each DCE measure, we separately evaluated the mean in the appropriate area 

(whole lung or region-specific) and their CV (mean/sd for the whole lung or for the specific 

region).  All models adjusted for sex (2 level: female vs male), age (continuous) and field 

strength (2 level: 1.5T vs 3T). Cohort was evaluated separately as a 3-level factor with controls 

(as the referent group) and IPFstable and IPFprog, but also as a 2-level factor with the IPFstable and 

IPFprog considered together as “IPF”. Normality of each DCE measure was evaluated visually 

and because each measure has a different range they were rescaled to a z-score for 

comparisons. 

Least-squares means and 95% confidence intervals with adjustment for age, sex and 

field strength were estimated for the relevant cohort and region levels. For the whole lung 

analysis this consists of cohort, and for region-specific analysis this consists of cohort and 

region interaction. The whole lung analysis reports the p-value for the cohort comparison.  The 

region-specific analysis reports the p-value for the interaction term as well as the joint likelihood 

ratio test to get the marginal “overall cohort” (cohort + cohort*region) and “overall region” (region 

+ region*cohort) effects, which represent overall impact of cohort or region.  



 

 Spearman correlations were evaluated to compare each DCE-MRI measure with 

FVC%p, DLCO%p, and LCI%p.   The FVC%p, DLCO%p, and LCI%p were measured prior to 

the DCE-MRI scans, on the same day of each visit, using a MasterScreen PFT system and 

reference values were computed as recommended by the Global Lung Function Initiative27. All 

analyses were done in SAS (SAS Institute, Inc., Cary NC, v9.4) and R (R Core Team, 2021). 

 

Results 

Global lung averages did not differ significantly between IPF and control subjects, even 

after adjusting for age, sex, and field strength (Figure 1a); however, regional comparisons 

showed significant differences between IPF and healthy control subjects for mean PBF, SLOPE 

and FMTT measures (p 0.05; Figure 2). For each metric we saw significant cohort, lung 

region, and interaction effects. No statistical differences were found between left and right lungs; 

thus, the left and right lungs were grouped into apical, middle, and basal lung regions for both 

the posterior and anterior. Similar variation between lung regions were seen in all measures 

irrespective of cohort. Regional heterogeneity patterns were also captured across lung regions 

and cohorts using the CV in which significant cohort differences were observed for PBF, TTP, 

and FMTT (p 0.05; Figure 3).  

A subset of exemplary parametric maps in two healthy and two IPF subjects are 

highlighted in Figure 4. We observed whole lung and regional abnormalities in IPF relative to 

healthy subjects, including increased heterogeneity (CV) of perfusion measures. In healthy 

control subjects the expected gravity-dependent anterior to posterior gradient pattern 

predominates, while in IPF subjects additional inter-patient and regional spatial variations in 

severity of perfusion abnormalities were typical. For example, in IPF subject 1 reduced global 

perfusion is observed, while in IPF subject 2 regional variation in perfusion between the apical 



 

and basal lung regions are prominent compared to healthy subjects. A more complete set of 

parametric maps can be seen in supplementary figure 5. 

Further exploratory comparisons of control vs IPFprog and IPFstable found global and 

regional differences in semi-quantitative perfusion measures. The global mean FMTT was 

shorter in IPFprog relative to healthy (p = 0.023) and IPFstable groups (p = 0.004; Figure 1b). No 

other measures showed global differences between groups. Regional analysis for these cohorts 

showed similarly significant differences for control vs IPFstable for FMTT (p = 0.030), control vs 

IPFprog for FMTT (p = 0.036), where FMTT was shorter in IPFprog. Of potential importance for 

discriminating progression from stable disease, TTP (p = 0.032) and FMTT (p < 0.001) were 

both shorter in IPFprog vs IPFstable. Similarly, the FMTT CV differed within regions for IPFprog vs 

controls (p=0.034), and importantly, the FMTT CV differed between IPFprog and IPFstable (p = 

0.002, Figure 6). 

