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“Take home" message 

Continuous positive airway pressure (CPAP) treatment of obstructive sleep apnoea (OSA) is 

often inadequate. Recent advances in knowledge of OSA pathogenesis, alternatives or 

adjuncts to CPAP and novel approaches will allow more personalized treatments. 

  



Abstract 

Recent advances in obstructive sleep apnoea (OSA) pathophysiology and translational 

research have opened new lines of investigation for OSA treatment and management. Key 

goals of such investigations are to provide efficacious, alternative treatment and 

management pathways that are better tailored to individual risk profiles to move beyond the 

traditional, continuous positive airway pressure (CPAP)-focused, “one size fits all”, trial and 

error approach which is too frequently inadequate for many patients. Identification of 

different clinical manifestations of OSA (clinical phenotypes) and underlying 

pathophysiological phenotypes (endotypes), that contribute to OSA have provided novel 

insights into underlying mechanisms and have underpinned these efforts. Indeed, this new 

knowledge has provided the framework for precision medicine for OSA to improve treatment 

success rates with existing non-CPAP therapies such as mandibular advancement devices and 

upper airway surgery, and newly developed therapies such as hypoglossal nerve stimulation 

and emerging therapies such as pharmacotherapies and combination therapy. These 

concepts have also provided insight into potential physiological barriers to CPAP adherence 

for certain patients. This review summarises the recent advances in OSA pathogenesis, non-

CPAP treatment, clinical management approaches and highlights knowledge gaps for future 

research. OSA endotyping and clinical phenotyping, risk stratification and personalised 

treatment allocation approaches are rapidly evolving and will further benefit from the 

support of recent advances in e-health and artificial intelligence.  



Introduction 

Obstructive sleep apnoea (OSA) is a highly prevalent, but often undiagnosed, chronic 

respiratory condition estimated to affect nearly 1 billion individuals worldwide [1]. It is 

characterised by repeated episodes of apnoea (complete cessation of breathing) and 

hypopnea (partial reduction in breathing) during sleep producing intermittent hypoxia and 

sleep fragmentation. OSA generates bothersome symptoms including daytime sleepiness, 

impairment of daily functioning, deterioration of memory and cognition, and increased risk 

for the development of cardiovascular, metabolic and cerebrovascular disease. This results in 

considerable economic and social burden [2, 3].  

A substantial body of evidence has recently demonstrated the complexity of OSA, the 

extreme heterogeneity of underlying aetiologies and the variety of clinical presentations. 

Thus, the usual "one size fits all" management by Continuous Positive Airway Pressure (CPAP) 

although can be effective for many has limitations including poor adherence [4] and remains 

far from ideal in terms of the expectations of personalised and precision medicine [5] desired 

by patients and caregivers. In short, a redesign of routine care pathways for OSA should be 

designed that carefully considers a more systematic physio-pathological and clinical 

phenotyping approaches with the aim of providing patients with better tailored treatments.  

The objectives of this review are firstly, to describe the physio-pathological endotypes 

and clinical phenotypes that will form the basis for identifying optimal therapeutic options for 

the different OSA subtypes. Secondly, to describe the current therapeutic indications of 

alternatives to CPAP including well validated mandibular advancement devices, positional 

therapy and the emerging pharmacological solutions. Thirdly, to describe the new stimulation 

techniques under development and their respective indications. Fourthly, the importance of 



implementing combined therapies to integrate care and optimise the management of OSA 

comorbidities is highlighted. 

 

o Physiological phenotypes/endotypes and treatable traits  

In addition to different clinical manifestations of OSA, the underling pathophysiology 

varies considerably between patients. Current evidence indicates that there are at least four 

key “pathophysiological phenotypes” or more recently termed “endotypic traits” that 

contribute to OSA pathophysiology (Figure 1) [6-8]. The most influential trait to OSA 

pathogenesis is impaired pharyngeal anatomy. Indeed, all patients with OSA have some 

degree of impaired pharyngeal anatomy. However, the underlying causes and the magnitude 

of impaired pharyngeal anatomy varies widely between patients.  

For example, excess adipose tissue surrounding the upper airway due to obesity can 

cause airway narrowing and increase the propensity for collapse during sleep [9]. Central 

obesity decreases lung volume which can also increase upper airway collapsibility during 

sleep [9, 10]. Other mechanisms such as increased adipose tissue within genioglossus, the 

largest pharyngeal dilator muscle, craniofacial abnormalities, and inherent viscoelastic and 

structural properties of the airway can also contribute to increased propensity for pharyngeal 

narrowing during sleep [11-15]. In addition, rostral fluid shifts when supine can increase 

pharyngeal tissue pressure, reduce pharyngeal cross-sectional area, and increase airway 

collapsibility [16]. The net result is that some people with OSA only have mildly impaired 

pharyngeal anatomy while others have highly collapsible airways. Indeed, quantification of 

upper airway collapsibility during sleep using the gold standard critical closing pressure or 

“Pcrit” technique, indicates that approximately 25% of patients with OSA have highly 

collapsible pharyngeal airways (Pcrit >+ 2cmH2O). More than half of the OSA patient 



population have pharyngeal airways that collapse at or near atmospheric pressure (Pcrit 

range -2 to +2 cmH2O). However, the remaining approximately 20% require a “suction 

pressure” between -5 and -2cmH2O to collapse the airway during sleep. This mild degree of 

pharyngeal collapsibility overlaps with many individuals who do not have OSA [6, 8]. Thus, in 

addition to impaired pharyngeal anatomy, many patients with OSA also have non-anatomical 

traits that contribute to OSA pathogenesis.  

Approximately 70% of people with OSA have one or more non-anatomical traits that 

contribute to their OSA [6, 8]. These include impaired pharyngeal dilator muscle function 

during sleep, unstable respiratory control (high loop gain) and waking up too easily to minor 

airway narrowing during sleep (low respiratory arousal threshold) (Figure 3) [6, 8]. Current 

therapies for OSA however, mainly target the anatomical endotype. This includes CPAP which 

although efficacious, is often poorly tolerated [17], as well as other existing non-CPAP 

anatomical interventions such as mandibular advancement devices, positional therapy, and 

upper airway surgery. All these non-CPAP anatomical interventions serve to reduce upper 

airway collapsibility (lower Pcrit) during sleep [18-20]. However, the non-anatomical 

endotypes or “treatable traits” also represent potential therapeutic targets for OSA. Indeed, 

as outlined in the following sections, detailed physiological studies that have quantified key 

OSA endotypes and delivered targeted interventions to improve one or more of the non-

anatomical treatable traits can reduce OSA severity [21-26]. These concepts, which are 

underpinned by advances in knowledge of the pathophysiological causes of OSA, have opened 

new lines of investigation for the development of new targeted therapies for OSA. 

