

EUROPEAN RESPIRATORY journal

FLAGSHIP SCIENTIFIC JOURNAL OF ERS

		\ /	
-	rlv/	\ /	iew
	IIIV	V	ı⇔vv
-	,	•	. • • • •

Editorial

Prone positioning for non-intubated hypoxemic patients with COVID-19: cheap, easy, and makes sense, but does it work?

Eric D. Morrell, Mark M. Wurfel

Please cite this article as: Morrell ED, Wurfel MM. Prone positioning for non-intubated hypoxemic patients with COVID-19: cheap, easy, and makes sense, but does it work? *Eur Respir J* 2021; in press (https://doi.org/10.1183/13993003.02416-2021).

This manuscript has recently been accepted for publication in the *European Respiratory Journal*. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJ online.

Copyright ©The authors 2021. This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org

Prone Positioning for Non-Intubated Hypoxemic Patients with COVID-19:

Cheap, Easy, and Makes Sense, but does it Work?

Eric D. Morrell^{1,2,3}, Mark M. Wurfel²

¹VA Puget Sound Heath Care System; ²Harborview Medical Center; ³University of Washington Medical Center, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington

Address correspondence/reprint requests to:

Eric D. Morrell, M.D.

Box 359640

Harborview Medical Center

325 Ninth Avenue

Seattle, WA 98109-4725, USA

Phone: (206) 221-0630

Email: edmorrel@uw.edu

Conflict of interest for all authors: None declared

Main Text

Since the 1970s, prone positioning has been proposed as an inexpensive and physiologically-justified management strategy for patients with acute respiratory distress syndrome (ARDS). The physiologic rationale for prone positioning in ARDS has been well described.^{1,2} Placing a person in the prone position reduces lung compression. which facilitates better ventilation/perfusion matching and leads to improved oxygenation. However, determining whether patients receive clinically meaningful benefit from prone positioning in the form of reduced mortality or time supported on mechanical ventilation has been challenging. Early trials that used prone positioning as a "rescue" therapy or applied relatively small "doses" of prone positioning (i.e. limited duration of time in prone position) did not demonstrate improvements in mortality or ventilator-free days (VFDs).3-5 The landmark PROSEVA trial published in 2013 enrolled patients with at least moderate ARDS (PaO₂/FiO₂ ratio < 150) who were early in their hospital course (<36 hours after intubation) and then randomized them to standard care alone (including low tidal volume ventilation) or at least 16 hours/day of prone position.⁶ In contrast to prior trials, PROSEVA identified a marked reduction in mortality and VFDs in ARDS patients treated with prone positioning. There have been many proposed explanations for PROSEVA's success after repeated negative results in earlier trials of proning. However, selection of a more severe patient population early in their disease clearly differentiated PROSEVA from prior trials. A major question that remained after PROSEVA was whether there might be a broader set of patients with hypoxemic respiratory failure that might benefit from prone positioning. The onset of the COVID-19 pandemic has forced us to ask whether non-intubated hypoxemic patients infected with

SARS-CoV-2 might represent an additional group of patients that might benefit from prone positioning.

The COVID-19 pandemic has dramatically increased the number of patients with moderate-to-severe ARDS who are treated outside of intensive care units.⁷ There is an urgent need to mitigate escalation in respiratory support and decrease rates of intubation, particularly in health care systems where the volume of COVID-19 patients exceeds hospital capacity. Awake prone positioning for non-intubated patients with hypoxemia and COVID-19 has been associated with improved oxygenation and decreased rates of intubation in some, 8-15 but not all reports. 16-20 None of these previously published observational studies included more than n = 200 subjects nor accounted for factors that could contribute to selection bias such as age or oxygen delivery device. A recent randomized meta-trial of COVID-19 patients supported on high-flow nasal cannula (HFNC) demonstrated decreased rates of treatment failure and subsequent intubation in patients treated with awake prone positioning vs. standard care, however there was no difference in 28-day mortality.²¹ The impact of awake prone positioning on non-intubated COVID-19 patients supported on low-flow and other non-HFNC oxygen delivery devices has not been tested in an interventional trial.

In this issue of the *European Respiratory Journal*, Perez-Nieto and colleagues present findings from the APPONOX study that suggest prone positioning of awake, non-intubated, patients with hypoxemia due to COVID-19 is associated with decreased rates of subsequent intubation and mortality. This large retrospective cohort study included patients (n = 827) from 27 hospitals in Mexico and Ecuador who were infected with SARS-CoV-2 and were hypoxemic (SpO2 < 94%). Only 10% of patients were

treated with HFNC at time of enrollment, with the remainder supported on low-flow nasal cannula (49%) or non-rebreather mask (41%). The authors compared patients who were treated for greater than 2 hours of prone positioning (AP group, n = 505) vs. subjects in whom prone positioning was not attempted or were treated for less than 2 hours (AS group: awake supine, n = 322). In the AP group, the median time to initiation of proning after hospital arrival was 15 hours and patients were proned for a median time of 12 hours during their hospital course. The primary outcome for the study was rates of intubation. In order to mitigate confounding by indication, the authors performed a propensity score analysis including variables such as age, degree of hypoxemia, supplemental oxygen delivery device, comorbidities, treatment with steroids, and acuity of care. The authors found that 23.6% of AP patients were subsequently intubated vs. 40.4% of AS patients (adjusted odds ratio [OR], 0.50 [95% CI,0.36 – 0.71]; p < 0.0001 after propensity analysis). Mortality was also significantly lower in the AP vs. AS group (19.8% vs. 37.3%).