Finally, the regional heterogeneity of perfusion measures as measured by CV was 

significantly correlated to PFTs. There was mild/moderate correlation between the PBF CV vs 

DLCO%p (rs = -0.48, p = 0.022), and LCI%p (rs=+0.47, p = 0.015. No other perfusion measures 

were found to correlate to PFTs. Significant group differences were detected in age, DLCO%p 

FVC%p and LCI%p (p < 0.05). 

Discussion 

DCE-MRI identified regional perfusion differences between control subjects and IPF lung 

disease using FMTT, SLOPE, and PBF, although global lung averages did not. Heterogeneity in 

these measures using the CV was also greater in IPF. This suggests global analysis obscures 

regional changes in pulmonary hemodynamics and highlights the need for regional imaging 

approaches. Generally, we see increased FMTT, and decreased PBF and SLOPE in IPF 

relative to control subjects, consistent with reports of vascular pruning and overall reduction of 

vascular density in severely fibrotic areas31–34. The increased CV of FMTT, TTP, and PBF 



 

represent increased regional heterogeneity in IPF relative to healthy control subjects, also 

consistent with reports of spatially heterogenous vascular remodeling in IPF33  

There were significant regional variations and trends in all DCE measures consistent 

with gravitational dependence and previously published works17,35. This pattern is likely related 

to the supine patient orientation within the MRI scanner and residual anatomic and physiologic 

effects of upright posture. Additionally, we found larger group discrepancies in the posterior-

basal portions of the lungs in all measures and the CV supported more pronounced perfusion 

differences in these areas, consistent with typical manifestations of IPF36,37. 

Interestingly, in our exploratory analysis we observed a global decrease in FMTT 

between IPFprog and both the IPFstable and healthy control groups, but no differences were 

observed between the control and IPFstable groups suggesting decreased FMTT may be a 

candidate marker for progression. One explanation for the shorter FMTT in the IPFprog group is 

increased regional heterogeneity of vascular density and central vessel diameter due to 

vascular pruning and remodeling. Ebina et al. found that acute exacerbation, a severe and often 

fatal adverse event associated with rapid progression, was associated with increased and 

dilated capillaries31. Similarly, a CT based vessel analysis found increased vessel size to be 

highly predictive of mortality38. IPF manifests as a heterogeneous fibrotic injury and is 

predominantly found in the basal and peripheral portions of the lungs36,37 and previous work with 

DCE-MRI indicates that changes can be detected easier in these areas14,15. It is thought that 

repetitive environmental microinjuries to interstitial and vascular tissue induce abnormal healing 

responses which result in heterogeneous interstitial and vascular remodeling36,39. Early results 

had seemingly conflicting reports of reduced/increased vascular density in IPF. However, this 

was later reconciled with studies on the spatial heterogeneity of the disease and evidence 

supports that severely fibrotic areas demonstrate a reduction in vascular density, while adjacent 

tissues display an increase in vascularization31. Although the mechanism and causality of the 

increased vascularization and fibrogenesis is unclear, some authors suggest it is a precursor to 



 

fibrosis40,41. Additionally, increased vascularization and vessel diameter has also been 

implicated in acute exacerbations in IPF, which lead to rapid progression of fibrosis and result in 

higher mortality rates31. Accurate, regional evaluation of pulmonary microvasculature could 

provide insight into the pathogenic process of IPF, and these exploratory results warrant further 

study in a larger population to determine if FMTT remains a possible predictor of progression 

and to inform on the possible underlying mechanism driving shorter FMTT. 

