
 

 
 
 
 
 

Early View 
 
 
 

Review 
 
 
 

Artificial Intelligence techniques in Asthma:A 

systematic review and critical appraisal of the 

existing literature 
 
 

Konstantinos P. Exarchos, Maria Beltsiou, Chainti-Antonella Votti, Konstantinos Kostikas 

 
 
 

Please cite this article as: Exarchos KP, Beltsiou M, Votti C-A, et al. Artificial Intelligence 

techniques in Asthma:A systematic review and critical appraisal of the existing literature. Eur 

Respir J 2020; in press (https://doi.org/10.1183/13993003.00521-2020). 

 
 
 
 
 
 

This manuscript has recently been accepted for publication in the European Respiratory Journal. It is 

published here in its accepted form prior to copyediting and typesetting by our production team. After 

these production processes are complete and the authors have approved the resulting proofs, the article 

will move to the latest issue of the ERJ online. 

 
 
 

Copyright ©ERS 2020 



  

Artificial Intelligence techniques in Asthma 
A systematic review and critical appraisal of the existing literature 

 

Konstantinos P. Exarchos, Maria Beltsiou, Chainti-Antonella Votti, 

Konstantinos Kostikas 

Respiratory Medicine Department, School of Medicine, University of 

Ioannina, Ioannina, Greece 

 

Abstract 

Background: Artificial Intelligence (AI) when coupled with large amounts of well characterized 

data can yield models that are expected to facilitate clinical practice and contribute to the delivery 

of better care, especially in chronic diseases such as asthma. 

Objective: The purpose of this paper is to review the utilization of AI techniques in all aspects of 

asthma research, i.e. from asthma screening and diagnosis, to patient classification and the 

overall asthma management and treatment, in order to identify trends, draw conclusions and 

discover potential gaps in the literature. 

Methods: We conducted a systematic review of the literature using PubMed and DBLP from 1988 

up to 2019, yielding 425 articles; after removing duplicate and irrelevant articles, 98 were further 

selected for detailed review. 

Results: The resulting articles were organized in four categories, and subsequently compared 

based on a set of qualitative and quantitative factors. Overall, we observed an increasing adoption 

of AI techniques for asthma research, especially within the last decade. 

Conclusions: AI is a scientific field that is in the spotlight, especially the last decade. In asthma 

there are already numerous studies, however, there are certain unmet needs that need to be 

further elucidated.  

 

Introduction 

Asthma is a common disease affecting an estimated 300 million individuals worldwide; in 

Europe, about 30 million children and adults less than 45 years old have asthma [1]. It is a major 

global health problem that imposes a substantial burden on patients, their families and the 

community. Asthma poses certain challenges that remain largely unmet despite the effort and the 

research in the respective fields, specifically: (i) There is no unanimous and widely applicable 
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diagnostic test for asthma, leading to significant underdiagnosis and overdiagnosis [2].  (ii) The 

pathogenesis of asthma is based on the process of gene-environment interaction, yet its 

specifics remain elusive; this field is currently in the spotlight in view of the new biologic treatments 

for asthma. (iii) Asthma phenotypes remain a controversial subject, due to the discordance in 

symptomatology, spirometry and response to treatment of individual patients. (iv) Asthma 

exacerbations play a crucial role in the course and management of the disease, incurring 

significant increase in direct and indirect costs [3]. 

As in other parts of medicine, there is an increasing interest in Αrtificial Ιntelligence (AI) 

methodologies to elucidate the aforementioned unmet needs of asthma. AI refers to the software 

that is able to make a machine intelligent such that it performs human tasks, i.e. process, learn 

and respond to information gained from data. The term is often used in combination with the term 

“Machine Learning (ML)” that refers to the process followed in order to make a machine learn how 

to perform a specific task, and in a similar manner as a human to perform better as the experience 

increases. Both AI and ML are data driven processes whereby the computer or the algorithm is 

presented with input data and the desired output and “learns” the inherent relations that lead from 

the input to the output. Similarly with AI and ML, Data Mining (DM) involves the computational 

and programming steps in order to “mine” large amounts of complex data for meaningful patterns 

and consequently knowledge. Figure 1 depicts the steps of the DM process. There are two basic 

phases within the DM process: the training and the predicting phase. During the training phase, 

the ML algorithm is fed with input data based on which a model is trained that captures the 

relations and patterns within the data. During the training phase the raw input data are subject to 

a series of preprocessing steps aiming to increase the quality of the data, identify the set of more 

informative features and omit potentially redundant or irrelevant information. Inherent to the 

training phase is the process of model evaluation where the parameters of the trained model are 

further fine-tuned in order to procure a well-trained model. In the predicting phase new instances 

of unknown data are fed as input to the previously trained model and the respective labels are 

predicted.  

 

 

AI/ML in Medicine 

Even though AI and ML exist as Computer Science domains for several years, they are 

two terms that have become radically and widely popular the last few years in a broad and non-

specialized audience. This can be attributed to several reasons: their utilization in daily digital 

tasks especially pertaining to smartphones (e.g. mobile assistant, fingerprint scanner, 

personalized playlists, etc), the availability of AI and ML models to a wider audience with more 

user-friendly software, the need to discover new knowledge and analyze more effectively large 

and complex sources of data originating from various domains.  

As described previously AI and ML models are largely dependent on the available data, 

and the healthcare domain is producing vast amounts of data that need to be mined for underlying 

knowledge. Such large and complex datasets incorporating various sources of data, e.g. clinical, 

imaging, genomic, proteomic, etc can be effectively analyzed with the available AI/ML techniques. 

In the supplement we provide a brief primer on AI/ML techniques in order to further facilitate 

reading of the manuscript. Imaging modalities such as CT and MRI scans that are used in clinical 
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practice can be effectively analyzed by ML algorithms [4, 5][6][7]. Genomic data is another source 

of enormous and complex information that is being used increasingly in the healthcare domain. 

Most of this data, e.g. SNPs, gene expression, etc produce large amounts of data that are 

impossible to comprehend; yet the systematic analysis of such data with ML techniques has 

brought about clinically meaningful knowledge for the benefit of patients [8][9]. The relatively 

recent boom of high quality wearable sensors is also producing huge amounts of time-series data 

that need to be mined efficiently in order to provide clinically relevant information [10, 11].  

The distribution of data types analyzed with AI algorithms in the literature has been 

explored in a recent review article [12] suggesting that diagnostic imaging is the most widely 

employed data source in healthcare oriented applications of AI, while genomic data and 

electrodiagnosis constitute emerging data types that are equally appealing for analysis with AI. 

The authors further explored the leading diseases where AI algorithms have been employed in 

the literature, with cancer research being the top field where AI applications have been developed, 

followed by diseases of the nervous system as well as cardiovascular diseases [13]. In this 

analysis, respiratory diseases are way below with only mediocre adoption of AI techniques. 

In the present manuscript we have systematically searched the literature for articles that 

employ AI or ML techniques in asthma, in an attempt to map the existing literature and identify 

gaps and areas of interest for future research. First, in the section “Literature review” we describe 

the methodological steps in order to acquire all relevant literature. Next, in the section “Machine 

Learning and asthma” we present our findings from the literature review, and the articles are 

organized in four major categories to facilitate the critical appraisal of the existing evidence.   

