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Take home message 
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Abstract 

Pulmonary hypertension is a fatal condition of elevated pulmonary pressures, complicated by right heart 

failure. Pulmonary hypertension appears in various forms; one of those is pulmonary arterial 

hypertension (PAH) and is particularly characterized by progressive remodelling and obstruction of the 

smaller pulmonary vessels. Neurohormonal imbalance in these patients is associated with worse 

prognosis and survival. In this back-to-basics review on neurohormonal modulation in PAH, we provide 

an overview of the pharmacological and non-pharmacological strategies that have been tested 

preclinically and clinically. The benefit of neurohormonal modulation strategies in PAH patients has 

been limited by lack of insight in how the neurohormonal system is changed throughout the disease and 

difficulties in translation from animal models to human trials. We propose that longitudinal and 

individual assessments of neurohormonal status are required to improve timing and specificity of 

neurohormonal modulation strategies. Ongoing developments in imaging techniques such as positron 

emission tomography (PET) may become helpful to determine neurohormonal status in PAH patients in 

different disease stages and optimize individual treatment responses. 

Introduction 

Pulmonary hypertension is a fatal condition of elevated pulmonary pressures, complicated by right 

ventricular failure. Pulmonary hypertension is classified into five groups. Group one is pulmonary arterial 

hypertension (PAH) and is characterized by progressive remodelling and obstruction of the smaller 

pulmonary vessels [1]. The resulting decrease in arterial diameter can increase blood pressure in the 

pulmonary circulation up to five times the normal pressure [2]. The pulmonary circulation then changes 

from a low- into a high-pressure circulation, placing an increased load on the thin-walled right ventricle 

(RV). This eventually leads to RV failure and death [3, 4]. There is currently no cure for PAH and 

treatment options are limited.  

One of the disease modifiers in all forms of pulmonary hypertension, is neurohormonal imbalance, 

which has repeatedly been associated with poor clinical outcome and survival in patients [5–7]. 

Therefore, many pharmacological and non-pharmacological interventions on the neurohormonal system 

have been investigated in preclinical and few clinical studies [8]. Nevertheless, translation from 

preclinical to clinical studies is difficult and is often lacking.  

Two recent reviews extensively described molecular pathways underlying the detrimental effects of 

neurohormonal activation [9] and pharmacological or invasive strategies targeting the neurohormonal 



system in PAH [8]. We wish to extend on this topic, and thereby provide future directions for research 

into the neurohormonal system in PAH. In this back-to-basics article, we will therefore 1) recapitulate 

how the neurohormonal system ensures cardiovascular homeostasis; 2) describe how the 

neurohormonal system is changed in human PAH, both systemically and locally; 3) discuss how 

neurohormonal changes impact the progression of PAH and right heart failure; 4) give a comprehensive 

overview of the preclinical and clinical studies that intervene on the neurohormonal system in PAH.  

Of note, neurohormonal changes likely play a role in all forms of pulmonary hypertension. Because most 

clinical data have been collected here, we focus in our review on PAH. Moreover, other forms of 

pulmonary hypertension are characterized by frequent co-morbidities (e.g. left heart failure or 

additional pulmonary diseases), complicating the view on the neurohormonal system. The 

neurohormonal changes and effects of interventions described hereafter are therefore focused on 

evidence obtained in PAH patients.  

Back to basics 

An important function of the neurohormonal system is to maintain cardiovascular homeostasis. Two 

pillars of the neurohormonal system are the autonomic nervous system (ANS) and the renin-

angiotensin-aldosterone system (RAAS). The different components and functions of both systems are 

depicted in figure 1.  

The ANS can be subdivided into two divisions with opposite actions: the sympathetic and 

parasympathetic nervous system (SNS and PNS, respectively), as shown in figure 1a. The SNS possesses 

adrenergic synapses and is generally activated under (physiological) stress to prepare the body for 

action, while the PNS has cholinergic synapses and prevails during rest. However, both systems are 

continuously active at basal levels and the net physiological effect depends on the balance between SNS 

and PNS activity.  

The ANS ensures short-term control of cardiovascular homeostasis. Blood pressure and arterial CO2 

levels are continuously monitored by baro- and chemoreceptors in the aortic arch and carotid sinus. 

When arterial blood pressure is falling, baroreceptors are inactivated and baroreceptor-controlled 

inhibition of SNS is relieved. Meanwhile, PNS activity is suppressed, striking the balance towards the 

SNS. The SNS is also activated when rising CO2 levels in the blood are being detected by 

chemoreceptors. 



SNS activation then causes release of noradrenaline from synapses directly onto cardiac myocytes and 

blood vessels. In addition, sympathetic nerves stimulate synthesis and release from the adrenal gland of 

adrenaline and noradrenaline [10] that reach the heart and lungs via the bloodstream. (Nor)adrenaline 

then binds to the α- and β-adrenoreceptors (β-ARs). Increased signalling via ARs and reduced signalling 

from the parasympathetic nicotinic and muscarinic acetylcholine receptors (nAChR and mAChR) result in 

a net increase in the rate and force of myocardial contraction. In addition, stimulation of α-ARs that are 

highly expressed in the vasculature causes vasoconstriction, so that arterial pressure is restored.  