With regards to comparisons to PFTs, including FVC%p, DLCO%p and LCI%p, we 

observed somewhat unanticipated findings of non-significant and universally weak correlation 

associations with the mean values of all perfusion measures. Although there were moderate 

correlations of DLCO%p and LCI%p with measures of perfusion heterogeneity, no correlations 

of any perfusion measures were observed with FVC%p. The explanation for this pattern 

probably lies in heterogeneous compensatory increases in pulmonary perfusion to offset lung 

function decline. Weatherly et al.14 report similar results in which DLCO%p was not correlated 

with the contrast curve full width at half max (FWHM), yet DLCO%p was correlated with the 

FWHM interquartile range (IQR), a measure of regional heterogeneity. This heterogeneity is one 

reason why IPF is difficult to evaluate and further emphasizes the value of spatially resolved 

functional lung imaging in this disease. 

Some clarifications should be made with respect to previous work. Weatherly et al. show 

significant longitudinal increases in global FWHM over 6-months in IPF subjects. In this work we 

focus on establishing baseline differences between a healthy cohort and IPF subjects with 

clinical outcomes of progression after 1 year. Given our focus on clinical progression, these 

results are not mutually exclusive and evaluate different aspects of DCE measures in the 

context of IPF. The present work demonstrates improved discriminatory power by leveraging the 

regional information contained within DCE-MRI, and we expect that this improvement will 

translate to longitudinal monitoring of DCE measures in IPF as well. We also note that 

Weatherly et al. demonstrated a non-statistically significant increase in FWHM in a small subset 



 

of non-survivors. This is partly in contrast to our findings, which indicate a decrease in FMTT 

using a different definition of progression. We suspect that the results are not directly 

comparable due to the different classification of “progressors” vs “non-survivors” as well as 

inherent differences between FWHM and FMTT as measures of transit time. 

Finally, when comparing global pulmonary function test measures, FVC%p, DLCO%p 

and LCI%p all show significant differences across groups, specifically between control and 

IPFprog. Of the perfusion measures, only FMTT demonstrated significant global differences. 

This suggests that either global perfusion measures are not as sensitive as FVC%p, DLCO%p 

and LCI%p, or that global perfusion measures are measuring fundamentally different aspects of 

the disease. However, we emphasize that, unlike global measures of either perfusion or 

pulmonary function tests, regional FMTT uniquely distinguished between stable IPF and IPF 

progression. 

 

Limitations 

This study has some limitations. First is the small sample size, especially in the IPFprog 

subgroup, that necessarily makes the exploration of perfusion markers of progression 

speculative and prone to selection bias. In this study we also had an unbalanced dataset with 

respect to of age, sex, and field strength. Our cohorts have statistically different age 

distributions, which could affect our measures as perfusion tends to decrease with increased 

age. With respect to field strength differences, tissue T1 relaxation times will be longer at 3T 

than at 1.5T which will also systematically reduce the SNR in our measurements. Although our 

models account for these biases and imbalances it is possible that bias remains even after 

statistical adjustments due to insufficient overlap between groups. 

 Second, although we use a small, optimized, contrast dose to target the pseudo-linear 

relationship between contrast dose and signal amplitude, it is possible to have systematic 



 

biases in our quantitative parameters due to this signal saturation effect. We did not observe 

any noticeable saturation effects and our estimates are comparable to those found in the 

literature for hemodynamics measured using DCE-MRI and SPECT/PET.  

Conclusion 

 In this work we demonstrate that global analysis obscures regional changes in 

pulmonary hemodynamics in IPF using DCE-MRI. Quantitative PBF and semi-quantitative 

FMTT perfusion also clearly delineated healthy subjects from IPF patients. Moreover, 

decreased FMTT was found in the subset of IPF patients who progressed and should be 

investigated further as a candidate marker for IPF progression in a larger study population.  We 

also observed significant correlations of CV’s in perfusion measures with DLCO%p and LCI%p 

as surrogates for vascular heterogeneity. Notably, FVC%p, DLCO%p and LCI%p all 

demonstrated significant differences between healthy and IPF, although they did not distinguish 

between stable and progressive IPF. In total, these results suggest DCE-MRI is a promising tool 

for identifying early vascular remodeling of the capillary networks in IPF, which could serve as 

an early predictor of rapid progression. 
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Figure Captions 

Figure 1: Whole-lung linear regression model results for cohort means (left) and CVs (right) of 

FMTT, TTP, SLOPE, and PBF. a) demonstrates expected means in healthy controls (blue) and 

a combined IPF cohort (red) while b) demonstrates the means in healthy controls (blue), stable 

IPF (red), and progressive IPF (purple).  