Literature review 

We systematically searched the literature until 18 May 2019 for articles using AI or ML 

techniques in asthma research. First, we searched DBLP, which is a computer science 

bibliography website using the term “asthma”. We maintained only journal articles posing no 

restriction regarding the year of publication. Next, we searched PubMed using the following terms: 

[“Artificial intelligence” AND asthma], [“Machine learning” AND asthma], [“Data mining” AND 

asthma], [“Decision Trees” AND asthma], [“Neural Network” AND asthma], [“Random Forests” 

AND asthma], [“Support Vector Machine” AND asthma]. The articles from both repositories were 

then merged and duplicates were removed. All articles were subsequently examined by the 

authors in order to exclude irrelevant ones; we also omitted articles not written in English. The 

aforementioned steps are shown in Figure 2, resulting eventually in 98 articles. Each of the 98 

articles was then assigned to at least one out of the following four categories based on its content 

and purpose: (1) Asthma screening and diagnosis, (2) Patient classification, (3) Asthma 

management and monitoring, and (4) Asthma treatment. 

 

 

In Figure 3 we present the distribution of studies using AI/ML techniques for asthma 

research, over the course of approximately 30 years, from 1988 up to 2018. As expected during 

the first and second decade there is minimal use of such techniques for asthma, while from 2010 

we observe a considerable and progressive increase.  
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Artificial Intelligence and asthma 

In the sections that follow we present the articles retrieved in an organized manner, divided 

into four categories based on their content and purpose. Specifically, we have split the articles 

into the following four major contextual categories:  

1. Asthma screening and diagnosis 

2. Patient classification 

3. Asthma management and monitoring 

4. Asthma treatment 

The articles from each category are summarized in a separate table where the respective 

studies can be compared by a set of qualitative and quantitative criteria or characteristics. These 

tables (Table S3, Table S4 and Table S5) are available in the online supplement of the article. In 

the sections that follow we provide an overview of the articles comprising each category. 

Moreover, we have selected some of the most important studies from each category and provide 

more information. Our aim is to capture the most representative works, focusing on the ones that 

have been published within the last 5 years, as this is an emerging and developing field with rapid 

evolution.  

In order to facilitate reading of the following sections, we hereby mention some terms that 

are commonly used in AI/ML. Specifically, ANN (Artificial Neural Network), RF (Random Forest), 

DT (Decision Tree), SVM (Support Vector Machine), LR (Logistic Regression), BN (Bayes 

Network), NB (Naive Bayes), k-NN (k Nearest Neighbors), SOM (Self Organizing Maps) and HMM 

(Hidden Markov Model) constitute classification algorithms; Se (Sensitivity), Sp (Specificity), Acc 

(Accuracy), ROC (Receiver Operating Characteristic) and AUC (Area Under ROC curve) are 

performance metrics used for the assessment of AI/ML algorithms. CV (Cross Validation) or its 

subtype called LOOCV (Leave One Out Cross Validation) are techniques used for AI/ML model 

validation. These terms are summarized in Table 1 below. In the supplementary material we 

provide an exhaustive list of the abbreviations used throughout the manuscript, as well as a primer 

on AI/ML techniques. 

  

ANN Artificial Neural Network SOM Self Organizing Map 

RF Random Forest HMM Hidden Markov Model 

DT Decision Tree Se Sensitivity 

SVM Support Vector Machine Sp Specificity 

LR Logistic Regression Acc Accuracy 

BN Bayesian Network ROC Receiver Operating Curve 

NB Naive Bayes AUC Area Under ROC Curve 

k-NN k Nearest Neighbors LOOCV Leave One Out Cross Validation 

 

Table 1: List of the most commonly used abbreviations in the manuscript.  



  

 

1. Asthma screening and diagnosis 

This category is the most populated one and contains 48 articles aiming for the screening 

or diagnosis of asthma. These studies are summarized in Table S3 of the supplementary material. 

We observe that in terms of ML algorithms the majority of the studies (20 studies) employ ANNs 

or variations of ANNs, especially the earlier ones. SVMs are used in 8 studies, DTs or RFs are 

utilized in 11 studies, LR is used in 3 studies and k-NN in 2 studies. The remaining studies employ 

other ML algorithms such as HMM, fuzzy logic or NB. Overall, we observe that a limited number 

of ML algorithms are employed in the studies contained in the category ‘Asthma screening and 

diagnosis’, i.e. ANNs, SVMs, RF and DT. It should be noted that these ML algorithms are 

described in the accompanying Supplement, as well as some information regarding the evaluation 

of the reported results. Based on column ‘Sample size’ most of the studies employ tens or 

hundreds of patients and there are only a few studies that have enrolled larger patient cohorts 

(only four studies have enrolled more that 1000 patients).  

As expected for the purpose of asthma diagnosis and screening, primarily clinical data 

have been employed; specifically, this data contains information from the medical history, pattern 

of symptoms, pulmonary function tests, lung sounds from auscultation etc. Clinical data are 

employed in 37 studies, out of which 12 explore features pertaining to lung or breath sounds. 

Similarly, there are studies in this category that exploit questionnaires as well as other clinical and 

epidemiological features in order to screen certain populations for asthma or identify patients that 

have a high probability of asthma. Some of the most recently published works employ genetic 

data (9 studies) in search of predisposing genetic traits for asthma. As for the evaluation methods, 

23 studies used variations of cross validation techniques, of which 7 used LOOCV, 9 studies 

performed a train-test split and 9 studies used an independent test set. We have selected a few 

representative studies published within the last 5 years from the category ‘Asthma screening and 

diagnosis’ that we present briefly hereafter.  

Oletic and Bilas [18] used a wearable sensor that recorded signals of respiratory sounds 

which were subsequently transferred to a smartphone. After certain signal manipulations, an 

HMM was utilized for respiratory sound classification, aiming primarily to detect wheezing. The 

resulting model yielded Acc=94.91%, Se=89.34% and Sp=96.28%. This study shows an 

emerging trend of smartphone employment in computationally intensive tasks such as the 

induction of ML algorithms in asthma.  

Amaral and colleagues [19] explored the contribution of Forced Oscillation Technique 

(FOT) for the detection of airway obstruction, focusing specifically on patients with asthma. FOT 

is an oscillations-based technique that captures respiratory mechanics that can assess bronchial 

hyperresponsiveness in adults and children, and has been shown to be as sensitive as spirometry 

in detecting impairments to lung function due to smoking or exposure to occupational hazards 

[62]. It should be noted that FOT is a non-invasive technique that also has the advantage over 

conventional lung function tests that it does not require the performance of respiratory 

manoeuvres [62]. However, FOT should be used cautiously and as a complement to spirometry, 

since its interpretation and reference values remain controversial [63]. In their work Amaral et al 

[19] employed a series of ML algorithms using the FOT parameters as input in order to detect 
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airway obstruction. The best performance was achieved by a k-NN classifier that reached 

AUC=0.91.  

In a methodologically different approach Kaur et al [26] utilized a Natural Language 

Processing (NLP) approach in order to mine health records and identify asthma diagnosis. The 

resulting algorithm was validated in a cohort of 427 patients and predicted asthma status with 

Se=86%, Sp=98%, PPV=88%, NPV=98%. Several approaches exist in the literature aiming to 

screen for asthma based on either the health record or the patient’s prescriptions.  