Like the ANS, the RAAS is subdivided in two counteractive divisions: the classical and alternative RAAS 

system, as shown in figure 1b. The classical RAAS has been known for a long time and involves 

angiotensin converting enzyme (ACE), angiotensin (Ang) II, Ang II type 1 receptor (AT1R), aldosterone 

and the mineralocorticoidreceptor (MR). The alternative RAAS system is less well-studied and involves 

ACE2, Ang1-7, Ang1-9 and the MAS receptor.  

The RAAS ensures long-term control of blood pressure and volume. When arterial blood pressure drops, 

perfusion pressure of the kidney is reduced. As a consequence, renin is released from the kidney into 

the blood and facilitates the conversion of angiotensinogen to angiotensin I (Ang I). The latter is further 

converted to Ang II by ACE in the lungs [11]. Ang II acts as a strong vasoconstrictor via the AT1R but can 

also increase the rate and force of myocardial contractility [12]. Furthermore, Ang II promotes 

aldosterone release from the adrenal glands via the MR to induce sodium and water retention in the 

kidneys and increase blood volume. However, aldosterone also directly acts on the heart, leading to 

cardiac hypertrophy and fibrosis [13]. These effects of aldosterone in the heart are independent from 

the increase in blood pressure. In the (pulmonary) vasculature, pathological levels of aldosterone are 

associated with oxidative stress and vascular inflammation [13].  

In the opposing alternative RAAS pathway, Ang I is converted into Ang1-9 while Ang II is converted to 

Ang1-7, both by ACE2. Ang1-7 and Ang1-9 largely oppose the vascular effects of the classical RAAS 

pathway via the MAS receptor [14, 15]. Direct effects of Ang1-7 and Ang1-9 in the heart are unknown.  

Neurohormonal systems interfere systemically and locally 

The ANS and RAAS do not operate in isolation. Several interactions have been demonstrated, both 

centrally and locally, and mostly studied in chronic heart failure patients or experimental heart failure. 

Interactions at the system level include SNS-induced renin release from the kidneys [16, 17] and central 



actions of Ang II in the brain. For example, it was shown that inhibition of classical RAAS signalling by 

ACE inhibitors or AT1R blockers increases PNS activity [18] and reduces SNS activity [19]. The latter 

happens also when AT1R blockade is applied to the brain only [20], suggesting that Ang II directly acts on 

the central nervous system. Furthermore, Ang II enhances chemoreceptor activation [21, 22] and 

inhibits baroreceptor reflex control of heart rate [20, 23], both leading to increased SNS activity. By 

contrast, SNS activity can be reduced by the alternative RAAS pathway via inhibition of noradrenaline 

release in the hypothalamus [24]. 

Interactions between the ANS and RAAS occur locally as well.  For instance, Ang II increases adrenergic 

signalling by potentiating the release of noradrenaline from sympathetic nerve terminals [20] and  

inhibits cardiac noradrenaline re-uptake [25]. In addition, gene expression of the AT1R in the heart is 

regulated by Ang II and the β1AR [26, 27], suggesting that the balance of local SNS and classical RAAS 

determines gene expression of the AT1R in the heart. Also in the pulmonary vasculature, cross-talk 

between β-AR and RAAS signalling has been described [6].  

Systemic and local changes in the neurohormonal system in PAH patients 

Systemic changes in the autonomic nervous system 

PAH has repeatedly been associated with a systemic increase in SNS activity. SNS activity, directly 

measured via muscle sympathetic nerve activity (or MSNA) in a peripheral nerve, was increased in PAH 

patients [28, 29]. In addition, plasma levels of (nor)adrenaline were increased in PAH patients in most 

[30–33], but not all studies [34].  

The SNS and PNS are connected in such a way, that increasing SNS activity will cause decreased PNS 

activity. PNS activity can be indirectly assessed by indices of heart rate variability and heart rate 

recovery after exercise. As expected, both heart rate variability indices for PNS activity [28, 35, 36] and 

heart rate recovery [37, 38] were found to be reduced in PAH patients. The autonomic imbalance 

towards SNS activity and away from PNS activity is related to a reduced exercise capacity [39, 40], worse 

New York Heart Association (NYHA) functional class [29, 41] and an increased mortality in PAH [30, 32].  

Local changes in the autonomic nervous system 

In PAH, the SNS is not only systemically activated, but also locally in the myocardium [33, 35, 42]. 

Important triggers for SNS activation are atrial and ventricular stretch: β-AR expression is downregulated 



specifically in the right ventricle but not in the left ventricle in PAH patients [43], and was related to 

ventricular wall stress [44]. The role of atrial stretch on SNS activation was shown in studies investigating 

balloon atrial septostomy. Although, atrial septostomy was not designed to interfere with the 

neurohormonal system, it partially reduced muscle sympathetic nerve activity [45]. This reduction in 

muscle sympathetic nerve activity was related to the reduction in atrial pressure, suggesting that atrial 

stretch plays an additional role in SNS activation [45].  