Identification of patients with certain endotypes may also help identify individuals who will 

respond unfavourably to certain existing OSA therapies. For example, non-obese patients 

with a low respiratory arousal threshold endotype may respond poorly to CPAP therapy [27-



29]. Similarly, patients with unstable respiratory control (high loop gain) are more likely to 

have a suboptimal therapeutic response to mandibular advancement splint therapy and 

upper airway surgery [30, 31]. Thus, these treatable trait concepts hold promise for delivery 

of precision medicine for OSA [32]. 

 

o Clinical and sleep phenotypes 

At present, all OSA patients are considered to have the same generic diagnosis, despite 

OSA being characterized by different contexts of occurrence including age, sex, menopausal 

status, obesity, and lifestyle (e.g. low physical activity and nutrition). Moreover, patients with 

cardiovascular and/or metabolic diseases represent populations at particularly high risk of 

OSA but with minimally symptomatic presentations at diagnosis [33]. Thus, there is a complex 

interaction between underlying pathophysiology and various clinical and polysomnographic 

features.  OSA diagnosis is mainly based on the apnoea/hypopnoea index captured by single-

night polysomnography or respiratory polygraphy. However, there is now broad agreement 

that this simple metric [34] poorly reflects disease severity and its consequences. Hypoxic 

burden, sleep alterations and sympathetic activation are increasingly considered as important 

determinants of long-term poor outcomes [35-37].  This diversity in OSA at diagnosis should 

translate into greater plurality in treatment indications designed for different distinct 

homogeneous groups of patients [38, 39] which, in turn, should lead to improved treatment 

adherence, patient engagement and better prediction of anticipated treatment responses.  

Distinct clinical OSA phenotypes have been primarily identified through various 

methodologies of cluster analysis such as latent class analysis, hierarchical ascendant 

clustering or K-means clustering. Clustering is an analytical technique that aims to minimize 

the dissimilarities between two individuals with the same subtype and maximize the 



disparities between two patients with different phenotypes.  Available literature has 

identified three to eight clusters. These not only reflect the variety of clustering methods but 

also the different assortments and mixtures of variables included in the clustering analyses.  

Cluster analyses have focussed on anatomical and maxilla-facial characteristics, subjective 

complaints [40, 41], polysomnographic features [42-44], comorbidities [45, 46] and primarily 

on a combination of comorbidities and symptoms [47-49].  Until recently, it has been difficult 

to envision a reliable landscape that contains all OSA phenotypes across different patient 

populations [50]. Apart from three studies [39, 48, 51], most datasets were regional or 

national whereas geographical factors, lifestyle, behaviours and genetic background might 

also impact OSA phenotypes. Other contextual factors that characterise patients’ ecosystems 

include pollution, outside temperature or socio-economic status, all of which have been 

poorly addressed in current cluster analyses. 

Despite these limitations, clustering studies have identified key areas for further 

research investigation and revealed important information that has the potential to be 

translated into routine practice management. Examples include:  

(i) There is an easy to manage clinical phenotype including "excessively 

sleepy/symptomatic" patients with disabling complaints, altered health-

related quality of life who insistently request OSA management and show an 

expected high treatment adherence.  

(ii) Half of the reported clusters are sex-based, constituted by nearly exclusive 

populations of men or women, thus highlighting the crucial need to better 

delineate personalized therapies with respect to sex-specific differences.  

(iii) Two clusters predominantly including women were nearly always consistently 

reported across studies. One includes middle-aged women with insomnia or 



complaints of poor sleep, moderate AHI and low CPAP adherence [50].  More 

widely, co-morbid insomnia and sleep apnoea (COMISA) is a specific 

phenotype with a prevalence of up to 40% that necessitates multi-faceted 

treatment approaches including cognitive behavioural therapies [52]. The 

other female cluster comprises women with pulmonary disease (essentially 

asthma).  

(iv) Another prominent clinical phenotype corresponds to the accumulation of 2 

or more cardio-metabolic comorbidities in middle-aged to elderly obese 

individuals with few symptoms, and poor CPAP adherence [17]. Moreover, in 

such cases, CPAP is insufficient to reduce cardiovascular risk and should be 

combined with change in lifestyle interventions. 

(v) The overlap syndrome associating COPD and OSA constitutes a phenotype 

with a different clinical presentation including more persistent fatigue and 

dyspnoea while sleepiness is not imminent.  This subtype is less responsive to 

CPAP with lower adherence to treatment. 

In recognition of the heterogeneity of OSA [53] and as recently outlined by the Sleep 

Disordered Breathing Working Group of the European Respiratory and Sleep Research 

Societies [32], there is the potential to implement some of these concepts into routine 

management of OSA towards analytical step-by-step approaches and reasoning, 

distinguishing symptomatic versus non-symptomatic phenotypes, easy to identify endotypes 

(treatable conditions) and predict poor outcomes based on hypoxic burden, sympathetic 

overactivity and "disturbed sleep" (documented by polysomnography or simpler techniques). 

No doubt, in the future, advanced analytics including artificial intelligence will support 

clinicians for phenotype-based indication of the best treatment strategy (Figure 2). 



The final objective of such a management pathway is to collect and interpret the full 

range of information relevant to therapeutic decision making in routine practice and to 

predict and characterize the evolution of patients’ responses to treatment. The following 

points should be addressed in the coming years to achieve the full potential of this OSA care 

reshaping [54]  

(i) Clustering of phenotypes has been developed cross-sectionally, but we 

now need to implement longitudinal clustering as patients may change 

from one cluster to another during lifetime trajectories and require 

treatment adjustments. 

(ii) Data science algorithms and artificial intelligence-based research tools 

can currently exploit polysomnography measurements giving the 

hypoxic burden and sympathetic activity, or characterise endotypes 

(loop gain, arousal thresholds), but should be more widely deployed in 

every sleep laboratory. 

(iii) The OSA field is crucially lacking biomarkers of the hypoxic signature. 