The major strengths of this study include the relatively large size of the cohort, the rigor of the analyses which included propensity score matching, and the diversity of the hospitals and patients included in the study. Ninety percent of patients in this study were not supported on HFNC, suggesting that awake prone positioning of non-intubated hypoxemic patients with COVID-19 might be beneficial to a broader population beyond those supported by this scare respiratory support device.²¹ Indeed, as the authors note, this study was conducted at some sites that dealt with hospital strain and limited resources.²² The findings from this study may be generalizable to institutions where

scarcity of advanced respiratory care resources has a major influence on patient outcomes.²³

Though encouraging, the results of this study should be interpreted with caution. The authors included multiple analyses to address indication and treatment biases, however given the highly complex and rapidly evolving nature of care for hypoxemic COVID-19 patients it is not unlikely there exists some degree of residual confounding. For example, it is possible patients who did not receive awake prone positioning were too frail or had some other factors limiting appropriateness or feasibility of prone positioning, and these factors could also have increased risk for intubation. The disparity in the proportion of patients receiving HFNC and non-rebreather masks between the AP vs. AS groups could have confounded the results given the potential beneficial aspects of HFNC treatment in COVID-19.^{24,25} The authors importantly adjusted for this in their analyses, and the proportion of patients receiving HFNC was only 10% in the entire cohort. Finally, although the authors found an association between awake prone positioning and decreased mortality, the safety of proning was not assessed. A recent trial of prone positioning in COVID-19 patients supported on HFNC did not demonstrate a concerning signal for harm.²¹ Additional studies testing whether proning non-intubated patients might inappropriately delay initiation of invasive mechanical ventilation and lead to worse overall outcomes are currently underway (ClinicalTrials.gov, NCT04347941, NCT04344587, NCT04325906, NCT04358939, NCT04395144).²

In conclusion, the APPONOX study confirms that awake proning of non-intubated hypoxemic patients with COVID-19 holds promise as a cheap, easy, and effective therapy for reducing rates of intubation and mortality in hypoxemic patients with COVID-19. Reducing rates of intubation may be particularly important in healthcare systems where access to advanced respiratory care resources are scarce. There are multiple ongoing randomized controlled trials underway to confirm the findings from this study. Until the results from these studies are published, it seems reasonable to encourage non-intubated hypoxemic patients with COVID-19 to assume a prone position.

References

- 1. Scholten EL, Beitler JR, Prisk GK, Malhotra A. Treatment of ARDS With Prone Positioning. Chest. 2017 Jan;151(1):215–24.
- 2. Touchon F, Trigui Y, Prud'homme E, Lefebvre L, Giraud A, Dols A-M, et al. Awake prone positioning for hypoxaemic respiratory failure: past, COVID-19 and perspectives. Eur Respir Rev. 2021 Jun 30;30(160):210022.
- Guerin C, Gaillard S, Lemasson S, Ayzac L, Girard R, Beuret P, et al. Effects of Systematic Prone Positioning in Hypoxemic Acute Respiratory FailureA Randomized Controlled Trial. JAMA. 2004 Nov 17;292(19):2379–87.
- 4. Gattinoni L, Tognoni G, Pesenti A, Taccone P, Mascheroni D, Labarta V, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med. 2001 Aug 23;345(8):568–73.
- 5. Taccone P, Pesenti A, Latini R, Polli F, Vagginelli F, Mietto C, et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2009 Nov 11;302(18):1977–84.
- Guérin C, Reignier J, Richard J-C, Beuret P, Gacouin A, Boulain T, et al. Prone Positioning in Severe Acute Respiratory Distress Syndrome. New England Journal of Medicine. 2013 Jun 6;368(23):2159–68.
- 7. Coopersmith CM, Antonelli M, Bauer SR, Deutschman CS, Evans LE, Ferrer R, et al. The Surviving Sepsis Campaign: Research Priorities for Coronavirus Disease 2019 in Critical Illness. Critical Care Medicine. 2021 Apr;49(4):598–622.
- 8. Thompson AE, Ranard BL, Wei Y, Jelic S. Prone Positioning in Awake, Nonintubated Patients With COVID-19 Hypoxemic Respiratory Failure. JAMA Intern Med. 2020 Nov 1;180(11):1537–9.
- Damarla M, Zaeh S, Niedermeyer S, Merck S, Niranjan-Azadi A, Broderick B, et al. Prone Positioning of Nonintubated Patients with COVID-19. Am J Respir Crit Care Med. 2020 Aug 15;202(4):604–6.
- Caputo ND, Strayer RJ, Levitan R. Early Self-Proning in Awake, Non-intubated Patients in the Emergency Department: A Single ED's Experience During the COVID-19 Pandemic. Acad Emerg Med. 2020 May;27(5):375–8.
- 11. Sartini C, Tresoldi M, Scarpellini P, Tettamanti A, Carcò F, Landoni G, et al. Respiratory Parameters in Patients With COVID-19 After Using Noninvasive Ventilation in the Prone Position Outside the Intensive Care Unit. JAMA. 2020 Jun 9;323(22):2338–40.

