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Body 

The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) poses an 

unprecedented global healthcare challenge. Severe novel Coronavirus disease (COVID-

19) pneumonia frequently causes hypoxemic respiratory failure, manifesting in the acute 

respiratory distress syndrome (ARDS). Recently, authors have proposed distinct clinical 

phenotypes of COVID-19 pneumonia in several influential, high-profile essays[1-3]. For 

example, in a recent Perspective in this journal [3], authors speculated that COVID-19 

has five phenotypic presentations: three phenotypes based on severity of hypoxemia 

and need for supportive care (no hypoxemia, mild hypoxemia, and moderate 

hypoxemia), and two phenotypes of severely hypoxemic patients based on additional 

physiologic and clinical features. Aligned with other recent efforts to phenotype COVID 

patients [1, 2], the authors subtyped patients into a supposedly prevalent phenotype with 

normal compliance, low lung weight, and predominant perfusion abnormalities (“L”-

phenotype), and a less-prevalent phenotype with more typical features of ARDS such as 

profound consolidation and low compliance (“H”-phenotype). The authors advocate for 

distinct management strategies for these purported phenotypes, include permitting 

increased tidal volumes and restricted positive end-expiratory pressure in the “L” 

phenotype patients. 

 

The urge to phenotype patients with COVID-19 pneumonia is understandable and 

relatable. Outside of critical care medicine, the past decade has been characterized by 

major advances in precision medicine, promising tailored therapies based on individual 

patients’ physiological and biological characteristics. The emergence of a novel disease 

without effective treatment incentivizes heuristic-based identification of subsets of 

patients who may respond similarly to a particular intervention. Yet this temptation to 

define phenotypes based on early clinical experience should be resisted. By prematurely 



  

phenotyping patients, we risk causing considerable harm and generating more static 

than signal. In this Perspective, we provide four arguments against premature 

phenotyping, discuss the features of responsible phenotyping, and recommend a path 

forward in advancing our understanding of the true heterogeneity underlying patients 

with COVID-19. 

 

The first - and simplest - argument against premature phenotyping is that our initial 

intuitions are often wrong. As a vivid example, a prominent essay [2] recently asserted 

without qualification that “soon after onset of respiratory distress from COVID-19, 

patients initially retain relatively good compliance despite very poor oxygenation.” This 

claim, while not supported by references cited, formed the basis for extended 

discussions of the pathophysiology and tailored management of patients with this 

purported “L phenotype” of COVID-19 (discussed above). Yet subsequent cohort studies 

[4, 5] have demonstrated that lung compliance in COVID-19 patients is in fact quite low, 

entirely congruent with non-COVID-19 ARDS cohorts [6-8], and normally distributed 

along a continuum rather than existing as discrete phenotypes. Further, purported 

radiographic and physiologic features of these phenotypes (e.g. dense airspace filling on 

CT scans paired with decreased compliance in the “H” phenotype) have subsequently 

been shown to be entirely uncorrelated with each other[9]. Identification of clinical 

phenotypes - and speculation regarding their underlying biology - should be deferred 

until after careful, objective inspection of adequately sized cohorts. Human intuitions are 

simply too fallible – and clinical experience too contingent and heterogenous – to reliably 

identify phenotypes without sufficient data. 

 

A related argument against premature phenotyping is that it exacerbates our inherent 

susceptibility to cognitive biases. Once we are informed of clinical categories (however 



  

false they may be), our brains treat them as real and begin selectively filtering our 

observations. As an example, following dissemination of the since-disproven claim that 

COVID-19 patients have preserved lung compliance, the myth was reinforced by 

common cognitive traps. The Baader-Meinhof phenomenon (also called the “frequency 

illusion”) ensured that once clinicians were prompted to notice COVID-19 patients with 

near-normal lung compliance, they began noticing them everywhere (when in fact their 

frequency was no higher than in non-COVID ARDS) [6-8]. Similarly, clinicians could 

dismiss low-compliance COVID-19 cases by unintentionally committing the “no true 

Scotsman” fallacy: by dismissing away purported exceptions on an ad hoc basis, 

claiming that low-compliance COVID-19 cases must be atypical, as “real COVID-19” has 

near-normal respiratory mechanics. If we do not insist on data-driven phenotypes, our 

cognitive biases guarantee that we’ll end up with phenotype-driven data. 

 

A third argument against premature phenotyping is that it distracts us from sound, 

evidence-based practices. Clinical outcomes in ARDS have improved markedly in recent 

decades [10], driven not by blockbuster drug discoveries, but rather by incremental 

improvements in the delivery of supportive care. These slow but cumulative advances 

have been built on hard-won lessons from rigorous randomized controlled trials. By their 

design, these trials have “lumped” heterogenous ARDS patients together under a 

syndrome-based definition. Despite this, these trials have provided the field with an 

extensive literature informing evidence-supported therapies. By presumptuously splitting 

COVID-19 patients into false phenotypes – and by recommending “tailored 

management” based on untested physiologic intuitions – authors have advocated for 

abandonment of what remains our most effective tool against COVID-19: meticulous, 

evidence-driven critical care delivery. 

 



  

A final argument against premature phenotyping is that it worsens the already-

unfavorable ratio of signal and noise in the ICU. At the bedside, critical care physicians 

must filter, process, and interpret a tremendous stream of data generated by every 

patient: physiological, biochemical, radiographic, etc.. Clinicians must synthesize these 

findings with the published literature, which is similarly daunting: more than 10,000 

PubMed-indexed manuscripts on COVID-19 were published in the first four months of 

2020. This deluge of information threatens the most overlooked and precious resources 

in the ICU: clinicians’ attention, time, and bandwidth. By needlessly clouding the clinical 

picture, false phenotypes consume time on rounds and distract us from more immediate 

concerns. As a field, our research prioritization has been similarly clouded: investigators’ 

time and resources are squandered trying to explain the biology underlying clinical 

phenomena that, upon inspection of patient data, simply do not exist.  

