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Twitter: The current evidence of COVID-19 pathophysiology supports the idea of specific 

phenotypes, and clinical phenotyping may be valuable to guide therapy. 

Dear Editor,  

We read with interest the recent editorial by Bos et al on the perils of premature phenotyping 

in COVID-19[1]. The authors concluded that a normal compliance variant of ARDS does not exist, 

based on two small cohort studies reporting low respiratory system compliance in COVID-19 

patients[2, 3]. However, this assumption may be erroneous, as first, the admission and intubation 

thresholds are highly variable across units, resulting in marked heterogeneity. Secondly, several 

studies demonstrate that a high proportion of mechanically ventilated COVID-19 patients exhibit 

near-normal lung compliance [4–6].   

These observations, on first glance, seem incompatible with the current understanding of 

ARDS pathophysiology, as profound hypoxemia and normal lung compliance rarely co-exist in 

ARDS[7]. A heuristic approach would be to ignore these inconsistencies, attempting to ‘fit’ them into 

existing paradigms. However, initial intuitions may often be wrong, and cognitive biases must be 

overcome to find a solution to this conundrum. Using a deductive approach, firstly the diagnostic 

criteria need a relook, to exclude misclassification as a reason for the observed clinico-pathological 

discrepancy.  

How specific is the Berlin definition for underlying pathology? 

ARDS is characterized by diffuse alveolar damage (DAD), with increased pulmonary 

vascular permeability, loss of aerated lung tissue and low respiratory system compliance [8]. 

However, several unrelated pathologies such as eosinophilic pneumonia or diffuse alveolar 

haemorrhage may cause respiratory failure fulfilling the clinical criteria for ARDS[9]. Accordingly, 

these ARDS mimics [9] require specific treatment based on their underlying pathophysiology.  



Several other conditions presenting with hypoxemia and normal lung compliance may 

additionally be misclassified as ARDS; diffuse microvascular pulmonary thrombosis being one such 

pathology. In a case report [10], the clinical presentation was ‘ARDS-like’, with profound hypoxemia 

and bilateral infiltrates on radiology, but with normal ventilatory parameters on spirometry. Such 

disorders, where perfusion impairment is the dominant mechanism for hypoxemia, cannot be 

considered as ‘true’ ARDS[6]. This lack of diagnostic specificity of the Berlin definition could be due 

to the omission of objective indicators of lung volume loss, such as low respiratory system 

compliance, in its final version[8].  

Perfusion loss from in-situ thrombosis may be the dominant initial pathology in COVID-19 lung 

injury 

The early radiological changes of ground glassing and consolidation in COVID-19 were 

considered to be infective or inflammatory in aetiology[11]. However, recent paired parenchymal-

perfusion imaging studies demonstrate well-demarcated perfusion defects underlying these changes,  

implicating a thrombotic aetiology [4, 12–16]. Unmatched defects are also seen[4, 15]. Moreover, the 

parenchymal changes follow a peripheral ‘vascular distribution’ which are often wedge-shaped [11, 

16]. These findings suggest that the primary insult is vaso-occlusive, as infections or inflammation are 

rarely confined to vascular boundaries. Additionally, proximal vascular dilatation suggests distal 

vessel occlusion[13, 16] Interestingly, rapid radiological resolution and clinical improvement with 

inhaled thrombolytics have been described in a small case series[17].  

Autopsy findings of viral endotheliitis, further clarify the pathogenesis of thrombotic 

manifestations in COVID-19 [18, 19] with a prothrombotic cytokine response[20] that mirrors the 

response seen in extensive vascular injury[21]. Further, natural and iatrogenic sequelae could explain 

the observed phenotypic heterogeneity of COVID-19 [5, 7] (Figure 1).  Of note, DAD is not 

universally found on autopsies[22], suggesting this as a sequela and the terminal pathology than the 

index event. On the other hand, diffuse pulmonary microthrombosis is consistently visible on 

autopsies. [18, 22, 23].  



Perfusion loss is the primary mechanism of hypoxemia in early COVID-19 respiratory failure  

The early COVID-19 respiratory failure phenotype, with hypoxemia in the presence of 

preserved lung mechanics[4–6] suggests perfusion impairments as the main pathophysiology. 