- 12. Coppo A, Bellani G, Winterton D, Di Pierro M, Soria A, Faverio P, et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. Lancet Respir Med. 2020 Aug;8(8):765–74.
- 13. Ng Z, Tay WC, Ho CHB. Awake prone positioning for non-intubated oxygen dependent COVID-19 pneumonia patients. Eur Respir J. 2020 Jul;56(1):2001198.
- 14. Prud'homme E, Trigui Y, Elharrar X, Gaune M, Loundou A, Lehingue S, et al. Effect of Prone Positioning on the Respiratory Support of Nonintubated Patients With COVID-19 and Acute Hypoxemic Respiratory Failure: A Retrospective Matching Cohort Study. Chest. 2021 Jul;160(1):85–8.
- Ponnapa Reddy M, Subramaniam A, Afroz A, Billah B, Lim ZJ, Zubarev A, et al. Prone Positioning of Nonintubated Patients With Coronavirus Disease 2019-A Systematic Review and Meta-Analysis. Crit Care Med. 2021 Apr 30;
- 16. Ferrando C, Mellado-Artigas R, Gea A, Arruti E, Aldecoa C, Adalia R, et al. Awake prone positioning does not reduce the risk of intubation in COVID-19 treated with high-flow nasal oxygen therapy: a multicenter, adjusted cohort study. Crit Care. 2020 Oct 6;24(1):597.
- 17. Padrão EMH, Valente FS, Besen BAMP, Rahhal H, Mesquita PS, de Alencar JCG, et al. Awake Prone Positioning in COVID-19 Hypoxemic Respiratory Failure: Exploratory Findings in a Single-center Retrospective Cohort Study. Acad Emerg Med. 2020 Dec;27(12):1249–59.
- 18. Elharrar X, Trigui Y, Dols A-M, Touchon F, Martinez S, Prud'homme E, et al. Use of Prone Positioning in Nonintubated Patients With COVID-19 and Hypoxemic Acute Respiratory Failure. JAMA. 2020 Jun 9;323(22):2336–8.
- 19. Johnson SA, Horton DJ, Fuller MJ, Yee J, Aliyev N, Boltax JP, et al. Patient-directed Prone Positioning in Awake Patients with COVID-19 Requiring Hospitalization (PAPR). Ann Am Thorac Soc. 2021 Aug;18(8):1424–6.
- 20. Pavlov I, He H, McNicholas B, Perez Y, Tavernier E, Trump MW, et al. Awake prone positioning in non-intubated patients with acute hypoxemic respiratory failure due to COVID-19: A systematic review of proportional outcomes comparing observational studies with and without awake prone positioning in the setting of COVID-19. Respir Care. 2021 Jul 7;respcare.09191.
- 21. Ehrmann S, Li J, Ibarra-Estrada M, Perez Y, Pavlov I, McNicholas B, et al. Awake prone positioning for COVID-19 acute hypoxaemic respiratory failure: a randomised, controlled, multinational, open-label meta-trial. Lancet Respir Med. 2021 Aug 20;S2213-2600(21)00356-8.

- 22. Fowler Z, Moeller E, Roa L, Castañeda-Alcántara ID, Uribe-Leitz T, Meara JG, et al. Projected impact of COVID-19 mitigation strategies on hospital services in the Mexico City Metropolitan Area. PLoS One. 2020;15(11):e0241954.
- 23. Bravata DM, Perkins AJ, Myers LJ, Arling G, Zhang Y, Zillich AJ, et al. Association of Intensive Care Unit Patient Load and Demand With Mortality Rates in US Department of Veterans Affairs Hospitals During the COVID-19 Pandemic. JAMA Network Open. 2021 Jan 19;4(1):e2034266–e2034266.
- 24. Demoule A, Vieillard Baron A, Darmon M, Beurton A, Géri G, Voiriot G, et al. High-Flow Nasal Cannula in Critically III Patients with Severe COVID-19. Am J Respir Crit Care Med. 2020 Oct 1;202(7):1039–42.
- 25. Guy T, Créac'hcadec A, Ricordel C, Salé A, Arnouat B, Bizec J-L, et al. High-flow nasal oxygen: a safe, efficient treatment for COVID-19 patients not in an ICU. Eur Respir J. 2020 Nov;56(5):2001154.