Companion biomarkers of response to treatment in relation to different 

disease consequences remain to be validated [55]  

 

 

o  Alternatives to CPAP 

• Mandibular advancement devices   

Mandibular advancement devices have traditionally been recommended for second-line 

therapy in patients intolerant or refusing CPAP. In many countries, indications and usage have 

now been expanded as a primary indication at the same level as CPAP for mild to moderate 



symptomatic OSA with a low burden of comorbidities. MADs have been extensively studied 

in terms of reduction of OSA severity, patient reported outcomes (PROMs), cardiovascular 

consequences, adherence, and short- or long-term side effects [56]. 

MADs have lower efficacy as measured by AHI compared to CPAP. Approximately two-

thirds of OSA patients will achieve more than 50% reduction in AHI, with at least one-third 

achieving a complete response with AHI normalization [56]. Multiple attempts have been 

made to predict MAD efficacy from clinical characteristics, OSA endotype and 

polysomnographic indices. However, while comprehensive OSA endotyping approaches hold 

promise (Table 1) [30, 57-60], the reliability of most other prediction approaches is often weak 

and uncertainty regarding the level of efficacy in individual OSA patients remains a concern 

for the widespread prescription and use of MADs [56]. The incomplete reduction of AHI is 

partly counterbalanced by greater adherence and more regular nightly usage. Consequently, 

the Mean Disease Alleviation (MDA) defined by the ratio of adherence to treatment over total 

sleep time divided by the percentage of therapeutic efficacy is equivalent between CPAP and 

MADs [61, 62]. Indeed, overall, MADs provide similar health outcomes to CPAP [63]. The 

equivalent efficacy of MAD and CPAP in terms of MDA is consistent with the results of a recent 

individual participant data meta-analysis including seven randomised controlled trials. MADs 

had similar effectiveness to CPAP on major patient-centred outcomes including sleepiness 

and quality of life [64]. Both treatments improved sleep architecture, objectively measured 

by polysomnography, with an increase in N3 and REM sleep [64]. As comparable symptomatic 

improvement is achieved, combined with MADs being less cumbersome, studies consistently 

show that adherence and patient preference favours MADs versus CPAP.  

Data regarding the impact of MADs on cardiometabolic outcomes are scarce. There are 

no available long-term interventional randomised trials on the impact of MADs on incident 



cardiovascular events and all-cause mortality [65]. However, CPAP and MADs yield similar 

reductions in blood pressure [66]. 

By pooling efficacy and patient preference data, it was expected that the respective 

indications for CPAP and MADs would evolve. However, practical limitations to the 

implementation and titration (adjustment of the degree of protrusion to optimise therapy) of 

MADs [67] continue to limit their application in routine practice. Firstly, for one third of OSA 

patients, MADs are contraindicated mainly due to dental problems (insufficient teeth, 

periodontal problems with tooth mobility), but also to temporomandibular joint disorders, or 

limited maximum protrusive distance (<6mm) [68, 69]. Long term MAD wear can induce tooth 

movements and bite changes depending on adherence to MAD and to the mandibular 

advancement levels. Guidelines recommend regular follow-up by qualified practitioners every 

six months to inspect dental side effects or occlusal changes [56]. Secondly, the reference 

technical choice for MADs is not clearly established with new MAD blueprints continuously 

emerging on the market without clear evidence regarding the best cost-effectiveness balance 

[70]. Titratable two-piece custom-made MADs administered by dentists are widely accepted 

as the gold standard in clinical guidelines [71] but at the price of higher costs and delays in 

the implementation of treatment, which can reach several months [72].Thermoplastic MADs 

constructed of a material that becomes mouldable when warmed by immersion in hot water 

[73] have become titratable and as such, provide an affordable and fast-tracked alternative 

to test efficacy [74]. However, there remains debate regarding their specific indications. 

Importantly, because the only high level of evidence for MAD efficacy has been provided by 

studies using titratable two-piece custom-made devices, it is not yet possible to extrapolate 

these findings to simpler devices without additional validation. Also, the MAD titration 

procedures are poorly standardised, and the process can last several months. 



All these considerations are confusing for prescribing respiratory/sleep physicians, 

who are also discouraged by the complexity of the multidisciplinary care pathway, which 

requires them to share close patient supervision with dental specialists. There is a need to 

better define the respective roles of CPAP, MADs and alternatives to avoid inefficiency and 

redundancy both in the management pathway and in reimbursement models.  

In summary, MADs are by far the best and most documented alternative to CPAP. To 

increase take up of this therapeutic modality, it is necessary to clarify the diverse 

technological options, better describe the care pathway and its reimbursement and optimise 

treatment outcome prediction strategies. CPAP treatment currently benefits from objective 

daily measurements of efficacy and adherence to treatment accessible by remote monitoring 

[38, 75]. This is informative for follow-up and much appreciated by all caregivers. In terms of 

benchmarking between treatments, MADs need to include an objective measure of 

treatment adherence through temperature-sensing data chips embedded in the appliance 

[76] and the development of multidisciplinary digital medicine platforms for monitoring. 

• Positional therapy 

Position-dependant OSA (POSA) is commonly defined as a supine to non-supine 

apnoea hypopnea index (AHI) ratio ≥ 2 and an AHI that normalizes (AHI < 5 or 10 events/h) in 

the non-supine posture. POSA occurs in more than 50% of OSA patients [77, 78] and 

represents a specific clinical phenotype, easily identifiable from polysomnographic indices. 

POSA patients are overall less adherent to CPAP treatment [79]. Positional therapy (PT) aims 

to prevent supine sleep to reduce OSA burden. This approach has been undervalued for 

decades owing to the archaic or non-aesthetic methods initially proposed to reduce the 

amount of time patients sleep lying on their backs. Originally, diverse objects were strapped 

to the back (tennis balls, rigid backpacks, pillows) to prevent patients from sleeping in a supine 



position. New generation PT solutions have now been successfully developed. These less 

cumbersome small devices attached to the neck, forehead [80] or chest [81] provide fine-

tuned vibrating stimuli that progressively train patients night after night to adopt a lateral 

position during sleep [82]. A recent Cochrane review [83] summarised findings from eight 

randomised controlled trials that included 323 participants to compare the efficacy of 

positional therapy versus CPAP or versus an inactive control (a sham intervention or no 

positional therapy intervention). CPAP was superior at reducing the AHI while positional 

therapy was better than inactive controls for improving subjective sleepiness and AHI. Short-

term adherence to PT was reported as good, with patients generally expressing a preference 

for PT versus CPAP. However, there is a lack of reliable data on long-term adherence and new 

tools to objectively measure adherence to PT are being developed. The certainty of evidence 

for positional therapy’s efficacy remains moderate and further multinational, multicentric 

[ClinicalTrials.gov Identifier: NCT04211350] and long-term high-quality studies are needed 

before PT can be integrated more widely into OSA treatment algorithms. In particular, the 

respective roles of positional therapy as a standalone or in combination treatment with 

weight loss and/or oral appliances remains to be better established.  Potential long term side 

effects from limiting movement during sleep such as back discomfort will also need to be 

carefully followed in future appropriately designed studies. While it is quite straight forward 

to identify the clinical phenotype of supine dependent OSA from polysomnography, OSA 

endotype studies of positional therapy have provided insight into the mechanisms of action 

(improvements in airway collapsibility and pharyngeal muscle function) [84] and knowledge 

of OSA endotypes may further help identify which patients will benefit from this therapy 

(Table 1) although this has not been investigated [85, 86].  