The acute increases in SNS are important to enhance the rate and force of cardiac contraction and thus 

to enable the RV to cope with the enhanced load. However, sustained cardiac SNS activation causes 

selective downregulation of β1ARs and uncoupling of the remaining β-ARs from downstream signalling 

[43]. Reduced β-AR expression and signalling impairs RV function in at least two ways. First, although 

contractility (end-systolic elastance, Ees) and force generating capacity of RV cardiomyocytes are 

enhanced in PAH-patients [3], the loss of β-AR signalling reduces the RV contractile reserve [43, 46]. Loss 

of contractile reserve results in arterio-ventricular uncoupling and acute RV dilatation during exercise 

[47], and is associated with lower exercise capacity and reduced survival [48]. Second, reduced β-AR 

expression also plays an important role in impaired diastolic function in PAH. One of the downstream 

targets of the β-AR is protein kinase A (PKA), which regulates cardiomyocyte stiffness via 

phosphorylation of the giant sarcomeric protein titin [49]. Thus, reduced β-AR expression results in 

reduced PKA activity and PKA-mediated phosphorylation of titin, thereby increasing the stiffness of the 

RV cardiomyocytes [50]. In experimental PAH, sustained adrenergic activation has further been linked to 

cardiac hypertrophy, fibrosis, apoptosis and reduced capillary density [51, 52]. 

Sustained adrenergic activation is also implicated in pulmonary vascular remodelling. Impaired β-AR 

signalling causes loss of nitric oxide production by pulmonary artery (PA) endothelial cells , resulting in 

pulmonary vasoconstriction [6]. This is further enhanced by direct adrenergic stimulation of PA smooth 

muscle cells  and collectively leads to chronic pulmonary vasoconstriction [6]. Moreover, continuous 

adrenergic stimulation causes PA smooth muscle cell hypertrophy and proliferation [53, 54].  

As opposed to what is known about local changes in the SNS, changes in counteractive PNS signalling 

have been reported in the RV in only one study so far. Da Silva Gonçalves Bos et al. showed that nAChr 

expression is increased in the RV of PAH patients at end-stage, and that there is likely reduced 

degradation of acetylcholine by acetylcholinesterase in the synaptic cleft [36]. If, and how the PNS is 

changed specifically in the lungs is largely unknown.  



Systemic changes in the Renin-Angiotensin-Aldosterone system 

Imbalances in RAAS activation have been described in PAH as well. Plasma levels of Ang I and II are 

increased in PAH compared to healthy controls [55, 56]. However, Ang I and II levels are increased only 

in progressive PAH but not in stable PAH and are associated with disease progression and mortality [57]. 

Plasma aldosterone concentrations are higher in PAH patients than in controls with unexplained 

dyspnea but without PAH [58]. In a subgroup of treatment naïve patients from this study, aldosterone 

levels correlated positively with pulmonary vascular resistance and negatively with cardiac output [58]. 

However, in a larger cohort of PAH patients, aldosterone concentration was not directly associated with 

cardiac output, 6-minute walking distance (6MWD) or survival [59].   

In addition to classical RAAS activation, alternative RAAS activation may be reduced in PAH. Decreased 

plasma levels of Ang 1-7 and 1-9 in patients were reported in one study [56], while unchanged Ang 1-7 

levels were reported in another study [55]. In the latter study, a higher Ang II/Ang1-7 ratio indicated 

reduced conversion from Ang II to Ang 1-7 by ACE2 [55]. Plasma concentrations of ACE2 are not lower in 

PAH patients compared to controls, but it was suggested that auto-antibodies may reduce ACE2 activity 

[56]. Collectively, the balance within the RAAS seems to be in favour of classical RAAS activation, which 

is associated with worse disease progression and survival.  

Local changes in the Renin-Angiotensin-Aldosterone system 

In addition to systemic changes in classical RAAS signalling in PAH patients, local changes have been 

reported as well. The conversion from Ang I to Ang II by ACE happens predominantly in the lungs, where 

an overall decrease in pulmonary ACE activity was found [60]. This decrease however, may be partly 

because of a reduced endothelial surface area. By contrast, ACE activity was increased in isolated PA 

endothelial cells from PAH patients [57] and ACE expression was upregulated in smaller pulmonary 

vessels (intra-acinar arteries to capillaries) [61] and plexiform lesions [61, 62] of PAH patients. These 

findings implicate that the formation of Ang II is increased locally in the PAH pulmonary vasculature. In 

addition, distal pulmonary arteries from PAH patients have increased AT1R expression [57]. Sustained 

Ang II exposure causes hypertrophy and proliferation of isolated patient PA smooth muscle cells via AT1R 

signalling [57] and has been linked to vascular inflammation and fibrosis, and impaired endothelial 

function [12].  