Figure 2: Regional repeated measure regression model results for the mean values of FMTT 

(top left), TTP (top right), SLOPE (bottom left), and PBF (bottom right) in healthy control (blue) 

and combined IPF (red) subjects.  

Figure 3: Regional repeated measure regression model results for the coefficients of variation 

(CV) of FMTT (top left), TTP (top right), SLOPE (bottom left), and PBF (bottom right) in healthy 

control (blue) and IPF (red) subjects.  

Figure 4: A subset of exemplary parametric maps of pulmonary blood flow (PBF), SLOPE, and 

FMTT in two healthy and two IPF subjects. For PBF and SLOPE, green and red colors indicate 

more and less perfusion, respectively. For FMTT, blue and red indicate faster and slower transit 

times. We observe whole lung and regional abnormalities in IPF relative to age matched healthy 

subjects. Regional heterogeneity of perfusion measures is observed in all subjects. An anterior 

to posterior gradient is observed in addition to reduced perfusion in the distal portions of the 

lungs. In IPF subjects, inter-patient as well as regional variation in severity is observed. 

Figure 5: Exploratory regional repeated measure regression model results for the mean values 

of FMTT (top left), TTP (top right), SLOPE (bottom left), and PBF (bottom right) in healthy 

control, stable (IPFstable), and progressive subjects (IPFprog).  

Figure 6: Exploratory regional repeated measure model results for the coefficients of variation 

(CV) of FMTT (top left), TTP (top right), SLOPE (bottom left), and PBF (bottom right) in healthy 

control, stable (IPFstable), and progressive participants (IPFprog) participants.  

  



 

 Table 1. Population Characteristics  

  Control  

(N=15) 

IPFstable  

(N=14) 

IPFprog 

(N=6) 

1Control 

vs IPFstable 

P-value 

1Control 

vs IPFprog 

P-value 

1IPFstable 

vs IPFprog 

P-value 

3.0 T 

N (%) 

  

3 (20.0) 

  

6 (42.9) 

  

3 (50.0) 

 

0.735 

 

0.872 

 

1.000 

Female 

N (%) 

  

10 (66.7) 

  

2 (14.3) 

  

1 (16.7) 

 

0.023 

 

0.190 

 

1.000 

Age (Years)  

Median (IQR) 

  

63.0 (51.5, 66.0) 

  

69.0 (64.0, 74.0) 

  

75.5 (72.5, 79.3) 

 

0.020 

 

0.002 

 

0.320 

DLCO%P 

Median (IQR) 

N (%) 

  

94.0 (72.8, 

105.5) 

8 (53.0) 

  

57.0 (54.0, 67.0) 

13 (92.8) 

  

46.0 (45.0, 50.0) 

5 (83.3) 

 

0.006 

 

0.013 

 

0.090 

FVC%P 

Median (IQR) 

N (%) 

  

105.0 

(94.0,109.0) 

9 (60.0) 

  

85.5 (75.8, 92.8) 

14 (100.0) 

  

66.5 (57.5, 74.8) 

6 (100.0) 

 

0.050 

 

0.005 

 

0.062 

LCI%P 

Median (IQR) 

N (%) 

  

7.4 (7.2, 7.6) 

8 (53.0) 

  

7.7 (7.5, 7.9) 

12 (75.0) 

  

8.0 (7.9, 8.125) 

4 (66.7) 

 

0.068 

 

0.025 

 