 



• Pharmacotherapy for OSA  

In cases where OSA is primarily driven by obesity related mechanisms, 

pharmacological interventions to reduce obesity have the potential to reduce upper airway 

collapsibility and OSA severity [87-90]. Although the effect size is modest, diuretics to 

minimise the potential for fluid redistribution to increase pharyngeal collapsibility during 

sleep may help reduce OSA severity especially in people with conditions where fluid 

accumulation (e.g. renal and heart disease) is common [91-94]. In addition, the relatively 

recent recognition of the importance of OSA endotypes beyond anatomy has provided the 

opportunity for development of new pathways for therapy including pharmacotherapy [95]. 

These are summarised in Figure 3.  

o Targeting the upper airway muscles 

Recent advances in understanding of the mechanisms that control upper airway 

motor circuitry during sleep have identified several promising drug target priorities for OSA 

pharmacotherapy [96]. There is increasing consensus that for pharmacotherapy strategies for 

OSA to be effective, they will need to be targeted according to individual underlying 

pathophysiology/endotype characterisation [95, 97, 98]. 

Pharyngeal dilator muscle activity, which is crucial for maintaining a patent airway in 

people with impaired anatomy, abruptly reduces at sleep onset [99, 100]. Activity of the 

largest pharyngeal dilator, genioglossus, is dependent on the level of breathing effort and 

sleep stage and progressively reduces from N3, to N2 and REM sleep [101, 102]. Impaired 

pharyngeal muscle responsiveness (lack of dilator muscle recruitment during airway 

narrowing) contributes to OSA pathogenesis in over one-third of people with OSA [103]. Thus, 

strategies to increase pharyngeal dilator muscle activation during sleep is an important target 

for OSA pharmacotherapy.  



Multiple neurotransmitters and receptor types can modulate neural control of 

pharyngeal dilator muscle activity. These include excitatory serotonin type 3 (5-HT3) and 

inhibitory cannabinoid type 1 (CB1) receptors in nodose ganglion cells, and noradrenergic, 

serotonergic and glutamatergic-mediated excitatory inputs to cranial motor neuron pools 

[104-108]. Withdrawal of noradrenergic drive is a key mediator of pharyngeal dilator muscle  

hypotonia during non-REM sleep [96]. Muscarinic receptor-mediated inhibition of pharyngeal 

dilator muscle activity is particularly important mediator of  hypotonia during REM sleep 

[109]. While a universally effective pharmacologic therapy for OSA has not been identified, 

the mechanistic pathways highlighted above show considerable promise for targeted therapy 

for OSA.  

Dronabinol, a nonselective CB1 and CB2 receptor agonist, modestly reduces OSA 

severity as measured via the apnoea/hypopnea index (AHI) by ~10 events/h at doses of 2.5 

and 10 mg/day [110, 111]. Selective serotonin reuptake inhibitors (SSRIs) have shown mixed 

results. An early study with the selective serotonin reuptake inhibitors (SSRI), paroxetine, 

reduced the AHI during non-REM but not during REM sleep [112]. Fluoxetine also reduced the 

non-REM AHI but with substantial inter-individual variability [113]. Mirtazapine, a mixed 5-

HT2/5-HT3 antagonist and α2A antagonist showed promising results in an initial small, 

randomised trial [114]. However, two larger subsequent studies failed to replicate this finding 

[115]. Agents that target cannabinergic pathways require further investigation. However, 

current evidence suggests that any potential beneficial effect is likely to be modest. While 

serotonergic agents have not yielded consistent benefit, further investigation of these agents 

in patients according to endotypic characterisation may be insightful and may have 

therapeutic benefit for certain patients.   



To date, noradrenergic and muscarinic pathways are the most promising class of 

agents to target the pharyngeal dilator muscles to treat OSA. Indeed, several recent drug 

repurposing studies highlight the importance of these pathways in mediating pharyngeal 

muscle activity and stabilising breathing during sleep. For example, desipramine, a tricyclic 

antidepressant that inhibits norepinephrine reuptake, reduces sleep onset-related reductions 

in genioglossus muscle activity in healthy individuals [116]. Desipramine also reduces upper 

airway collapsibility and OSA severity in those with impaired upper airway muscle activity 

[117]. The combination of atomoxetine, a norepinephrine reuptake inhibitor, and oxybutynin, 

an antimuscarinic, increases pharyngeal muscle responsiveness during sleep three-fold and 

markedly reduces the AHI and overnight hypoxemia [24, 118]. However, while modest 

improvements in airway stability occur in people with OSA when atomoxetine is combined 

with other more selective antimuscarinics [119], improvements are much less pronounced 

when compared to the combination of atomoxetine and oxybutynin [24]. Another 

norepinephrine reuptake inhibitor, reboxetine, when combined with the antimuscarinic 

hyoscine butylbromide, also improves pharngeal dilator muscle control during sleep [120] and 

reduces OSA severity [121]. Findings from a recently completed trial indicates that reductions 

in OSA severity also occur when reboxetine is delivered alone without an antimuscarinic 

(ACTRN12620000662965). Thus, while larger, long-term studies are required to provide 

insight into the long-term efficacy and safety of these interventions, this class of agents show 

considerable promise for OSA pharmacotherapy.   