In addition, local aldosterone synthesis is possible in the pulmonary vasculature [63]. Changes in 

aldosterone levels or MR expression in the PAH lung have not been described. However, in experimental 

PAH and in isolated human PA smooth muscle cells and PA endothelial cells aldosterone has been 

associated with increased vascular remodelling [63–65].  

Sustained classical RAAS activity has also unfavourable effects on the heart, including cardiomyocyte 

hypertrophy, fibrosis and conduction system disturbances [12]. The human heart possesses a local RAAS 

system, independent from but related to the circulating RAAS system [66]. Only one study was reported 

on local changes in RAAS activity in the heart in PAH. As opposed to the lungs, AT1R expression was 

found to be decreased in the RV, despite increased ACE expression and Ang II formation [67]. Local 

changes in cardiac aldosterone signalling have not been described in PAH. 

Little is known about local changes in alternative RAAS activity. With renewed interest in ACE2, the entry 

point for the SARS-CoV-2 virus, it was recently shown that mRNA of the soluble but not the membrane 

bound ACE2 is increased in explanted PAH lungs [68]. Although upregulated ACE2 can be considered 

beneficial in PAH, the implications of this shift towards soluble ACE2 for PAH patients are unknown. In 

the heart, ACE2 activity may be increased, as shown by increased formation of Ang1-7 from Ang II [69]. 

Neurohormonal modulation strategies in PAH 

From the foregoing, it becomes clear that the neurohormonal system in PAH is out of balance both 

systemically and locally. Imbalances at both levels are associated with worse disease progression, 

survival or cardiac and vascular remodelling. Although increased SNS and classical RAAS activity are 

required to maintain cardiovascular homeostasis in case cardiac output drops, it is thought that chronic 

activation of SNS and RAAS eventually become maladaptive. This may lead to a vicious circle of further 

cardiac deterioration and increased neurohormonal balance, exacerbated by progressive pulmonary 

vascular remodelling. Therefore, the neurohormonal systems have been the target of several 

experimental treatments. Treatment strategies can be divided into pharmacological and non-

pharmacological approaches. An overview of both treatment strategies on the ANS and RAAS is given in 

figure 2 and 3 respectively.  



Table 1 - The effect of pharmacological treatments targeted at different neurohormonal signalling pathways in preclinical and clinical studies. ↑ 
Increased, = Unchanged, ↓ Decreased. SNS = sympathetic nervous system, PNS = parasympathetic nervous system, RAAS = renin-angiotensin-aldosterone 
system, mPAP = mean pulmonary artery pressure, PVR = pulmonary vascular resistance, ACE = angiotensin converting enzyme, AT1 = Angiotensin II-receptor 
type 1, MR = mineralocorticoid receptor. 

Target 

system 
Treatment strategy Preclinical Clinical 

SNS β-blockers 

Survival: ↑[70] 

Disease progression: ↓[71–73]  

Exercise capacity: ↑[51] 

Cardiac function: ↑[51, 73, 74], =[75] 

Cardiac remodelling: ↓[51, 76], =[75] 

Vascular remodelling: ↓[74, 77, 78], =[51] 

Exercise capacity: =[79–81] 

Cardiac function: ↑[79], ↓[80] 

 

PNS 

Acetylcholinesterase 

inhibition 

Disease progression: ↓[36] 

Cardiac function: ↑[36] 

Cardiac remodelling: ↓[36] 

Vascular remodelling: ↓[36] 

 

Cholinergic agonists 
Cardiac remodelling: ↓[82] 

Vascular remodelling: ↓[82] 

 

Classical 

RAAS 

ACE inhibition 

Disease progression: ↓[83, 84],  

Cardiac function: ↓[85], ↑[84] 

Cardiac remodelling: ↓[86–88], =[89],  

Vascular remodelling: ↓[83–90], =[89] 

Exercise capacity: =[91–93] 

Cardiac function: =[92, 93] 

mPAP/PVR: =[91, 92] (mPAP&PVR), ↓[93] (mPAP) 

AT1 blockers 

Survival: ↑[94] 

Disease progression: ↓[57] 

Cardiac function: =[75] 

Cardiac remodelling: ↓[95–97], =[75, 94, 98] 

Vascular remodelling: ↓[57, 75, 96, 97], =[98, 99] 

Exercise capacity: ↑[100], =[101] 

Quality of life: =[101] 

mPAP/PVR:↓[100](mPAP on echo) 

 

MR antagonists Cardiac function: →[102–104*]  Exercise capacity: →[107, 108]  



Cardiac remodelling: ↓[63, 65, 103], →[102, 104*]  

Vascular remodelling: ↓[63, 65, 102, 103, 105, 106], 

→[65] 

*combined with losartan 

Cardiac function: →[107] 

 mPAP: →[107] 

Alternative 

RAAS 

ACE2 activation 

Disease progression: ↓[109, 110] 