0.385 

PBF (ml/100ml/min) 

Median  

(IQR) 

  

189.0  

(142.6, 214.3) 

  

155.8  

(134.1,193.0) 

  

203.47  

(185.0, 216.2) 

 

0.978 

 

1.000 

 

0.447 

PBV (ml/100ml) 

Median (IQR) 

  

16.4 (12.4, 18.3) 

  

13.7 (13.1, 14.2) 

  

14.7 (12.1, 15.8) 

 

1.000 

 

1.000 

 

1.000 

MTT (s) 

Median (IQR) 

  

5.6 (5.3, 5.8) 

  

5.2 (4.6, 6.8) 

  

5.3 (5.2, 5.7) 

 

1.000 

 

1.000 

 

1.000 

SLOPE (a.u.) 

Median (IQR) 

  

1.3 (1.2, 1.9) 

  

1.3 (0.8, 1.8) 

  

1.3 (1.1, 1.4) 

 

0.716 

 

1.000 

 

1.000 

FMTT (s) 

 Median (IQR) 

  

12.9 (12.4, 13.3) 

  

13.2 (12.9, 16.3) 

  

13.1 (12.2, 13.4) 

 

0.231 

 

1.000 

 

0.796 

TOA (s)  

 Median (IQR) 

  

0.7 (0.2, 0.9) 

  

0.9 (0.7, 1.5) 

  

0.6 (0.3, 0.8) 

 

0.181 

 

1.000 

 

0.323 

TTP (s) 

 Median (IQR) 

  

5.2 (4.8, 5.7) 

  

5.9 (5.5, 8.3) 

  

5.8 (5.3, 6.2) 

 

0.108 

 

1.000 

 

1.000 

 

                                                   
1
 Numerical values tested using Wilcoxon Rank Sum test, Categorical values tested using Fischer’s Exact Test,  

P-values adjusted via the Bonferroni method using three comparisons. 



 

 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

  

                                                   
1
 Interleaved Variable Density 

2
 Differential Subsampling with Cartesian Ordering 

3
 Repetition Time 

4
 Echo Time 

5
 Field of View 

Table 2. Imaging Parameters 

  1IVD 2DISCO 
3TR (ms) 2.2 2.3 
4TE (ms) 0.7 0.7 

Flip Angle (°) 25 30 
5FOV (mm3) 400x280x400 400x280x400 

Acquisition Matrix 100x70x400 100x70x400 

Acquired voxel size (mm3) 4.0x4.0x4.0 4.0x4.0x4.0 

Acceleration factor (R) 2 2 

Acquired Time Frames 23 27 

Scan Length (s) 21 31 

Bandwidth (kHz) 125 125 

Number of subjects 23 12 



 

 
  



 

 
  



 

 
  



 

 
  



 

 
  



 

 



 

Supplementary Text 

Automated Segmentation 

Consecutively morphological images were acquired using optimized 3D center-out 

radial ultra-short echo time sequence1 (UTE, TE/TR=0.08/3.14 ms, 90,000 spokes). The 

morphological images were segmented at a whole lung level using a 2.5D deep 

convolutional neural network for healthy participants2. Since the network has not been 

trained for IPF subjects, a user-guided active contouring approach for participants with 

IPF 3. The resulting lung segmentations were further split into 6 regions per lung. Each 

lung was split into three sections of equal volume in the superior-inferior direction, then 

each subsection was further divided into two equal volume sections in the anterior-

posterior direction. This resulted in 12 regions per subject. An example segmentation 

can be seen in Supplemental Figure 1. The morphological images were then 

registered to the initial frame of the DCE scan using a B-spline deformable registration 

approach using the Advanced Normalization Toolkit, and the transforms were applied to  

the segmentation4,5 

 