Singh et al [14] measure carbon dioxide waveforms from capnography in order to 

discriminate asthmatic and non-asthmatic patients. They extracted a series of features from the 

capnography signals from 30 non-asthmatic and 43 asthmatic patients; after applying feature 

selection, the remaining features were fed to a SVM which performed very well for the 

discrimination of the two classes (Acc=94.52%, Se=97.67%, Sp=90%). Capnography refers to 

the non-invasive measurement of the partial pressure of carbon dioxide (CO2) in exhaled breath 

expressed as the CO2 concentration over time. Changes in the CO2 waveform (capnogram) or 

the end tidal CO2 have been employed for disease diagnosis [64], assessment of disease severity 

as well as treatment response [65]. Based on the aforementioned results, the authors suggest 

that capnography may be a promising technique for diagnosing asthma, either alone or coupled 

with other features. The small dataset used in this study does not allow for proper evaluation of 

the proposed modality and further analyses in larger datasets are mandatory. 

Another interesting work was recently published by Spathis and Vlamos [30] who 

developed a Decision Support System for the diagnosis of asthma and COPD. They used as input 

a set of clinical characteristics (e.g. age, sex, sputum production, chest pain, smoking, etc) as 

well as spirometry in order to detect asthma and COPD; the best performing algorithm in both 

cases was a Random forest classifier that resulted in Precision of 97.7% and 80.3% for the 

diagnosis of COPD and asthma, respectively. It should be noted that especially for COPD the 

results are quite encouraging given the fact that the employed input features are readily available 

during a regular pulmonology visit, yet the small number of patients does not allow for firm 

conclusions. 

For a similar purpose as the previous work, Topalovic et al [41] employed spirometry and 

features from the patients’ clinical profile in order to classify patients in 10 different conditions or 

states (healthy, asthma, COPD, other obstructive, hyperventilation, interstitial lung disease, 

neuromuscular disorder, pulmonary vascular disorders, upper airway obstruction). Compared to 

the evaluation by pulmonologists that resulted in correct diagnosis in approximately 38% of the 

subjects, the proposed ML algorithm that utilized a Decision Tree classifier achieved Acc=68%. 

The proposed algorithm performed better in the identification of spirometric patterns (obstructive, 

restrictive, mixed or normal) and in the most common conditions such as COPD and asthma. 

Pandey et al [47] acquired nasal brushing samples from 190 patients with asthma and 

healthy controls and extracted RNA; the expression of 90 genes was recorded and fed to a 

Logistic Regression classifier which achieved an impressive AUC=0.994. Studies employing 

genomic data have recently emerged in the study of asthma but are gradually being used more 

widely, and can contribute to the pathogenesis of asthma at the molecular level. In a similar 

manner, Fang et al [50] analyzed gene expression data and came down to 62 genes that could 

serve as asthma biomarkers. Nasal brushing samples or gene expression data can often be 

acquired in a minimally invasive manner, nevertheless RNA extraction remains a costly technique. 

https://paperpile.com/c/HsOsXW/cMnNA
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Finally, the metabolome is another source of biomarkers that has recently been employed 

in a multitude of fields in medical research. Sinha et al [51] explored the Exhaled Breath 

Condensate (EBC) from 89 asthmatic subjects and 20 healthy controls and built a Random Forest 

classifier in order to differentiate between the two groups. The resulting classifier yielded Se=80% 

and Sp=75%. Same as before, EBC may be another promising field in the search for non-invasive 

asthma biomarkers, however this method needs further standardization prior to wider clinical 

application [66].  

 

2. Patient classification 

This category contains 31 studies that aim to classify patients into subgroups based on a 

series of characteristics. These subgroups refer to asthma severity, asthma 

phenotypes/endotypes or other classifications of patients.  Table S4 of the supplementary 

material shows a qualitative and quantitative comparison of these studies. In this category 9 

studies employed DTs or RFs, 7 studies used ANNs, 3 studies utilized SVMs, 4 studies used LR 

and the remaining ones employed other ML techniques such as k-NN, BN, NB, etc.  

The sample size, as expected, varies significantly among the studies. In terms of input 

data, 26 studies employ clinical data as input, whereas genomic data either alone or in 

combination with clinical information are used in 6 studies, especially in the most recent 

publications. Variations of the cross validation technique are primarily used (17 studies) for 

evaluating the proposed classifications schemes, out of which 10 studies use 10-fold CV and 3 

studies employ the LOOCV method; 5 studies performed evaluation with an independent test set 

and 3 studies used the training-testing method. 

It is noteworthy that this category ‘Patient classification’ is not the most populated one; 

however, it is the category that has significant overlap with the other categories. As noted before, 

every study based on its content could belong in more than one of the available categories. 

Studies in the category ‘Patient classification’ often belong to other categories as well. 

Specifically, the task of classifying patients into certain groups is often an important step in the 

studies even if there are other aims in the respective study.  

Identifying subcategories within the broad category of ‘Patient classification’ is not easy. 

Roughly the studies in this category could be assigned into the following subcategories: i) asthma 

severity and ii) asthma phenotypes. Studies in the former subcategory feature a variety of inputs 

such as breath/respiratory sounds, asthma control and hospitalization frequency. Other studies 

explore the exacerbation severity and classify the patients according to the course of 

exacerbations or a set of clinical outcomes. Below we present a couple of the most recent and 

representative studies from the ‘asthma severity’ subcategory. 

Van Vilet et al [68] explored the relationship between asthma control and exhaled 

biomarkers in a pediatric population. Specifically the authors explored the discriminatory ability of 

fractional nitric oxide (FeNO), Volatile Organic Compounds (VOCs) and cytokines/chemokines 

towards identifying children with persistently controlled and uncontrolled asthma. A cohort of 96 

asthmatic children was followed up for a year and different features sets were fed as input to a 

Random Forest aiming to discriminate between the two patient groups. Using solely a set of VOCs 
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resulted in AUC=0.86, whereas the addition of the other two inputs did not lead to a more accurate 

classification.  

Nabi and colleagues [69] analyzed wheeze sounds from 55 asthmatic patients in order to 

classify them into three severity classes i.e. mild, moderate and severe. An ensemble classifier 

yielded the highest PPV of 95%, pinpointing that tracheal related wheeze sounds were most 

sensitive and specific predictors of asthma severity levels. 

Next, we focus on the second subcategory of the ‘Patient classification’ category, i.e. 

‘asthma phenotypes’. The studies in this subcategory either explore different patient classes 

based on a set of input features either genomic and/or clinical; therefore the patients are clustered 

based on their inherent characteristics. In the same subcategory there are studies that classify 

the employed patients based on their response to treatment. In the next few paragraphs we 

present some of the most important and recent studies from this subcategory. 

Krautenbacher et al [72] combined a wide range of heterogeneous data, namely 

questionnaire, diagnostic, genotype, microarray, RT-qPCR, flow cytometry, and cytokine data in 

order to differentiate between three patient phenotypes. The phenotypes under consideration are 

healthy, mild-to-moderate allergic and nonallergic. The study focused on a pediatric population of 

260 children. The most important variables for classifying childhood asthma phenotypes 

comprised novel identified genes, namely PKN2 (protein kinase N2), PTK2 (protein tyrosine 

kinase 2), and ALPP (alkaline phosphatase, placental). Similarly Fontanella et al [56] explored 

the relationship between allergic sensitization and asthma propensity; even though the study 

primarily aims to serve as a diagnostic tool for asthma, pairwise interactions between IgE 

components are used to predict clinical phenotypes.  