Novel strategies to enhance pharyngeal dilator muscle reflexes to reduce airway 

collapsibility have shown promise in a pig model [122] and have recently been tested in 

people with OSA [123] , require further investigation in humans which are currently underway 

(NCT04236440, NCT04713826). In addition, viral vectors to deliver excitatory designer 



receptors to hypoglossal motoneurons is a novel and exciting concept with considerable 

potential for future translation to humans assuming the safety profile of this new technology 

can be established. These designer receptors exclusively activated by designer drugs 

(DREADDs) have recently been investigated in animal models with promising results [124-

126]. Conceptually, targeting a designer receptor, not found elsewhere in the body, would 

alleviate the undesirable off-target effects associated with traditional drug therapy 

approaches for OSA.  

o Targeting loop gain 

People with inherently unstable or overly sensitive responses to CO2 (high loop gain) 

during sleep are at increased risk of OSA [127]. Unstable respiratory control/high loop gain 

which is a key endotypic trait for approximately one third of people with OSA [8]. 

Pharmacological agents that reduce loop gain may therefore help to stabilise breathing and 

reduce OSA severity.  

The metabolic acidosis induced by the carbonic anhydrase inhibitor acetazolamide 

increases ventilation, alters the hypercapnic ventilatory response, and lowers the PaCO2 

apnoea threshold [128, 129]. Acetazolamide also reduces key components of high loop gain 

(plant gain) [130] and increases the response time to changes in PaCO2 secondary to increased 

cerebral blood flow [131]. These complementary mechanisms (i.e., increased minute 

ventilation combined with decreased plant gain) serve to reduce the overall propensity for 

unstable breathing/high loop gain.  

A meta-analysis of eight randomised trials found improvements in AHI, periodic 

breathing, and increased nocturnal oxygen saturation with acetazolamide in people from low 

altitudes ascending above 2500 meters [132]. One week of 500mg of sustained-release 

acetazolamide twice daily reduces loop gain and the AHI in people with moderate-to-severe 



OSA without negatively alerting the other key OSA endotypic traits [133]. Zonisamide, 

another carbonic anhydrase inhibitor, also reduces the AHI by ~30% in patients with 

moderate-to-severe OSA [134]. While, loop gain was not directly measured in this study, the 

effect on AHI was heterogeneous. This suggests that zonisamide improved OSA in patients 

with high loop gain but not in those in whom other OSA endotypes predominate [134]. Recent 

studies with the norepinephrine reuptake inhibitors atomoxetine and reboxetine also 

indicate that these agents can stimulate breathing frequency and also reduce the overall 

propensity for respiratory instability (lower loop gain) which may further contribute to their 

therapeutic benefit in people with OSA [24, 98, 119, 135]. 

Supplemental oxygen reduces peripheral chemosensitivity and can also stabilise 

breathing during sleep. For example, 3 to 5 L/min of supplemental oxygen reduces loop gain 

and the AHI in OSA patients with high loop gain [136] without altering the other key OSA 

endotypes [137]. OSA endotype characterisation either via awake chemosensitivity testing 

[138] or via signal processing of the sleep study signals [26] may help to provide a personalised 

medicine approach to identify those who are mostly likely to benefit from oxygen therapy. 

o Targeting the arousal threshold 

Respiratory stimuli, such as blood gas disturbances and increased negative pressure 

swings during airway narrowing and closure augment breathing effort and often trigger brief 

cortical arousals from sleep [139]. Waking up too easily to airway narrowing (low respiratory 

arousal threshold), prevents more stable deeper sleep, compensatory pharyngeal muscle 

activation and can perpetuate breathing instability [139, 140]. A low respiratory arousal 

threshold is a common endotype in patients with OSA, especially in patients who are not 

obese [103, 141]. Thus, sleep promotion aids that raise the arousal threshold may therefore 



promote breathing stability and reduce OSA severity in those with a low arousal threshold 

endotype. 

Sedative medications have traditionally been avoided in people with OSA due to 

concerns of pharyngeal muscle relaxation and delayed responses to hypoxia. Indeed, high 

doses of the benzodiazepine triazolam can worsen hypoxemia in people with severe OSA 

[142]. However, more recent detailed physiological studies in people with and without OSA 

indicate that zolpidem, zopiclone, trazadone and temazepam increase the arousal threshold 

and do not impair pharyngeal dilator muscle responsiveness during sleep [143-147]. 

Eszopiclone has been shown to increase the respiratory arousal threshold and reduce OSA 

severity by ~45% in people with a low arousal threshold endotype [148]. Reductions in OSA 

severity in unselected patients have also been reported with trazodone [149]. When oxygen 

therapy is combined with eszopiclone, consistent with endotyping concepts, reductions in AHI 

occur in those with less collapsible pharyngeal airways and increased upper airway muscle 

effectiveness [23]. These data suggest that benefits occur through a reduction in loop gain 

and an increase in arousal threshold. These proof-of-concept studies suggest a potential role 

for hypnotics in patients with a low arousal threshold endotype. Hypnotics such as zolpidem 

also markedly increase sleep efficiency in people with OSA which may be helpful in people 

with comorbid OSA and insomnia [147]. Indeed, non-pharmacological approaches to promote 

sleep such as cognitive behavioural therapy for insomnia reduce OSA severity in people with 

OSA and insomnia [150]. However, most hypnotic trials in people with OSA do not 

systematically alter the AHI [139, 143, 151-154]. In addition, while non-benzodiazepine 

hypnotics and trazodone are considered to be relatively safe drugs [155, 156] with a low 

incidence of dependence versus benzodiazepines, patients with a history of abuse or 

dependence and those with psychiatric diseases may be at increased risk of abuse of these 



agents [155](. Thus, further studies, including longer term efficacy, safety and tolerability 

trials in different patient populations are required before pharmacologically increasing the 

arousal threshold can be recommended as a treatment for OSA. 

• Stimulation therapy 

While recent evidence highlights the potential for multilevel upper airway surgery as 

an efficacious therapy for a substantial proportion of OSA patients[157]  and the potential 

role that weight loss surgery may play for severely obese patients [158] , these topics are 

beyond the scope of the current review which focussed on new stimulation techniques. 

o Hypoglossal nerve stimulation 

A decrease in pharyngeal dilator muscle tone is a normal physiological response to 

sleep and usually results in a small increase in upper airway resistance [159]. However, in 

predisposed individuals this loss in tone can lead to upper airway narrowing and collapse 

during sleep, both being cardinal characteristics of OSA. Recognition of this relationship 

between pharyngeal muscle tone and patency has led to many studies investigating methods 

by which to minimise or reverse the sleep-related loss in pharyngeal muscle activity, and 

thereby decrease or prevent the detrimental changes in pharyngeal patency. The 

genioglossus is the major pharyngeal dilator muscle and has consequently been a major target 

for such studies. 