Cardiac function: ↑[109][110] 

Cardiac remodelling: ↓[111, 112][110] 

Vascular remodelling: ↓[109, 111–113][110] 

Cardiac function: ↑[55] 

  

Ang1-7 administration 

Cardiac function: ↑[110] 

Cardiac remodelling: ↓[110, 114], =[115]  

Vascular remodelling: ↓[110, 114], =[115]  

 

Combined ACE2 and Ang1-7 

administration 

Cardiac function: ↑[110], =[116] 

Cardiac remodelling: ↓[116] [110] 

Vascular remodelling: ↓[116] [110] 

 

Ang1-9 administration 
Cardiac remodelling: ↓[14] 

Vascular remodelling: ↓[14] 

 



Pharmacological treatments 

The effects of pharmacological treatments seizing on the different neurohormonal systems are 

summarized in Table 1. Below, we will discuss the few approaches that have been tested in patients. 

β-blockers target the SNS and are the cornerstone of treatment of left ventricular failure, but current 

guidelines advice against the use of β-blockers in PAH [2]. A small pilot study demonstrated the 

safety of the non-selective β-blocker carvedilol [79] in patients. However, in a bigger randomized 

controlled trial RV function and 6MWD did not improve with carvedilol [81], despite lower resting 

heart rate and increased β-AR expression. To prevent possible peripheral vasodilation and blunted 

exercise-induced skeletal muscle blood flow, the β1AR selective β-blocker bisoprolol was tested. In 

this study, a drop in cardiac index observed caused concern that cardiac function actually 

deteriorated [80]. Although no other indicators of progressive heart failure were seen, the lack of 

improvements in cardiac function and 6MWD gave no indication to prescribe bisoprolol to PAH 

patients. Genetic variation in the β1AR can cause hypersensitivity to carvedilol but insensitivity to 

metoprolol and bisoprolol [117] and may cause different individual responses to β-blockers.  

Pharmacological interventions on the classical RAAS include ACE inhibition, AT1 blockade and MR 

antagonists. Clinical studies on ACE inhibition in pulmonary hypertension stem from the 1980s, when 

it was observed that captopril reduced both systemic- and pulmonary vascular resistance  in 

congestive heart failure [118]. Two early studies indicated that captopril reduced systemic- but not 

pulmonary vascular resistance in PAH [91, 118]. By contrast, a significant decrease in pulmonary 

vascular resistance was found by Ikram et al. after only four days of captopril [93]. In this small study 

of five patients, the two youngest patients showed clinical improvements during three weeks of 

maintenance treatment. Collectively, these very small studies do not indicate a role for ACE inhibition 

by captopril in the treatment of PAH. In fact, the systemic vasodilatory effects of ACE inhibitors may 

exaggerate SNS and classical RAAS activities. While no further trials have been conducted, ACE 

inhibition may still have benefit in subgroups of patients.  

AT1 blockade has not been tested clinically in PAH. Instead, two clinical studies investigated the use 

of losartan in pulmonary hypertension (PH) secondary to chronic obstructive pulmonary disease 

(COPD) [101] and in PH secondary to lung disease or left ventricular failure [100]. Beneficial effects of 

losartan were observed after 8 weeks of treatment, including reduced mean pulmonary arterial 

pressure (mPAP) and increased exercise capacity [100]. However, in PH secondary to COPD losartan 

caused an early trend towards improvements in cardiac function and exercise capacity that was not 



maintained throughout 12 months of treatment [101]. Thus, AT1 blockade by losartan may have 

short-term but not long-term effects in PH patients. 

Because of their diuretic action, MR antagonists are used to manage symptoms of RV failure in PAH. 

However, MR antagonists may have additional effects on the heart and lungs. Two studies 

investigated the use of the MR antagonist spironolactone in PAH. A retrospective analysis of patients 

using spironolactone while being enrolled in the ARIES-1 and -2 trial for the endothelin-receptor 

antagonist ambrisentan [119] revealed that spironolactone use enhanced the benefits of 

ambrisentan on 6MWD and the severity of PAH [108]. However, patients using spironolactone had 

generally more severe PAH at baseline. Therefore, in these patients the therapeutic potential of 

ambrisentan may have been higher, which would falsely suggest an effect of spironolactone.  The use 

of spironolactone alone has recently been studied in 42 group I PAH patients, 19 of whom with  

idiopathic PAH [107]. Although no effects of spironolactone were found on markers of fibrosis, 

exercise capacity, disease progression or cardiac function, the use of spironolactone was safe and 

well-tolerated. An ongoing clinical trial (NCT01712620) aims to determine the clinical potential of 

spironolactone with longer treatment duration and earlier initiation.  