Automated Arterial Input Function Selection 

We first remove a large majority of background voxels by applying a median filter, computing a 

temporal maximum intensity projection (tMIP) and thresholding based on 25% of the maximum 

signal intensity in order to keep a segmentation largely composed of the heart, large arteries, 

and veins. This segmentation is then cleaned using morphological operations and the 

pulmonary artery is separated from the aorta by performing a histogram analysis on the TTP in 



 

these regions combined with Otsu thresholding. This results in a segmentation that consists of 

the right ventricle and the pulmonary artery, which is subsequently skeletonized. Finally, a graph 

analysis is used to pinpoint the branching point and a cube of 50 voxels surrounding that point 

to define the AIF region of interest (ROI). Supplementary Figure 2 outlines the workflow for 

AIF selection. 

Deconvolution Solution 

After discretization of the AIF, we can write equation 1 as: 

 

       Eq. 1 

In this form   is the discretized AIF,   contains the elements of  ( ), and   corresponds to 

     ( ). In this work we used a block circulant discretization to reduce bias from tracer 

arrival delay6. Specifically, we solve the following minimization problem for each voxel:  

 

         ‖     ‖ 
   ‖ ‖ 

 . 

 

Eq. 2 

In Eq. 5,   is the regularization value that trades off the smoothness of the solution with the data 

consistency. This system has an analytical solution which can be implemented efficiently via the 

singular value decomposition (SVD). The regularization parameter   was selected using an L-

curve criterion optimization for each voxel to estimate the best tradeoff between the error and 

the smoothness of the solution7.  

Model Interpretation 

In this work we apply linear regression and repeated measures models to evaluate various 

effects while adjusting for multiple factors (age, sex, and field strength). For regional analysis, 



 

overall cohort, overall region, and cohort/region interaction effects are reported. Specifically, in 

our regional analysis figures we report three p-values for each measure: “Overall Lung Region”, 

“Overall Cohort”, and “Interact”, which for simplicity I will label P1, P2, and P3. These p-values 

can take the following main permutations for each metric:  

1. If P1 – Significant, P2 – Non-significant, P3 – Non-significant, this implies significant 
differences between lung regions, but no differences in cohort. 

 
2. If P1 – Significant, P2 – Significant, P3 – Non-significant, this implies significant 

differences between lung regions, significant differences between cohorts, but not driven 
by any specific lung region. In other words, all lung regions trend similarly. 

 
3. If P1 – Significant, P2 – Significant, P3 –Significant, this implies significant differences 

between lung regions, significant differences between cohorts, AND significant 
differences between cohorts in a specific lung region. In contrast to 2, this indicates that 
one or more regions trend significantly higher or lower than the consensus of the rest of 
the regions. 

 

We note that a significant interaction indicates a distinct cohort/region effect, however like 

typical ANOVA analysis, it does not identify which region is responsible for the significant 

differences. Further statistical analysis is required to determine which regions are driving the 

interaction term. 

References 

1.  Johnson KM, Fain SB, Schiebler ML, Nagle S. Optimized 3D ultrashort echo time pulmonary MRI. 
Magn Reson Med 2013;70(5):1241–1250.  

2.  Zha W, Fain SB, Schiebler ML, Evans MD, Nagle SK, Liu F. Deep convolutional neural networks with 
multiplane consensus labeling for lung function quantification using UTE proton MRI. J Magn Reson 
Imaging 2019;50(4):1169–1181.  

3.  Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical 
structures: Significantly improved efficiency and reliability. NeuroImage 2006;31(3):1116–1128.  

4.  Tustison NJ, Avants BB. Explicit B-spline regularization in diffeomorphic image registration. Front 
Neuroinform [Internet] 2013;7. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870320/ 

5.  Tustison NJ, Cook PA, Klein A, et al. Large-scale evaluation of ANTs and FreeSurfer cortical thickness 
measurements. NeuroImage 2014;99:166–179.  



 

6.  Wu O, Østergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-
insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value 
decomposition with a block-circulant deconvolution matrix. Magn Reson Med 2003;50(1):164–174.  