Williams DeVane et al [80] utilized a completely data driven approach in order to identify 

asthma subtypes. The authors employed gene expression data, clinical covariates as well as 

certain disease indicators and devised a multi-step decision tree aiming to identify asthma 

endotypes aiming to facilitate the discovery of new mechanisms underlying asthma. 

Wu et al [73] explored asthma phenotypes based on patients’ response to corticosteroids, 

using an unsupervised multiview learning approach. The proposed work explored the contribution 

of 100 clinical, physiological, inflammatory, and demographic variables and was validated in a set 

of 346 adult asthmatic patients. The authors reported that patients with late-onset asthma and 

low lung function and high baseline eosinophilia showed the best corticosteroid responsiveness, 

whereas the poorest responsiveness was reported in young, obese females with severe airflow 

limitation and little eosinophilic inflammation. A similar approach is presented in the paper by Ross 

et al [88] where the authors proposed an ML algorithm in order to identify pediatric asthma 

phenotypes based on the patients’ response to controller medication. Bronchodilator response 

and serum eosinophils were found to be the most predictive features of asthma control in the 

pediatric population under consideration.  

 

3. Asthma management and monitoring 

This category is also quite populated, featuring 40 studies that primarily deal with asthma 

exacerbations of asthma flare-ups. Table S5 provides an overview of these studies. Regarding 

https://paperpile.com/c/HsOsXW/A78Hw
https://paperpile.com/c/HsOsXW/UNgTQ
https://paperpile.com/c/HsOsXW/IEbkW
https://paperpile.com/c/HsOsXW/K2wo2
https://paperpile.com/c/HsOsXW/idBBc
https://paperpile.com/c/HsOsXW/b6CTQ


  

ML algorithms, 12 studies employed DTs, RFs or variations of these algorithms; 11 studies utilized 

ANNs, 4 studies used SVMs, 3 studies employed BN/NB algorithms and 3 used LR.  

Interestingly, in this category there are 11 studies employing more than 1000 records, 

where 5 of them analyze environmental data (e.g. air pollution). There are only 3 studies 

incorporating genomic data in this category, consequently the majority of the studies encompass 

either clinical data or environmental/meteorological data, or their combination (7 studies). CV was 

also the main method used for evaluation as reported in 21 studies, of which 2 used LOOCV; 

training-testing split was used in 8 studies and only 4 studies performed evaluation on an 

independent testing set. In this category we can identify two broad subcategories, namely asthma 

exacerbation prediction and asthma exacerbation management. The former category refers to 

models aiming to early identify an exacerbation while the latter contains models that predict the 

course of the exacerbation and the subsequent management.  

Khasha et al [90] utilized experts’ knowledge in an ensemble classifier in order to detect 

asthma control level yielding overall Acc=91.66%. The algorithm was developed with data 

collected from 96 asthmatic patients followed-up for a 9 month period. According to the authors, 

the aim of the proposed model is to serve as a real time preventive system for asthma control.  

In a similar manner, Hosseini et al [92] proposed a platform for real-time assessment of 

asthma attack risk, based on a set of sensors capturing physiological and environmental data. 

The collected data are pipelined through a smartphone for analysis to an RF classifier which 

identified asthma attacks with an overall Acc=80.1%. In another work by Huffaker et al [101] 

nocturnal recordings of physiological data were obtained from a contactless bed sensor and fed 

to a RF model which yielded Acc=87.4%, Se=47.2% and Sp=96.3%, towards detecting asthma 

exacerbations. Similarly, for the prediction of asthma exacerbations Finkelstein et al [114] utilized 

telemonitoring data which were analyzed by an adaptive bayesian network resulting in perfect 

classification (i.e. Acc=100%, Se=100%, Sp=100%).  

In a methodologically different approach Ram et al [95] mine a multitude of data coming 

from Google search interests, Twitter data and environmental data in order to early predict 

asthma-related emergency department visits; the resulting model yielded Precision=70%. Such 

systems could potentially serve as a means of public health surveillance in order to enhance 

proactiveness and efficiency of the Emergency Department. For the same purpose Khatri et al 

[102] developed an ANN model in order to predict peak demand days at the Emergency 

Department for chronic respiratory diseases. 

Another important issue regarding an asthma exacerbation is the decision whether 

hospitalization is needed or not. Patel et al [107] proposed an algorithm based on gradient 

boosting machines that quantifies the overall risk and consequently the need for hospitalization 

is decided. The algorithm yielded AUC=0.84 and the following features were found to be more 

informative: vital signs, acuity, age, weight, socioeconomic status and weather-related features. 

 

4. Asthma treatment 

The last category contains studies utilizing machine learning algorithms for the overall 

asthma treatment. It is notable that this category contains only one article by Ross et al [88] which 

has also been mentioned in previous categories. The authors aimed to identify asthma 
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phenotypes based on their response to treatment and, thus, fine tune their patients’ treatment. 

We have intentionally included this hardly populated category in order to highlight the gap in 

literature in terms of ML algorithms used for asthma treatment. 

 

Discussion 

Asthma research is gradually picking up on AI/ML techniques, following the overall trend 

of AI/ML adoption in healthcare related studies. Specifically, in Figure 3 (Introduction section) we 

presented the distribution of studies using AI/ML techniques for asthma research, over the course 

of 30 years, i.e. from 1988 up to 2018. During the first and second decade there is minimal 

employment of such techniques for asthma, while from 2010 we observe a considerable and 

progressive increase. A similar trend has been observed regarding the utilization of AI/ML 

techniques in other healthcare domains, e.g. cancer research [13], whereas in the latter case the 

number of articles published in each year is almost ten times bigger. 

In the ‘Asthma screening and diagnosis’ category we observe that the vast majority of 

studies have utilized relatively small numbers of patients. Only studies employing questionnaires 

contain richer patient sets. This observation poses an important question regarding the validity 

and robustness of the reported results.  

As for the ‘Patient classification’ section, the studies employ relatively larger patient 

cohorts; nevertheless the reported evaluation metrics are encouraging but not quite perfect yet. 

Therefore, more data and further analyses are needed in order to obtain more definite answers. 

The ‘Asthma management and monitoring’ category is quite heterogeneous in terms of 

the employed population sizes and the accuracy of the reported results. Specifically, we observe 

from the respective Table S5 that the number of patients or records used in the studies vary 

significantly from just a couple up to thousands. This has to do with several factors: the type and 

cost of employed data (genomic, metabolomic, clinical, etc), the focus on specific populations and 

the scarcity of patients in each patient set, the quality and completeness of gathered information.  

It is noteworthy that the last category ‘’Asthma treatment’ contains one study, denoting the 

lack of research currently in this prospect with the employment of ML techniques. This can be 

attributed to the fact that treatment is primarily directed by published guidelines. However, it 

should be noted that in the field of asthma treatment there is considerable activity in the literature, 

especially with respect to biologics. According to our literature research there are currently no 

studies that exploit ML algorithms focused on the exploration of biologic treatments of asthma. 