Activating the counteractive alternative RAAS, instead of lowering classical RAAS activity, may also 

help to restore the balance within the RAAS. We are only beginning to recognize the role of the 

alternative RAAS system in the development of PAH. Therefore, to date only one clinical pilot study 

exists, investigating the effects of recombinant human ACE2 administration in five patients with 

either idiopathic PAH or hereditary PAH [55]. Importantly, no safety concerns were raised and ACE2 

was well tolerated. In addition, short-term improvements in pulmonary haemodynamics and 

inflammatory status were observed, paving the way for additional trials into ACE2 administration.  

  



Table 2 - The effect of non-pharmacological treatments targeted at different neurohormonal signalling pathways in preclinical and clinical studies. ↑ 
Increased, = Unchanged, ↓ Decreased. SNS = sympathetic nervous system, PNS = parasympathetic nervous system, RAAS = renin-angiotensin-aldosterone 
system, mPAP = mean pulmonary artery pressure, PVR = pulmonary vascular resistance 

Target 
system 

Treatment strategy Preclinical Clinical 

SNS 

Renal denervation Survival: ↑[120] 
Disease progression: ↓[121] 
Cardiac function: ↑[121, 122] 
Cardiac remodelling: ↓[120–122] 
Vascular remodelling: ↓[120–122] 

 

Pulmonary artery 
denervation 

Disease progression: ↓[123] 
Exercise capacity: ↑[123] 
Cardiac function: =[124],↑[123, 125–127]  
Cardiac remodelling: ↓[123, 126, 127],=[124] 
Vascular remodelling: ↓[123, 127, 128],=[124] 

Survival: =[129] 
Disease progression: ↓[129, 130] 
Exercise capacity: ↑[129–132] 
Cardiac function: ↑[129, 131, 132] 
mPAP/PVR: ↓[129–132] 

Transection of the cervical 
sympathetic trunk 

Cardiac function: ↑[133] 
Cardiac remodelling: ↓[133] 
Vascular remodelling: ↓[133] 

 

PNS 

Vagal nerve stimulation Survival: ↑[52] 
Cardiac function: ↑[52] 
Cardiac remodelling: ↓[52] 
Vascular remodelling: ↓[52] 

 

Classical 
RAAS 

N/A N/A  

Alternative 
RAAS 

N/A N/A  

 

 



Non-pharmacological treatments 

The results from preclinical and clinical studies into non-pharmacological strategies for neurohormonal 

modulation are summarized in Table 2. Only pulmonary artery denervation (PADN) has been studied in 

PAH patients.  

Pulmonary artery baroreceptor activation reflexively causes pulmonary vasoconstriction [134, 135], 

probably via adrenergic nerves [136]. This provides the rationale for PADN as a way to reverse 

pulmonary vasoconstriction. Indeed, an acute drop in mPAP was observed in 13 PAH patients who 

underwent PADN [129]. This reduction in mPAP was maintained during three months of follow-up, even 

while patients were completely withdrawn from PAH medication. In addition, progressive improvement 

in haemodynamics, 6MWD and clinical status were shown 6 months post-PADN. These improvements 

were maintained after up to one year of follow-up [131]. The improvements in hemodynamic status and 

6MWD were recently confirmed in a multi-centre open label trial, although the benefit in that study was 

less dramatic [130]. Importantly, Rothman et al. showed highly variable individual responses in patients 

who underwent PADN. While mPAP and pulmonary vascular resistance were reduced on average, in 

three patients the pulmonary vascular resistance actually increased [130]. Interestingly, however, no 

acute reductions in mPAP were observed in this study or in another case report [132], suggesting that 

mechanisms apart from relieving the reflexive vasoconstriction may play a role.  

One such mechanism may be a general reduction in SNS activity. Stretch of the PA baroreceptors 

contributes to increased muscle sympathetic nerve activity in healthy individuals [137]. It is likely that 

this is the case in PAH patients too, given the extreme increase in PA pressure. In addition, PA 

baroreceptor stimulation increases the arterial baroreceptor setpoint and threshold [138], causing 

inactivation of arterial baroreceptors and thus increased SNS activity. However, heart rate at four or six 

months follow-up post PADN remained constant [130], suggesting that SNS activity was not reduced 

after the procedure. 

  



Limitations for the use of neurohormonal modulation strategies in the clinic 

So far, we have described systemic and local neurohormonal imbalance in PAH patients and strategies 

to restore them. Translational difficulties and lack of mechanistic insight in the development of 

neurohormonal imbalance in PAH patients have limited the use of neurohormonal modulation 

therapies. 

Three quarters of all studies described in this review were performed in various animal models of PAH, 

mostly rat, mouse and pig. However, promising results from β-blockers or ACE inhibitors seen in animal 

studies have not been translated to human trials. Obviously, the usefulness of these animal models can 

be disputed. First, commonly used rodent models resemble PAH in some but not all aspects. 

Experimental PAH usually develops over the course of several weeks instead of years as is the case in 

human PAH. This potentially limits the development of compensatory mechanisms [139]. Second, 

clinical studies have always been conducted against a background of PAH-specific therapy, while animals 

received the study medication only.  