The genioglossus muscle is innervated bilaterally by its motor nerve, the hypoglossal 

nerve [160] and surgical access to the nerve can be via an incision in the neck. Early ‘proof of 

concept’ studies were undertaken by Eisele et al [161] and Schwartz et al [162] who showed 

that unilateral stimulation of the hypoglossal nerve could improve airflow during sleep and 

decrease the severity of OSA. While these studies demonstrated the feasibility and 

therapeutic potential for hypoglossal nerve stimulation (HNS) in OSA, long term use of the 



method was limited by technology problems with electrodes and sensors. Over the next 

decade improvements in lead construction, sensor development, implantable pacemaker 

construction and programming, and nerve cuff construction led to this being revisited. 

In the mid-2000’s several companies produced implantable devices that stimulated one of 

the hypoglossal nerves via a cuff electrode with resulting inspiratory phasic [163, 164] or 

continuous [165] contraction of the genioglossus muscle during sleep. Despite using different 

techniques, the studies reported remarkably similar results with decreases in AHI from 50-

70% at 6-12 months post-implant, clinically significant improvements in subjective 

measurements of sleepiness and sleep-related quality of life and all were accompanied by 

good safety profiles. 

Since its approval by the US Food and Drug Administration a device based on the 

seminal study by Strollo et al [164] has been implanted in many thousands of patients in North 

America and Europe (Figure 4). This has led to many valuable publications and insights based 

on additional research studies, case studies, post-market analyses and clinical audits. Some 

of the main findings are that the technique: is safe to use over prolonged periods of time with 

minimal side effects [166]; is effective in improving objective measures of OSA severity and 

subjective measures of OSA-related symptoms [166, 167]; and is reliant on careful 

implementation of titration algorithms and manipulation of stimulation settings [168, 169]. 

Improved understanding of these factors has led to marked improvements in therapeutic 

effectiveness with recent postmarket studies reporting improvements in AHI of 75% or 

greater [167, 170].A new generation device has been developed with several differences to 

other devices [171, 172] (Figure 5). Firstly, it delivers bilateral HNS via an implantable ‘paddle’ 

electrode that lies over the genioglossus muscles near their insertion on the mandible. 

Secondly, due to electrode positioning only the genioglossus muscle is stimulated. Thirdly, 



the small paddle electrode, which incorporates a receiver, is the only implantable component. 

Finally, the system delivers intermittent stimulation at a pre-programmed rate and duty cycle, 

adjusted to stimulate at a rate near the participants own breathing frequency but not 

specifically timed to the respiratory cycle. Long term data are not yet available for this device 

but published short term results (6 months post-implant) show similar therapeutic efficacy to 

the other cuff-based stimulating devices. Specifically, a 47% decrease in AHI, significant 

improvements in symptoms and an acceptable safety profile [171]. Hypoglossal nerve 

stimulation is now considered an acceptable alternative for patients who are intolerant of or 

fail CPAP therapy.  However, a major challenge remains in identifying those individuals, before 

implantation, who will benefit from the therapy. Current guidelines recommend that the 

therapy is suitable for individuals who have an AHI between 20 and 50 events/h, body mass 

index (BMI) less than 32 kg/m2, central or mixed apnoea index [173] <25% of the AHI and 

absence of circumferential pharyngeal airway during drug-induced sleep endoscopy [164, 

174]. Despite application of these criteria and optimisation of stimulation settings, 

approximately one-third of patients are considered partial- or non-responders due to the 

presence of residual OSA while on therapy [170]. Importantly, the current evidence base for 

HNS remains very limited with only one study fulfilling (partly) the criteria of a randomized 

controlled trial [164]  

A great deal of work continues to be undertaken to identify factors that influence 

outcomes for HNS. Approaches include analyses of data from published studies [175], clinical 

registries [176] and prospective studies [177, 178].  Recently, Op de Beeck et al [179] used 

baseline polysomnography records from implanted patients to show that several non-

anatomical endotypes (low arousal threshold, low pharyngeal muscle compensation, high 

loop gain) were associated with reduced HNS treatment efficacy (Table 1). In contrast, Yu and 



Younes [180] did not find a significant difference in polysomnography-derived odds ratio 

product, a measure of arousal propensity, between responders and non-responders to HNS 

therapy. These studies highlight the complex nature of OSA and its underlying 

pathophysiology, the understanding of which remains incomplete but essential to selecting 

the most suitable patients for HNS therapy.  

o Other stimulation techniques  

Several other stimulation techniques have been proposed to treat OSA. Of these, the 

most studied has been transcutaneous electrical stimulation (TENS) of the submental muscles 

via electrodes attached to the skin of the submental region.  

A recent study has shown that, when applied to individuals with OSA over time (i.e. ‘training’ 

the tongue muscles), such stimulation results in an improvement in posttreatment AHI. 

However, the impact on quality of life remains unclear [181]. Electrical stimulation has also 

been applied to the muscles of the tongue to cause muscle contraction and increase strength 

and fatigue resistance and has been shown to reduce time spent snoring [182]. Daytime 

electrical stimulation of the calf muscles while seated has recently been shown to reduce leg 

fluid, decrease the sleep-related fluid shift from the legs to the neck and reduce snoring, 

presumably by mucosal water content in the peripharyngeal tissues, thereby decreasing 

pressure applied to the pharynx and decreasing airway narrowing and collapsibility [183]. 

Finally, a recent electrophysiology experiment in a single participant with OSA reported that 

neurostimulation of the ansa cervicalis branch innervating the sternothyroid muscle can 

increase inspiratory airflow and retropalatal area during sedation, presumably by increasing 

tracheal traction and decreasing pharyngeal collapsibility [184]. A great deal more research is 

required to determine the feasibility and therapeutic efficacy of these new techniques. While 

it is beyond the scope of this review, it should be noted that other approaches to improve 



muscle activity are being tested such as the application of sleep therapy techniques to ‘train’ 

the tongue muscles [185]. While results to date are promising, randomised and high-quality 

studies still need to be undertaken [186].  