7.  Sourbron S, Dujardin M, Makkat S, Luypaert R. Pixel-by-pixel deconvolution of bolus-tracking data: 
optimization and implementation. Physics in Medicine and Biology 2007;52(2):429–447.  

 Tables 

Supplementary Table 1. Study Attrition 

Retention Stages Total N (%) 

Total IPF Recruitment 

 ⤷Subjects with DCE-MRI 

  ⤷Passing QC for at least 1 baseline visit 

41 (100%) 

39 (95%) 

35 (85%) 

 
  



 

Figures 
 

 

Supplemental Figure 1: Image Segmentation workflow. a) 
Consecutively acquired morphological image is denoised, 
bias field corrected, and semi-automatically segmented. b) 
The lung segmentation is then split into posterior and 
anterior, apical, middle, and basal lung regions by volume. c) 
The initial mask for DCE-MRI images is denoised, bias field 
corrected, and then the morphological image is deformably 
registered to this mask. The subsequent deformation field is 
applied to the lung segmentation as a final step. 
 



 

 

  

Supplemental Figure 2. Arterial Input function selection workflow. We first remove a large majority of background voxels by 
thresholding a temporal maximum intensity projection (a). This segmentation is then cleaned using morphological opening, 
closing, and erosion operations (b) and the pulmonary artery is separated from the aorta by performing a histogram 
analysis (c). This results in a segmentation that consists of the right ventricle and the pulmonary artery (d). This 
segmentation is subsequently skeletonized, and a graph analysis is used to pinpoint the branching point (e). A cube of 50 
voxels surrounding that point to define the AIF region of interest (f). The mean values of the region of interest are used to 
compute the AIF (g). 
 



 

Supplemental Figure 3. Quantitative and semi-quantitative measurement computation workflow. Quantitative 
measures (left) are computed by first normalizing the signal intensity to the baseline mask signal. We then 
solve an ill-posed regularized least squares deconvolution problem and compute voxel wise parametric 
maps of pulmonary blood flow (PBF), pulmonary blood volume (PBV), and mean transit time (MTT). For the 
semi-quantitative measures, we first smooth each contrast enhancement time-series. A straightforward, 
noise robust calculation is then possible for SLOPE, FMTT, TOA, and TTP. For this work, perfusion related 
measurements will be displayed in a green/red colormap, while transit time related measurements will be 
displayed in blue/red measurements. 

 

 



 

 

Supplementary Figure 4: Parameter computation visualization for a volume of interest (VOI). (a) Quantitative parameters 
are computed by deconvolving the arterial input function (AIF) from the tissue contrast kinetics (C(t)) to solve for the 
tissue residue function R(t). With R(t) we can use algebra and the central volume theorem to solve for pulmonary blood 
flow (PBF), pulmonary blood volume(PBV), and mean transit time(MTT). (b) Semi-quantitative parameters time to 
peak(TTP), contrast uptake slope (SLOPE), time of arrival(TOA), and first moment transit time(FMTT) are computed from 
the contrast curve time-series itself, relative to the AIF time to peak (b). 
 



 

 

Supplementary Figure 5: Parameter map visualization. For flow related parameters, green and red colors 
indicate more and less perfusion, respectively. For transit time measures, blue and red indicate faster and 
slower transit times, respectively. Whole lung and regional abnormalities in are observed in idiopathic 
pulmonary fibrosis subjects relative to healthy control subjects. Significant spatial heterogeneity is 
observed in both cohorts. In IPF subjects inter-patient and regional spatial variations in severity of 
perfusion abnormalities were typically stronger relative to healthy subjects. For example, in IPF subject 1 
reduced global perfusion and increased transit times were observed relative to healthy subjects 1 and 2, 
while in IPF subject 2 regional variation in each measure between the apical and basal lung regions are 
more prominent compared to healthy subjects 1 and 2. 