Although the ground glass changes signify ventilatory impairments, owing to perfusion loss, the 

affected alveoli act as dead spaces rather than shunts. In this situation, hypoxemia occurs primarily 

due to flow redistribution and overperfusion involving a significantly reduced vascular bed resulting 

in ventilation/perfusion mismatch [24, 25]. This typically requires loss of 40 to 50 percent of 

pulmonary vascular bed before clinically significant hypoxemia could occur, indicating a large 

reserve. Reduced mixed venous saturation could further exacerbate hypoxemia. Also, during 

extensive obstruction, available time for red cell oxygenation within the alveolar capillaries may be 

reduced, due to insufficient microcirculatory recruitment and increased flow velocities. Diffusion 

limitation may result, further aggravating hypoxemia [24, 25]. These insights are key to understanding 

the clinical phenotypes of COVID-19 lung injury.   

Clinical phenotype of perfusion loss differs markedly from that of primary alveolar disease 

While hypoxemia can result either from ventilatory impairments or from disorders of alveolar 

perfusion, there are stark differences in their clinical features. In alveolar diseases such as pneumonia, 

shunt perfusion results in early hypoxemia, with clinically proportionate dyspnea due to abnormal 

lung compliance. However, in progressive perfusion loss, hypoxemia manifests late due to the large 

lung perfusion reserve, initial ventilatory compensation that mitigates ventilation/perfusion mismatch 

from overperfusion, and adequate initial right ventricular compensation to acute pressure overload. 

Further, unlike ventilatory disorders, the initial hypoxemia in this situation may be ‘silent’ owing to 

minimal parenchymal injury and normal lung compliance, at this stage. However, once dyspnea sets 

in, there would be rapid clinical progression whereby minor changes in mixed venous saturations or 

transit time could result in major changes in systemic oxygen saturation. Correspondingly, as the 

perfusion reserve continues to decline, physiological stress and exertion would be poorly tolerated. 



Eventually, right heart compromise would result in cardio-respiratory collapse and rapidly 

progressing multi-organ failure.  

Summary and conclusions 

Although COVID-19 respiratory failure may fulfil the Berlin criteria, it would be 

inappropriate to describe the early lung pathology of progressive pulmonary in-situ thrombosis as 

ARDS. Evidence-based therapies for ARDS may not be applicable at this stage of illness as the lung 

mechanics and hemodynamics mirror that of a large pulmonary embolism. Moreover, a protocol-

based ‘one size fits all’ approach could potentially be catastrophic, as employing a high positive end-

expiratory pressure strategy in a normally compliant lung would result in significant barotrauma and 

deterioration of right heart dysfunction. As lung pathology appears grossly different at various stages 

of illness, a tailored phenotypic approach to management, guided by pathophysiology, would be more 

appropriate than a syndromic approach.  
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Figure 1: Progression of COVID-19 related lung injury and respiratory failure
Caption : Viremia with viral endotheliitis fuels an inflammatory response appropriate for vascular injury, resulting in a prothrombotic state. Interleukin-6 upregulates fibrinogen 
gene expression. Pulmonary in-situ thrombosis is facilitated by Virchow’s triad. Early disease is subclinical due to lung perfusion reserve. Progression may be aborted in young 
individuals with rapid endothelial turnover and robust intrinsic thrombolysis. Progressive in-situ microvascular thrombosis eventually leads to hypoxemia when reserves are 
exhausted. Initial hypoxemia may be silent (no dyspnea) as lung compliance is normal. Oxidative damage from iron and heme in the presence of unextracted alveolar oxygen after 
perfusion loss, may be a major determinant of parenchymal injury. Additionally, self-induced lung injury, ventilator lung injury and secondary infections result in diffuse alveolar 
damage. D-dimer, Lactate dehydrogenase and ferritin are elevated sequentially. Pulmonary in-situ thrombosis as the initial insult and major determinant of COVID-19 related lung 
injury explains the observed clinical phenotypes and disease spectrum. Early risk stratification and anticoagulation may avert thrombotic storm.

Abbreviations: IL-6 : Interleukin-6, HRCT: high resolution computed tomography; DECT: Dual energy perfusion computed tomography; TTE: Transthoracic echocardiogram; ARDS: 
acute respiratory distress syndrome; RV: right ventricle ; LDH: lactate dehydrogenase