 

• Combined therapies 

Obstructive sleep apnoea (OSA) is a chronic condition with multifactorial 

pathophysiology which requires a comprehensive chronic disease management model [54], 

rather than the predominant CPAP monotherapy approach. Accordingly, similar to other 

conditions in which one or more underlying mechanisms are targeted with therapy (e.g. 

asthma where both the smooth muscle and inflammation components of the condition are 

targeted with therapy) there is considerable scope for combination therapy for OSA. For 

example, the combination of MAD and CPAP lowers CPAP requirements [187] which may be 

help improve tolerance for people with high therapeutic CPAP requirements [188, 

189]although this requires further investigation. Combination therapy directed towards the 

anatomical endotype with non-CPAP therapies may also be a viable alternative to CPAP for 

many patients. For example, positional therapy combined with MAD therapy (Table 1) [190] , 

upper airway surgery combined with positional therapy [191] and MAD therapy combined 

with end expiratory pressure valves [192]. Combining two non-anatomical interventions 

(eszopicline to increase the arousal threshold and oxygen to lower loop gain) reduces the AHI 

by ~50% in unselected patients [23]. Thus, while still in the research investigation stage, these 

findings provide proof of concept support for the potential for combination therapy for OSA. 

Indeed, it is estimated that more than 50% of all OSA patients could be treated with one or 

more non-CPAP therapies directed towards to the appropriate endotypes [193]. A major 

prospective trial is currently underway in which OSA endotypes are quantified at baseline 



using gold standard methodology and the ultimate goal of the study is to treat all patients 

with one or more targeted therapies according to endotype characterisation 

(ACTRN12618001995268).    

Consistently, study findings and a meta-analyses suggests that short term continuous 

positive airway pressure (CPAP) treatment may cause weight gain in obstructive sleep apnea 

(OSA) [194, 195] which of itself could impact on associated cardiometabolic comorbidities. 

The final goal of holistic management is not only to improve the patient reported outcomes 

but also to manage cardio-metabolic risk to attain the best possible health outcomes. In more 

than 50% of cases OSA patients are obese and multimorbid and should be efficiently treated 

for their cardio-metabolic co-morbidities. This includes support to follow weight loss 

programs and lifestyle interventions promoting physical activity. Behavioural and lifestyle 

interventions not only target overall risk reduction but also are effective in reducing the 

severity of OSA [196]. When indicated in isolation they cannot be expected to totally resolve 

OSA in most patients but might generate major reductions in disabilities and prove superior 

to CPAP in improving cardio-metabolic risk factors. Therefore, clinicians should more 

systematically use lifestyle interventions as adjuncts to primary OSA therapy. 

Effect of body weight loss, changes in lifestyle habits and rehabilitation programs 

Previous studies have largely documented the benefits of weight loss programs and 

physical activity to correct or attenuate OSA [196]. In obese patient’s weight loss achieved 

either by bariatric surgery (Roux-en-Y gastric bypass, vertical-banded gastroplasty) or by 

lifestyle interventions was associated with an improvement in sleep-related breathing 

disorders. Weight loss not only reduces OSA severity but also reduces the burden of 

comorbidities and improves hypertension and diabetes control [197, 198]. While bariatric 

surgery is associated with dramatic weight reduction, it is also nowadays considered as a 



metabolic intervention that decreases hypertension, improves control of diabetes and thus 

reduces morbi-mortality [199]. In morbidly obese OSA patients, as CPAP has only a limited 

impact on cardio-metabolic risk, when possible, a surgical method of body weight reduction 

should be proposed. As recently supported by American Thoracic Society consensus 

guidelines, additional therapies for body weight reduction should be encouraged for 

overweight or obese patients with OSA initiated on CPAP [90]. Moreover, weight loss plus 

CPAP have synergistic effects on weight and metabolic parameters compared with each 

intervention taken alone [200].  

Both maximal exercise capacities [201] and the level of spontaneous physical activity 

[202] are lower than normal in OSA patients. A sedentary lifestyle is associated with sleep 

disordered breathing and may be corrected by lifestyle intervention programs [202]. In obese 

patients with OSA on CPAP, NIV or respiratory muscle training as supports to increase exercise 

duration and intensity have recently been shown to significantly reduce waist circumference 

and blood pressure [203]. All these considerations argue in favour of a combined treatment 

strategy for obese OSA. 

Residual sleepiness in CPAP-treated OSA patients 

Excessive daytime sleepiness (EDS) is one of the chief symptoms reported by patients 

with obstructive sleep apnoea (OSA). While successful treatment of OSA with CPAP or other 

primary therapies typically improves symptoms, between 10 and 15% of patients continue to 

experience EDS and alterations in quality of life despite adequate therapy [204, 205]. The 

need for pharmacotherapy as adjunct therapy in CPAP-treated patients is now acknowledged 

in this population with residual EDS. Recently, the efficacy of Solriamfetol, a 

dopamine/norepinephrine reuptake inhibitor [206, 207], and Pitolisant, a selective histamine 

receptor-3 antagonist, [208, 209]  have been established in large multicentre randomized 



controlled trials. The two compounds have demonstrated significant improvements in 

subjective ESS scores by ~2 to 5 points and a reduction of objective sleepiness assessed by 

MWT or Osler tests. Further evaluation remains necessary to assess long term benefits and 

safety, specifically in OSA with cardiometabolic comorbidities. 

Integrated follow-up with the help of remote monitoring and telemedicine platforms  

OSA is typically an ambulatory disease for which e-health solutions supported by 

artificial intelligence will in the future improve workflow for clinicians and caregivers and 

enable patients to process their own data to promote better health (Figure 6). The use of 

several different home care services each managing an individual disease/comorbidity is 

clearly duplicative and inefficient and is potentially unsafe for patients because of poor 

coordination and integration. A major goal in the field of holistic management of OSA will be 

to create integrated telemedicine and home care services for the follow-up of multimorbid 

OSA and risk prediction [54]. Patient transmitted self-measured blood pressure, CPAP 

adherence and residual events, number of steps per day and PROMS questionnaires are 

starting to be deployed on integrated telemedicine platforms and allow clinicians to prioritize 

actions and health education in the care of patients with OSA [210]. 