Clinical studies into neurohormonal modulation in PAH come with their own limitations. Importantly, 

the therapeutic window for any treatment is small in end-stage PAH, and thus early intervention is 

usually advocated for [140]. However, it should be emphasized that neurohormonal changes are not 

solely maladaptive. In fact, acute changes in neurohormonal activity are vital in the maintenance of 

cardiovascular homeostasis and thus, countering the neurohormonal systems may at times be 

detrimental. At some point in the progression of PAH, the persistent neurohormonal activation becomes 

maladaptive. During this phase neurohormonal modulation may be beneficial. Longitudinal data on 

neurohormonal changes in either right- or left ventricular failure is scarce. In chronic congestive heart 

failure progressive increases in plasma levels of noradrenaline and renin have been described [141], 

suggesting progressive neurohormonal imbalance. In addition, levels of noradrenaline, Ang II and 

aldosterone that are found in failing hearts have been shown to exert deleterious effects on the heart 

and vasculature, as reviewed elsewhere [142], suggesting dose dependent effects of neurohormones. 

Thus, there seems to be an optimal treatment window to target the neurohormonal system, somewhere 

between the acute activation and chronic activation at pathologic levels. It is therefore pivotal to obtain 

longitudinal data of neurohormonal activity, in combination with hemodynamic and RV functional data. 

Two important limitations have to be addressed that impede studies into neurohormonal changes over 

time. First, human tissue for investigation is hardly available and only from end-stage PAH. Therefore, it 



is less suitable to study longitudinal changes. Second, PAH is a rare disease and most clinical studies 

were able to include a few dozens of patients at best. This makes it difficult to reach sufficient statistical 

power, let alone to test subgroups of patients or different drug dosages and timing. The low number of 

patients is an important difference with studies into neurohormonal modulation in LV failure, where 

neurohormonal modulation strategies have been implemented despite similar lack of insight into 

neurohormonal changes over time. This affects clinical studies in two ways: first, in LV failure large 

cohorts of patients can be retrospectively analysed to identify factors that contribute to better or worse 

efficacy of neurohormonal modulation strategies. This is impossible in PAH. Second, small clinical studies 

with broad inclusion criteria did hardly show beneficial effects of neurohormonal modulation in PAH so 

far. Failure to enrol large numbers of patients requires diligent patient selection to prove smaller, yet 

clinically significant treatment effects.  

Both the availability of human tissue for investigation and the limited numbers of patients in clinical 

trials will not change. Longitudinal assessment of neurohormonal changes could tell when and where 

neurohormonal derailment becomes evident in the course of the disease, and thereby help to select 

patients for specific neurohormonal modulation strategies. In addition, it will tell whether 

neurohormonal modulation strategies are timely and targeted as they are intended. Therefore, we 

advocate for the development, validation and use of non- and minimally-invasive tools to monitor 

neurohormonal changes in PAH. In the following section, we will discuss possible tools, in different 

stages of development, that may help to improve our understanding of the neurohormonal changes in 

pulmonary hypertension. 

Strategies for longitudinal assessment of neurohormonal changes in PAH 

The gold standard to measure autonomic activity is to directly measure (para)sympathetic nerve 

trafficking by muscle microneurography, usually in a superficial skeletal muscle. Alternatively, 

determination of regional noradrenaline spillover allows for an organ-specific determination of SNS 

activation. Using microdialysis, local acetylcholine concentrations can be determined to measure PNS 

activity [143]. However, these measurements are all highly invasive and as such do not lend themselves 

for repeated testing. Instead, plasma (nor)adrenaline levels have been used to study SNS activation, but 

are not a reliable marker [29]. Alternatively, β-AR density in peripheral blood cells may serve as a marker 

of SNS (over-)activation [144]. Traditionally, determination of β-AR density relied on time consuming 

ligand binding assays. However, flow cytometric quantification of β-AR density was described recently 



[145] allowing for easy, high-throughput testing. Using this technique, it was shown that β-AR density is 

lower in blood cells in PAH patients compared to healthy controls [146] and is dose-dependently 

increased by the β-blocker carvedilol [81]. The changes in peripheral blood cells thus seem to mimic the 

changes seen in the heart. Further studies are needed to validate the use of flow cytometric 

quantification of β-AR expression as a marker of SNS in PAH patients.  

Measuring PNS activity via plasma acetylcholine concentrations is not feasible due to high rates of 

degradation and clearance in the synaptic cleft [143]. Instead, plasma acetylcholinesterase activity may 

potentially serve as a biomarker for decreased PNS activity [147] but requires validation in PAH patients.  

Non-invasive indirect measures for PNS and SNS activities have been drawn from ECG parameters. There 

is natural variation in the time between consecutive heart beats, called heart rate variability. When 

expressed in the frequency-domain, high-, low- and very-low frequency (HF, LF, VLF respectively) 

spectral power can be distinguished [148]. The LF/HF ratio is commonly used to determine sympatho-

vagal balance, assuming that LF power is generated by the SNS while HF power is generated by the PNS. 