 

So what does responsible phenotyping look like? As with any scientific experiment, there 

needs to be an explicit purpose as to why we seek phenotypes. In medical science, this 

mandate ultimately converges on improving patient outcomes (although gleaming novel 

biological and clinical insights is an equally important motivating factor as they may be 

critical to achieving this goal). To that end, our field has recent examples of empirically-

derived phenotypes that have been successfully used to identify treatment-responsive 

and/or biologically distinct subgroups. In asthma for example, using a data-driven 

unbiased clustering approach, two distinct phenotypes of asthma were identified based 

on interleukin-13 inducible gene-expression. [11] The phenotype signature specific to 

high gene-expression was later shown, in a randomised-controlled trial (RCT), to be 

responsive to a monoclonal antibody that specifically inhibits interleukin-13 activity [12]. 

In ARDS, again using unbiased clustering methods, two phenotypes have been 

identified with distinct biological and clinical characteristics, consistent across five RCTs, 



  

and with markedly different clinical outcomes [13]. Importantly, in three of these RCTs, 

divergent treatment responses were observed to randomised interventions. Further, 

simpler models have been recently described that offer the potential for the clinical 

application of these phenotypes.[14]  

 

These data-driven approaches to clustering are not impervious to errors and misuse. 

These are powerful tools and - independent of the validity of the research question or 

study design - clusters will inevitably emerge. It is, therefore, incumbent on the 

investigators to demonstrate the validity and utility of the identified phenotypes. In the 

absence of ground truth, the conditions that optimally surrogate for validity are 1) 

robustness, 2) consistency and 3) reproducibility in data external from the population 

from which they were derived. In almost all algorithms, the phenotypes identified are 

highly subject to the predictor variables. Taking critically-ill COVID-19 patients as a 

specific example, it is imperative to acknowledge that we are studying complex biological 

systems in which inter-connected pathways share non-linear associations. Seeking 

univariate solutions in such populations, therefore, seems unlikely to yield meaningful 

subgroups other than for prognostication [15]. Further, univariate solutions, particularly 

when sought prematurely, can be more susceptible to the central limit theorem. This 

mathematical theorem states that given a sufficiently large sample size, the distribution 

of means of a variable will converge to a normal distribution, suggesting that continuous 

variables that appear bimodal with limited data, will become normally distributed over 

time. Thus both in terms of biologic plausibility and mathematical principles, we are 

unlikely to derive useful phenotypes if we anchor on simplistic, one-dimensional features 

of disease. 

 



  

To avoid these pitfalls, predictor variables in multivariate models should be selected with 

the research question in mind and be highly informative in terms of effectively splitting 

the population. Moreover, the use of these complex data-science algorithms, intended to 

overcome cognitive bias, will be limited to theorising unless they are accompanied by a 

measurement system that can identify the phenotypes rapidly and consistently. 

Regardless of the motivation or approach used, phenotyping in critical care is typically a 

data-hungry exercise, and in studies currently purporting COVID-19 phenotypes, the 

requisite quantity and quality of data are regrettably lacking. Ultimately, however, the 

true success of phenotypes in diseases will be judged by the identification of actionable 

interventions. In critical care, although many examples of heterogeneous treatment 

effects in phenotypes have been described in secondary analyses, their efficacy will 

need testing via randomized controlled trials (RCTs). The mere identification of disease 

phenotypes – whether derived prematurely or responsibly – should not itself change 

clinical practice, but instead inform prospective, “phenotype-aware” trials. 

 

In summary, the COVID-19 pandemic has posed novel challenges for clinicians and 

researchers. While we share the ultimate goal of tailoring therapies to the specific 

pathophysiology of each patient’s condition, it is imperative that we first objectively 

collect, collate, and interpret sufficient data to “type” and understand the disease 

comprehensively. By prematurely phenotyping patients with COVID-19, we expose 

ourselves and our patients to considerable and preventable risk.

1 



  

Table 

 

 

Premature phenotyping Responsible phenotyping 

Timing 
Identification of phenotypes precede systematic 
collection of data 

Systematic collection of data precedes identification 
of phenotypes 

Derivation 
"Top-down": theory informs data collection and 

interpretation 

"Bottom-up": unbiased data collection informs 

subsequent theory 

Size of 
derivation 

cohort 
Derived from limited, single-center experiences Derived from large, multi-center cohorts 

Validation 
Contingent on the specific population and biases of 

the observer 

Robust across multiple cohorts, independent of 

observer 

Internal 
coherence 

Features are inconsistently associated with each 
other across patients (e.g. physiology and imaging) 

Phenotype-defining features, by design, are 
internally consistent in their relationship to each 
other 

Relation to 
underlying 

biology 

Reflects a simplistic or incorrect model of 

underlying pathophysiology 

Reflects meaningful differences in underlying 

pathophysiology 

Complexity 
Anchored on one or two clinically apparent 
variables 

Incorporates high-dimensional data with non-linear 
interactions between variables 

Discreteness, 
continuity 

Purported phenotypes are merely extremes of a 

normally distributed continuum 

Phenotypes represent distinct “clusters,” 
meaningfully divergent from each other and their 

attributes cannot be explained by a single variable 

Impact on 
practice 

Immediately used to justify changes in practice 
Prospectively tested in phenotype-informed clinical 
trials 



  

Figure
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