 

o Perspectives  

Recent advances in knowledge of clinical OSA phenotypes and pathophysiological 

endotypes have provided new pathways and opportunities for precision medicine approaches 

for OSA including novel strategies to direct targeted non-CPAP therapies. Further 

investigation is required to establish the stability of clinical phenotypes across different 

cohorts and ultimately standardisation of clusters/phenotypes so that they can be evaluated 

systematically in prospective studies/cohorts. Recent work has led to the development of 



simplified tools to estimate the key OSA endotypes for scalable use in the clinic. A future 

priority will be to continue to refine and enhance these approaches and integrate into clinical 

practice. A major step on this translation journey will be to systematically assess and update 

these tools in clinical practice in pragmatic trials to determine if the conceptual physiological 

framework of OSA endotyping delivers better outcomes for patients (e.g. better prospective 

prediction/tailored therapy from the onset rather than trial and error etc.).   
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Table 1. Potential advantages and disadvantages of non-CPAP therapies and potential 

utility of personalised care 

Advantages Disadvantages Personalisation potential 

Mandibular advancement devices   

• Well-tolerated, often 
preferred to CPAP 

• Comparable health 
benefits to CPAP 

• Variable and currently 
largely unpredictable 
efficacy (overall less 
efficacious vs. CPAP) 

• Often not reimbursed  

• Teeth movement/ 
potential dental 
symptoms 

• Endotyping studies 
indicate that 
consideration of OSA 
endotypes may help 
direct patient selection/ 
increase success rates 

• E.g., patients with less 
collapsible airways tend 
to do better whereas 
those with high loop gain 
tend to do poorly 

Positional therapy 

• -Well-tolerated, often 
preferred to CPAP 

• Affordable and 
efficacious for a 
substantial proportion of 
patients  

• RCT’s to assess long term 
compliance, efficacy and 
effects on key health 
outcomes required 

• Less efficacious vs. CPAP 

• Potential to cause back 
discomfort in some cases 

• Supine dependent clinical 
phenotype 

• Conceptually, patients 
with less collapsible 
airways without major 
impairment in non-
anatomical endotypes 
expected to do best (not 
yet known) 

• Given that supine 
avoidance also improves 
pharyngeal muscle 
function baseline muscle 
function may be an 
important mediator of 
treatment outcome (not 
yet known) 

Pharmacotherapy to treat OSA 

• Strong desire from many 
patients for a non-device 
medication therapy 

• Recent studies show 
promise for multiple 
mechanistic targets for 
OSA pharmacotherapy  

• Not yet available 
clinically  

• Further discovery, and 
RCT’s required to 
establish long-term 
efficacy, safety and 
tolerability profile and 
potential health benifits 

• As highlighted in the 
initial proof of concept 
studies, knowledge of 
OSA endotypes is likely to 
be crucial to deliver the 
right pharmacotherapy to 
the right patient to 
optimise efficacy 

Stimulation therapy 

• Strong desire from many 
patients for a non-CPAP 
therapy 

• Less efficacious vs. CPAP 
and not without risk 

• Recent endotyping 
findings indicate that 
consideration of OSA 



• Once in place, minimal 
patient input required 
and thus, high 
compliance 

• Current treatment 
prediction approaches 
are imperfect 

• Costly and not widely 
available  

• Further longer-term data 
required on potential 
health benefits (difficult 
to blind subjective 
outcomes) 

 

endotypes may help 
direct patient selection/ 
increase success rates 

• E.g., patients with 
baseline impairment in 
non-anatomical OSA 
endotypes tend to do to 
do poorly 

Combined therapies 

• Considerable potential 
for those who do not 
respond to conventional 
monotherapy 

• Some options are readily 
available and 
inexpensive (e.g., adding 
positional therapy when 
MAD monotherapy in 
incompletely efficacious)  
 

• Further research 
investigation and long-
term clinical evaluation 
of all the various 
potential combinations 
(including existing and 
emerging approaches) 
required 

• As highlighted in the 
initial proof of concept 
studies, knowledge of 
OSA endotypes is likely to 
be crucial to deliver the 
right targeted 
combinations of 
therapies to the right 
patient to optimise 
efficacy 

Pharmacotherapy to treat residual sleepiness 

• Strong clinical need and 
desire from many 
patients for a 
medication-based 
approach to reduce 
sleepiness, especially 
when not fully resolved 
with other therapies 

 

• Further clinical 
evaluation required to 
assess long term benefits 
and safety in different 
patient populations  

• E.g., people with OSA 
and cardiometabolic 
comorbidities 

Endotypic characteristics of 
patients who are most likely 
to benefit from this 
approach, beyond the 
clinical sleepiness 
phenotype, is not currently 
known 

 

CPAP= continuous positive airway pressure, MAD= mandibular advancement device, OSA= 

obstructive sleep apnoea, RCT= randomised controlled trial. Refer to the text for further 

detail.  



Figure Legends 

 

Figure 1. Schematic of the 4 key endotypic traits that contribute to OSA pathophysiology 

A. Impaired pharyngeal anatomy (elevated critical closing pressure [Pcrit] of the upper airway during 

sleep). Non-anatomical endotypes include: B. Poor pharyngeal dilator muscle function including 

inadequate responsiveness/activation to negative pharyngeal pressure/airway narrowing, C. A low 

respiratory arousal threshold (waking up too easily to minor pharyngeal narrowing); and D. Unstable 

respiratory control/increased sensitivity to minor changes in CO2 (High loop gain). Each of these 

endotypes is a target for therapy or a “treatable trait”. Adapted from Carberry et al, Chest, 2018 [72] 

and Aishah and Eckert, Curr Opin Pulm Med, 2019 [95]. 

  



 

 

Figure 2. Routine management of OSA can now be conducted using analytical step-by-step 

approaches and reasoning, distinguishing symptomatic versus non-symptomatic phenotypes, easy 

to identify endotypes (treatable conditions) and predict poor outcomes by advanced analytics.  

  



 

 

Figure 3. Schematic highlighting examples of existing and emerging targeted therapies for 

obstructive sleep apnoea. 

Bold abbreviations indicate the endotypes to which the various anatomical and non-

anatomical interventions are targeted where: MR= muscle responsiveness/dilator muscle 

function, LG= loop gain/respiratory control, Pcrit= critical closing pressure of the upper 

airway/pharyngeal anatomy and AT= arousal threshold. Refer to the text for further detail. 

CBTi= cognitive behavioural therapy for insomnia, CPAP= continuous positive airway pressure, 

DREADDs= designer receptors exclusively activated by designer drugs, HGNS= hypoglossal 

nerve stimulation, MADs= mandibular advancement devices, NRI= norepinephrine reuptake 

inhibitor, UA= upper airway. 

Adapted from Aishah and Eckert, Curr Opin Pulm Med, 2019 [95]. 

  



 

 

Figure 4. Example of an upper airway stimulator system which is based on delivering 

stimulation the hypoglossal nerve via a unilateral cuff electrode.[164] 

  



 

 

Figure 5. Example of a bilateral system which is based on delivering stimulation to the 

hypoglossal nerve via bilateral paddle electrodes. [171] 

  



 

 

Figure 6: Reshaping sleep apnoea care: moving from conventional to integrated 

management of OSA and value-based care [54]  