However, this assumption does not hold true [148]. Not surprisingly therefore, most studies do not find 

correlations between the LF/HF ratio and direct measures of SNS and PNS activities [143]. This is 

especially true in PAH where an inverse relation between LF/HF ratio and muscle sympathetic nerve 

activity has been observed [28]. Furthermore, proper measurement and analysis of heart rate variability 

variables outside standardized laboratory settings is complicated [143]. Nevertheless, improved 

methods for derivation of heartbeat-derived autonomic measures have been described [149] and the 

emergence of wearable devices, such as smartwatches and activity trackers, allows for ambulatory 

recordings in realistic settings.  

Another non-invasive way to determine specifically PNS function is to measure heart rate recovery after 

maximal exercise. Heart rate recovery was shown to be reduced in PAH patients, and was related to 

chronotropic incompetence and clinical worsening [36–38, 150, 151]. Heart rate recovery could easily 

and routinely be assessed by cardiopulmonary exercise testing (CPET). Even easier, however, would be 

the use of heart rate recovery after the 6-minute walking test, which is performed more frequently in 

the clinic. It was shown in heart failure patients, that the predictive value of heart rate recovery to 

predict survival is independent of whether the test is performed at maximal or sub-maximal intensity 

[152]. In PAH patients, it was shown that heart rate recovery after a 6-minute walking test was even 

more predictive for clinical worsening than the 6MWD itself [38]. However, a direct comparison for the 



use of heart rate recovery from the 6-minute walking test or maximal CPET has neither been made in 

heart failure, nor in PAH patients. One study showed that PAH patients exhibit relatively higher aerobic 

capacity during the 6-minute walking test compared to CPET, despite lower heart rate, but did not 

compare the use of heart rate recovery as a marker for PNS activity [153]. It is worth investigating 

further whether these non-invasive measurements, potentially easily derived from ambulatory 

measurements or simple tests, could help to determine and monitor autonomic status in PAH patients.  

Neurohormonal changes can also be studied using imaging techniques. Positron emission tomography 

(PET) may become an additional powerful tool to study neurohormonal activation in a clinical setting. 

Many PET tracers have now become available to study different aspects of the ANS, including 

presynaptic neurotransmitter recycling, β-AR density, PNS terminal nerves and mAChR expression [154].  

PET tracers also exist to study RAAS activity, via ACE- and AT1R expression [60, 155]. As ACE tracers 

usually accumulate in organs with high ACE expression they are especially suitable to visualize ACE 

activity in the lungs [155]. Less tissue specific, but much quicker and cheaper, is the assessment of 

plasma levels and activity of the several RAAS components. As already mentioned, plasma levels of Ang I 

and II are increased in progressive but not in stable PAH [57]. In addition, plasma renin levels are an 

independent predictor of mortality in PAH [156]. 

Collectively, ongoing developments in heart rate variability algorithms and imaging techniques hold 

promise for the measurement and separation of neurohormonal activities. Together with plasma levels 

and CPET, they may provide tools for longitudinal assessment of the neurohormonal system and to 

study the interrelation between local neurohormonal systems in different organs.  

Conclusion 

It is now clear that neurohormonal imbalance is involved in the development and progression of PAH. 

However, the neurohormonal system is vital for cardiovascular homeostasis. Thus, for successful clinical 

implementation, the timing and specificity of neurohormonal interventions needs to be improved. 

Because the number of patients available for clinical trials limit the use of subgroups, longitudinal 

assessment of neurohormonal activity is required. Non-invasive techniques such as imaging techniques 

may help to identify which patients may benefit from neurohormonal modulation, and at which phase 

of disease progression. 
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Figure 1. Short- and long-term control of blood pressure via neurohormonal signalling. PNS = 
parasympathetic nervous system, SNS = sympathetic nervous system, CA = catecholamine, ANS = 

autonomic nervous system, nAChR = nicotinic acetylcholine receptor, mAChR = muscarinic acetylcholine 
receptor, AR = adrenergic receptor, Ang = angiotensin, ACE = angiotensin converting enzyme, RAAS = 
renin-angiotensin aldosterone system, AT1R = angiotensin II receptor type I, MR = mineralocorticoid 

receptor. 



Figure 2. Targets of pharmacological and surgical interventions on the autonomic nervous system. PA = 
pulmonary artery, PADN = pulmonary artery denervation, PNS = parasympathetic nervous system, SNS = 
sympathetic nervous system, CA = catecholamine, ANS = autonomic nervous system, ACh = acetylcholine, 

nAChR = nicotinic acetylcholine receptor, mAChR = muscarinic acetylcholine receptor, AR = adrenergic 
receptor, RDN = renal denervation. 



Figure 3. Targets of pharmacological and surgical interventions on the renin-angiotensin-aldosterone 
system. ACE = angiotensin converting enzyme, ACEi = angiotensin converting enzyme inhibitor, MR = 

mineralocorticoid receptor, AT1R = angiotensin II receptor type 1. 