Nevertheless, as the number of approved biologics increases, as also the number of eligible 

patients, such studies are expected to emerge. The profiles of super-responders to specific 

biologics currently remain largely elusive, and AI/ML could facilitate the discovery of such complex 

profiles. There is also an increasing interest in the reviewed literature towards severe asthma 

encompassing ML techniques, following the overall trend in asthma research.  

Only a small fraction of the studies in the current review utilize large patient cohorts, and 

even fewer analyze complex data, where AI could be more useful; therefore, AI in asthma 

research still remains underused, or at least not exploited to its full potential. Furthermore, we 

observe that in terms of the quantitative and qualitative features we have compared the included 

studies, there are some similar patterns among them. Specifically, there is considerable utilization 

https://paperpile.com/c/HsOsXW/1aR9P


  

of ANNs and DT, whereas in the most recent studies, RFs are being increasingly used. This trend 

is to be expected, since ANNs were widely employed in several medical fields due to their superior 

results. DTs are also quite common in health-related studies because they provide reasoning 

which is often regarded as cornerstone. It should be noted that there is a significant number of 

studies (i.e. 21) focusing on pediatric populations, whereas the rest include adults, denoting the 

burden based on age. 

It should be highlighted that AI/ML techniques are particularly useful for the analysis of 

large complex datasets, encompassing heterogeneous sources of information. Asthma poses an 

ideal target for AI/ML utilization, as it is a chronic disease with patients being followed-up for 

several years and its perturbations can be detected from the cellular level, to the organ level and 

up to the organism level as a whole. Moreover, environmental factors play a  key role in asthma 

pathogenesis and natural history, therefore, large scale environmental and meteorological data 

need to be analyzed in a complementary manner. Ideally, a theoretical asthma study should 

capture genomic, metabolomic, clinical and environmental data, in several consecutive time-

slices from large and diverse patient cohorts, thus framing all potential asthma effects ranging in 

scale and time. The resulting highly complex and heterogeneous dataset should be mined with 

AI techniques aiming to gain new knowledge regarding asthma diagnosis, classification and 

treatment. 

 

Conclusions 

AI/ML is undeniably a scientific field that is in the spotlight, especially the last decade; its 

utilization in medical applications is on the rise, and subsequently there is growing interest in the 

respiratory field and asthma research, as denoted by the literature review conducted in the current 

work. Further progress is to be expected in respiratory research as more advanced ML techniques 

are gradually used, e.g. deep learning. Another issue that affects the combined research of 

asthma with AI/ML techniques is the fruitful communication between computer scientists and 

clinicians for the identification of the appropriate research questions. In order to deal with those 

questions more effectively large amounts of high quality and well characterized populations are 

needed. Finally, there is an unmet need in the identification of treatment responders to different 

therapeutic approaches, including the selection of an appropriate biologic treatment in severe 

asthma by predicting a patient’s response based on phenotypic and endotypic characteristics. 

Artificial intelligence is here to stay in medicine, however there are certain open issues in asthma 

that need to be further elucidated.  
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Figure 1: Flowchart of the Data Mining (DM) process. 

Figure 2: Flowchart of the literature search. 

Figure 3: Distribution of articles published per year, that employ AI/ML techniques for asthma 

research. 
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Introduction to Artificial Intelligence 
The aim of this supplement is to serve as an introduction in Artificial Intelligence. First, we                
provide a table of abbreviations where the reader may refer, in order to facilitate the               
comprehension of the manuscript. In the next section “AI/Ml flavors” we describe the Data              
Mining process and present a rough categorization of AI/ML techniques based on the learning              
process. Next, we briefly describe the most commonly employed classification algorithms,           
especially the ones that are frequently used in medicine oriented problems.  
 



Table of Abbreviations 
In this section (Table S1) we provide a list of the most commonly used abbreviations pertaining                
to Artificial Intelligence that are frequently used throughout the manuscript.  
 
Table S1 contains a list of the abbreviations used throughout the main body of this manuscript. 
 

AI Artificial Intelligence 

ML Machine Learning 

DM Data mining 

ANN Artificial Neural Networks 

RF Random Forest 

DT Decision Tree 

PCA Principal Component Analysis 

SVM Support Vector Machines 

LR Logistic Regression 

BN Bayesian Network 

HMM Hidden Markov Model 

k-NN k Nearest Neighbors 

SOM Self Organizing Map 

GMM Gaussian Mixture Model 

NB Naive Bayes 

TP True Positive 

TN True Negative 

FP False Positive 

FN False Negative 

Se Sensitivity 

TPR True Positive Rate 



Sp Specificity 

TNR True Negative Rate 

Acc Accuracy 

ROC Receiver Operating Characteristic 

AUC Area Under ROC Curve 

PPV Positive Predictive Value 

NPV Negative Predictive Value 

LOOCV Leave One Out Cross Validation 

Table S1: Table of the most frequently used abbreviations in this section.  
 
 

AI/ML “flavors” 
Artificial Intelligence (AI) refers to the software that is able to make a machine intelligent such                
that it performs human tasks, i.e. process, learn and respond to information gained from data;               
whereas Machine Learning (ML) is the process followed in order to make a machine learn how                
to perform a specific task, and in a similar manner as a human to perform better as the                  
experience increases. Both AI and ML are data driven processes whereby the computer or the               
algorithm is presented with input data and the desired output and subsequently “learns” the              
inherent relations that lead from the input to the output. This is a completely different approach                
compared to a traditional computer programme where input data are fed and based on a set of                 
extremely precise predefined instructions the computer returns a specific outcome. Similarly           
with AI and ML, Data Mining (DM) involves the computational and programming steps in order               
to “mine” large amounts of complex data for meaningful patterns and consequently knowledge.             
Figure S1 depicts the steps of the DM process. There are roughly two basic phases within the                 
DM process: i) during the training phase, the ML algorithm is fed with input data based on                 
which a model is trained that captures the relations and inherent patterns within the data. During                
the training phase the raw input data are subject to a series of preprocessing steps aiming to                 
increase the quality of the data, identify the set of more informative features and omit potentially                
redundant or irrelevant information. Inherent to the training phase is the process of model              
evaluation where the parameters of the trained model are further fine-tuned in order to procure               
a well-trained model. ii) In the predicting phase new instances of unknown data are fed as                
input to the previously trained model and the respective labels are predicted.  
 
 



 
 

Figure S1: Flowchart of the Data Mining (DM) process. 
 
 
The learning procedure of ML algorithms is divided into two broad categories, i.e. supervised              
and unsupervised learning, based on whether the output values (class) of the input samples are               
fed to the algorithm as prior knowledge or not (Figure S2). In the latter case the algorithm is                  
expected to identify the underlying classes in the provided data. 
 

 



Figure S2: In supervised learning, the classes are already known and the algorithms aims to               
formulate a boundary that separates the given classes; in unsupervised learning the classes are              
unknown and the algorithm aims to “understand” the data and find inherent patterns or              
groupings.  
 
 
Besides supervised and unsupervised learning there is another hybrid technique called           
semi-supervised learning which is often used when the unlabeled input data in a dataset are far                
more than the labeled ones. In semi-supervised learning the small amount of labeled input data               
is used as a starting point for training the algorithm, which is further trained with large amounts                 
of unlabeled data. Supervised learning has two main branches, classification and regression;            
within a classification task the output values are a finite number of classes, whereas in the case                 
of a regression problem the output variable is continuous. Unsupervised learning is largely             
represented by clustering where the algorithm aims to identify a set of clusters that are inherent                
to the input data (Figure S3).  
 

 
Figure S3: Supervised and unsupervised learning. 

 
 

Overview of ML techniques 
Over the past decades several machine learning algorithms have been presented in the             
literature, which differ in their approach, the type of data they input and output, and the type of                  
task or problem that they are intended to solve. Below, we will describe briefly the most popular                 
machine learning algorithms: Bayesian networks, Naive Bayes, Artificial Neural Networks,          
Decision Trees, Random forests and Support Vector Machines.  



Bayesian Networks 
A Bayesian network (belief network, directed acyclic graph model) is a model that is built based                
on the observed probabilistic relationship among a set of variables (e.g. symptoms and             
diseases); therefore its output is rather a probability than a prediction. Bayesian networks have              
been widely used in series of ML problems, including medical applications since they are able to                
provide reasoning for the reported outcomes as well as assign a probability representing             
confidence for each decision. As shown in Figure S4 below, each node of the network is                
accompanied by a table of probabilities defined by the values of the variables it is connected to,                 
i.e. the ones that affect its outcome. In the case that all employed variables are “naively”                
considered independent, the resulting algorithm is called Naive Bayes.  
 

 
Figure S4: A provisional Bayesian network for COPD.  

 
 

Artificial Neural Networks 
Artificial Neural Networks are vaguely inspired by the notion and function of biological neural              
networks where neurons are interconnected by synapses and are trained to perform a specific              
task when activated. Artificial Neural Networks have proven quite useful in a series of tasks from                
various fields since they often perform very well. Due to their layered and often largely               
interconnected structure (Figure S5) the training process is quite time consuming and more             
importantly reasoning is almost impossible, therefore, they are often regarded as “black-boxes”.            
Especially in medically oriented tasks this lack of explanation for the reported decision has              
attracted much criticism. Another concept that should be mentioned here is deep learning, that              
constitutes a subset of machine learning whereby the model resembles the layered approach of              
problem solving carried out by the human brain. Deep learning employs ANNs and a typical               
model often has at least three layers, where information is passed onto the next layer. 
 



 
Figure S5: Architecture of an Artificial Neural Network with one hidden layer. 

 
 

Decision Trees 
Decision Trees constitute tree-structured classifiers where each node represents a variable and            
the leaves correspond to decision outcomes. The branches represent conjunctions of features            
that lead to the outcomes; by traversing the tree given the features values of a new sample, we                  
are able to conjecture about its outcome. During the training phase where the tree architecture               
is formulated, the C4.5 algorithm is employed which often performs quite fast. The resulting              
architecture besides its simplicity, is also quite intuitive and transparent allowing for justified             
decisions. Specifically, each decision is based on a human-readable rule which provides            
adequate reasoning and subsequently makes Decision Trees a quite appealing solution for            
medical problems where transparency and reasoning are often prerequisites. Figure S6 depicts            
a provisional architecture of a Decision Tree. 
 



 
 

Figure S6: Provisional architecture of a Decision Tree classifier.  
 

 

Random Forests 
Random Forests or Random Decision Forests constitute an ensemble classifier that operates by             
constructing multiple Decision Trees in data subsets and assigning the output value by             
performing majority voting across the individual Decision Trees. Figure S7 shows an exemplar             
Random Forest architecture.  
 



 
 

Figure S7: Architecture of a Random Forest algorithm. 
 
 

Support Vector Machines 
Support Vector Machines are one of the latest machine learning algorithms that has also been               
used extensively in medical and non-medical applications, due to the good performance and the              
generalization capability they often achieve. These two qualities are owed to the inherent             
process of training; specifically, Support Vector Machines map the initial input vector to a              
feature space of higher dimensionality where the samples can be separated with a linear              
hyperplane (kernel “trick”). Next, the algorithm searches across all possible hyperplanes that            
separate the samples in order to identify the one that maximizes the distance between the               
decision hyperplane and the most dubious instances (Figure S8). 
 



 
 
Figure S8: The kernel trick performed by the Support Vector Machines involves mapping the              
input vector to a higher dimensionality where the instances can be discriminated with a linear               
hyperplane.  
 
 
Besides, the aforementioned algorithms, there are plenty of other machine learning algorithms,            
as well as variations of those algorithms with their respective strengths and limitations that heals               
towards deciding the most appropriate one for each task under consideration.  
 

AI/ML validation 
Within all “flavors” of AI or ML there are certain issues that need to be dealt with, that pertain to                    
the fact that AI is essentially data-driven. When a model is trained with very limited data, these                 
samples are memorized by the algorithm and the performance is nearly optimal for the specific               
dataset but very poor for other samples. This is much like a human that learns by heart a very                   
specific task and is unable to perform well in other tasks. In a similar manner, an algorithm that                  
is expected to discriminate between two classes and has been trained with an unbalanced              
dataset where one class is largely underrepresented, its performance towards disciminating that            
class will be relatively poor. This resembles a child that can recognize a basic set of common                 
colors but when presented with one that has seen only a few times, it will most likely not                  
recognize it. 
All the aforementioned aspects regarding the performance of the algorithm are assessed            
quantitatively during the validation of the algorithm. For validation purposes the dataset is             
divided into two subsets, namely training and testing set where the latter is used in order to                 
assess the performance of the trained model with new and previously unseen input data. Based               
on the size of the initial dataset, the testing set often contains 20%-40% of the input data.                 
Another popular technique that is frequently used for validation purposes is n-fold cross             



validation, whereby the initial dataset is partitioned in n equal subsets (or folds) from which n-1                
are used for training and the remaining one is used for testing; this process is repeated n times                  
until all the folds have been used once for testing and the respective results are averaged in                 
order to assess the overall performance of the model. A variation of n-fold cross validation is                
called Leave One Out Cross Validation (LOOCV) where n equals the total number of samples in                
the dataset. LOOCV is often indicated for limited datasets but is rather computationally             
intensive.  
As for evaluation metrics, several ones have been described depending on the purpose of the               
machine learning algorithm, e.g. classification, regression, etc. The most widely used evaluation            
metrics are presented in Table S2.  
 
Table S2: Most common metrics used for assessing the performance of ML algorithms. 

Metric Formula Description 

Sensitivity (Se) or True 
Positive Rate (TPR) 

P /(TP N )T + F  Fraction of positive examples, 
predicted correctly by the 
model 

Specificity (Sp) or True 
Negative Rate (TNR) 

N /(TN P )T + F  Fraction of negative 
examples, predicted correctly 
by the model 

Accuracy (Acc) P N /(TP P N N )T + T + F + T + F  Overall correctness of the 
model, the ratio of correctly 
predicted outcomes and total 
number of examples 

Receiver Operating 
Characteristic (ROC) 

- Graphical plot displaying the 
trade-off between the true 
positive rate and the false 
positive rate 

Area Under ROC curve 
(AUC) 

- The two-dimensional area 
underneath the entire ROC 
curve 

Positive predictive value 
(PPV) 

P /(TP P )T + F  The proportion of positive 
results in the true positive 
results 

Negative predictive value 
(NPV) 

N /(TN N )T + F  The proportion of negative 
results in the true negative 
results 

F1 score P /(2 P P N )2 * T * T + F + F  The harmonic mean of PPV 
and Se 



Kappa statistic Pr(A) r(E)]/[1 r(E)][ − P − P  
 
Pr(A): the percentage of 
observed agreement between 
the predictions and actual 
values 
Pr(E): the percentage of chance 
agreement between the 
predictions and actual values. 

The agreement between the 
predicted results obtained by 
the model and the actual 
values 

True Positive (TP): an outcome where the model correctly predicts the positive class. 
True Negative (TN): an outcome where the model correctly predicts the negative class. 
False Positive (FP): an outcome where the model incorrectly predicts the positive class. 
False Negative (FN): an outcome where the model incorrectly predicts the negative class. 
 
 

  



Artificial Intelligence and Asthma 
As noted in the section ‘Literature Review’ of the main manuscript, the retrieved publications are               
divided into four categories, namely: (1) Asthma screening and diagnosis, (2) Patient            
classification, (3) Asthma management and monitoring, and (4) Asthma treatment. The articles            
from each category are summarized in a separate table where the respective studies can be               
compared by a set of qualitative and quantitative criteria or characteristics. In the first column               
(‘Ref’) we provide the reference for each study, the second column (‘ML algorithm’) shows the               
ML algorithm that was employed in the study. In cases where the study explored the               
performance of several ML algorithms, the best performing algorithm is reported. The third             
column (‘Sample size’) shows the total number of subjects or samples used in each study. The                
fourth column (‘Evaluation method’) shows the technique used for evaluating the performance of             
the proposed classification scheme; the fifth column (‘Performance’) contains a set of the most              
important reported metrics assessing the performance of the proposed work. In the last column              
(‘Important features’) we present the features reported in each study as being most important              
and informative. 
Table S3, Table S4 and Table S5 contain studies related to ‘Asthma screening and diagnosis’,               
‘Patient classification’ and ‘Asthma management and monitoring’, respectively.  
 

Asthma screening and diagnosis 
 
Table S3: Publications relevant to ‘Asthma screening and diagnosis’. 

Ref ML 
algorithm 

Sample 
size Input features 

Evaluation 
method Performance Important features 

[14] 
SVM 73 Capnography LOOCV 

Acc=94.52%, 
Se=97.67%, Sp=90% 

Upward expiration (AR1), 
downward inspiration (AR2), sum 
of AR1 and AR2 

[15] SVM 60 

Clinical (lung 
sound 
recordings) LOOCV Acc=93.3% 

Exchange time of the 
instantaneous frequency 

[16] SVM 254 
Clinical (medical 
record) 10-fold CV 

Acc=98.59%,Se=98.5
9%,Sp=98.61%  

[17] 
ANN & 
Fuzzy logic 780 

Clinical (Portable 
spirometer)  Acc=97.32%  

[18] HMM 16 

Clinical 
(respiratory 
sounds)  

Acc=94.91, 
Se=89.34%, 
Sp=96.28%  

[19] k-NN 75 

Forced oscillation 
technique 
parameters 

N-fold CV, 
LOOCV 

Se=82.9%, Sp=86.1%, 
AUC=0.91 

Cross products of the FOT 
parameters: fr2, Xm.Cdyn 
[fr=resonance frequency, 
Xm=Mean respiratory reactance, 
Cdyn=Respiratory system dynamic 
compliance] 

[20] SVM 16 
Clinical 
(phonopneumogr LOOCV 

Reliability 
(TPR*TNR)=97.36%  

https://paperpile.com/c/HsOsXW/DLtCv
https://paperpile.com/c/HsOsXW/Q211R
https://paperpile.com/c/HsOsXW/F4OwZ
https://paperpile.com/c/HsOsXW/6pAjZ
https://paperpile.com/c/HsOsXW/wMVXT
https://paperpile.com/c/HsOsXW/Rzldc
https://paperpile.com/c/HsOsXW/08mtQ


ams-respiratory 
sounds) 

[21] ANN 112 

Clinical 
(questionnaire, 
history) 10-fold CV 

Acc=96.77%, 
Se=96.15%, Sp=100% 

Wheezing episodes until 5th year, 
wheezing episodes between 3rd 
and 5th year, wheezing episodes 
until 3rd year, weight, waist’s 
perimeter, seasonal symptoms, 
FEF25/75, number of family 
members, ICS 

[22] Fuzzy rules 278 Clinical  Se=88%, Sp=100%  

[23] ANN  
Clinical, 
epidemiological  AUC=0.903  

[24] SVM 

150 
discharge 

summaries Clinical (EMR) 10-fold CV Acc=82%  

[25] ANN 350 Clinical CV   

[26] LR 514 Clinical (EHR) Training-Testing Se=86%, Sp=98% 

History of allergic rhinitis, eczema, 
family history of asthma, maternal 
history of smoking during 
pregnancy 

[27] ANN 254 Clinical 
Training-Testing 
(70-30) Acc=100% 

Cough, symptoms of exercise 
induced asthma, humidity levels at 
home, emotional reactions, air 
pollution, wheeze, respiratory 
distress, hospitalization before 3 
years of age, response to irritants, 
response to allergens, phlegm, 
allergies (both parents), pursiness 

[28] 
Fusion 
algorithm 170 

Clinical 
(questionnaires) 10-fold CV Se=98%, AUC=1  

[29] SVM 30 

Clinical 
(respiratory 
sounds) Training-Testing Acc=94.6%  

[30] RF 132 Clinical 
Training-Testing 
(80-20) Precision=83% 

Inhaler, MEF2575, Age, Smoker, 
Wheeze and Breath Shortness 

[31] 
Fuzzy rules 
& ANN 455 

Clinical 
(spirometry, 
impulse 
oscillometry) 

Independent test 
set Acc=99%, Se=99%  

[32] ANN 58 
Clinical (breath 
sounds) 

Independent test 
set Se=94.6, Sp=100%  

[33] ANN 48 
Clinical (breath 
sounds) 

Training-Testing 
(80-20) Acc=92.8%  

[34] ANN 827 
Genomic (IgE 
reactivity) 

Training-Testing 
(60-40) Acc=78% 

Allergens: Penicillin, Derm. 
Farinae, Kiwi, Timothy grass, 
Alpha amylase, Ph1 p1, Derp 1 

[35] ANN 51 

Electronic nose, 
FeNO, and lung 
function testing Training-Testing Acc=95.8% Electronic nose and FeNO 

[36] ANN 82 Genomic (SNPs) 5-fold CV Acc=78%  

[37] ANN 2832 
Clinical 
(questionnaire) 

Independent test 
set PPV=100%  

https://paperpile.com/c/HsOsXW/NjApG
https://paperpile.com/c/HsOsXW/qMeGS
https://paperpile.com/c/HsOsXW/3XY26
https://paperpile.com/c/HsOsXW/soYqe
https://paperpile.com/c/HsOsXW/CgRFA
https://paperpile.com/c/HsOsXW/cMnNA
https://paperpile.com/c/HsOsXW/dkOYR
https://paperpile.com/c/HsOsXW/HhcHC
https://paperpile.com/c/HsOsXW/rGQzN
https://paperpile.com/c/HsOsXW/Yc3Gr
https://paperpile.com/c/HsOsXW/DX5QC
https://paperpile.com/c/HsOsXW/wDfnc
https://paperpile.com/c/HsOsXW/s09YL
https://paperpile.com/c/HsOsXW/raIVR
https://paperpile.com/c/HsOsXW/FOpiL
https://paperpile.com/c/HsOsXW/9eYTl
https://paperpile.com/c/HsOsXW/Tr2PD


[38] ANN 10 

Clinical 
(respiration 
sounds) 4-fold CV Acc=80%  

[39] ANN 180 
Clinical 
(questionnaire) 

Independent test 
set 

Spearman rank order 
correlation 
coefficient=0.66  

[40] SOM 32 
Clinical (lung 
sounds)  Acc=78%, Se=52%  

[41] DT 968 
Clinical (lung 
function testing) 10-fold CV PPV=66%, TPR=82%  

[42] DT 12512 

Clinical 
(spirometry, 
history, 
questionnaire, 
medication) 

10-fold CV, 
Independent test 
set Se=79%  

[43] DT 26 signals 
Clinical (lung 
sounds) LOOCV Acc=92%  

[44] RF 554 
Genetic (SNPs) 
and clinical Bootstrapping Acc=87%, AUC=0.84 

Allergen sensitization, lung 
function markers 

[45] RF 461 
Genetic and 
clinical 

Training-Testing 
(80-20) 

Se=97%, Sp=34%, 
AUC=0.82 Dust mite, pollens, pet allergens 

[46] GMM 24 
Clinical (lung 
sounds) LOOCV 

Se=97.2%, Sp=94.2%, 
AUC=0.974  

[47] LR 190 
Genetic (nasal 
RNA) 

Independent test 
set AUC=0.994  

[48] SVM 
95 

recordings 

Clinical 
(respiratory 
sounds)  

Acc=84%, Se=71.4%, 
Sp=88.9%  

[49] DT 5032 
Clinical ( patient 
record) 5-fold CV 

Definite asthma cases: 
PPV=66%,Se=98%,Sp
=95%; Definite and 
probable asthma 
cases: PPV=82%, 
Se=96%, Sp=90%; 
Definite-probable and 
doubtful asthma 
cases: PPV=57%, 
Se=95%, Sp=67%  

[50] SVM 283 
Genetic (gene 
expression) 10-fold CV Acc=95%  

[51] RF 109 
Exhaled breath 
condensate 

Independent test 
set Se=80%, Sp=75%  

[52] RF 79 
Genetic (micro 
RNA) LOOCV AUC=0.974 

miR-125b, miR-16, miR-299-5p, 
miR-126, miR-206, miR-133b 

[53] ANN  Clinical 
Independent test 
set 

Acc=93%, Se=81%, 
Sp=100%  

[54] k-NN 10 
Clinical (lung 
sounds) 1-fold CV Acc=77%  

[55] ANN 60 Clinical Training-Testing Acc=43%  

[56] JDINAC 461 Clinical 10-fold CV 
Acc=86%, Se=84%, 
Sp=87%, AUC=0.94 Component-specific IgEs 

[57] LR & RF 177 
Genomic (serum 
miRNA) 10-fold CV 

Se=89%, Sp=77%, 
AUC=0.86  

https://paperpile.com/c/HsOsXW/tJO6A
https://paperpile.com/c/HsOsXW/1GbLp
https://paperpile.com/c/HsOsXW/uySha
https://paperpile.com/c/HsOsXW/oedbI
https://paperpile.com/c/HsOsXW/R36qY
https://paperpile.com/c/HsOsXW/tymd3
https://paperpile.com/c/HsOsXW/1Y1ab
https://paperpile.com/c/HsOsXW/8wZB0
https://paperpile.com/c/HsOsXW/W4xAi
https://paperpile.com/c/HsOsXW/IExwM
https://paperpile.com/c/HsOsXW/QSTyq
https://paperpile.com/c/HsOsXW/ycWEw
https://paperpile.com/c/HsOsXW/ofiCz
https://paperpile.com/c/HsOsXW/SIyw4
https://paperpile.com/c/HsOsXW/VmdI4
https://paperpile.com/c/HsOsXW/3qf2d
https://paperpile.com/c/HsOsXW/e9abh
https://paperpile.com/c/HsOsXW/OuqPL
https://paperpile.com/c/HsOsXW/IEbkW
https://paperpile.com/c/HsOsXW/acult


[58] NB 322 
Clinical, patients 
history 10-fold CV Acc=70.7%  

[59] ANN  Capnogram  Acc=95.65%  

[60] DT 1104 Clinical 10-fold CV Se=93%, Sp=85% 

Ever had asthma, current asthma, 
shortness of breath, atopy and 
wheezing, breathless but no family 
history 

[61] 

ANN & 
Fuzzy expert 
system 908 Genomic (SNPs) 

Independent test 
set Acc=94% 

MS4A2 Glu237Gly, IL4Ra 
Glu375Ala 

SVM: Support Vector Machine; ANN: Artificial Neural Networks; HMM: Hidden Markov Models; k-NN: k Nearest Neighbors; LR: 
Logistic Regression; RF: Random Forests; SOM: Self-organizing Maps; DT: Decision Trees; GMM: Gaussian Mixture Models; 
JDINAC: Joint density-based non-parametric differential interaction network analysis and classification; NB: Naive Bayes 
 

Patient classification 
 
Table S4: Publications relevant to ‘Patient classification’. 

Ref ML 
algorithm 

Sample 
size Input features 

Evaluation 
method Performance Important features 

[67] ANN 344 Genomic 5-fold CV Acc=74.4%  

[68] RF 96 Clinical Training-Testing 
Acc=70%, Se=81%, 
Sp=67%, AUC=0.86 15 VOCs 

[54] k-NN 10 
Clinical (lung 
sounds) 1-fold CV Acc=77%  

[55] ANN 60 Clinical Training-Testing Acc=43%  

[56] JDINAC 461 Clinical 10-fold CV 
Acc=86%, Se=84%, 
Sp=87%, AUC=0.94 Component-specific IgEs 

[57] LR & RF 177 
Genomic (serum 
miRNA) 10-fold CV 

Se=89%, Sp=77%, 
AUC=0.86  

[58] NB 322 
Clinical, patients 
history 10-fold CV Acc=70.7%  

[69] 
Ensemble 
classifier 55 Clinical LOOCV PPV=95% Tracheal wheeze sounds 

[70] Fuzzy Rules 28 

Clinical 
(combination of 
10 asthma 
severity scores )  Kappa coefficient=1  

[71] DT 341 Clinical 10-fold CV 
Se=84%, Sp=71%, 
AUC=0.83  

[72] 

LASSO & 
stochastic 
gradient 
boosting 260 Clinical, Genomic LOOCV AUC=0.81 PKN2, PTK2, ALPP 

[73] SVM 346 Clinical 10-fold CV 
Acc=81%, Se=62%, 
Sp=87% - 

https://paperpile.com/c/HsOsXW/8ktD7
https://paperpile.com/c/HsOsXW/g6Lqi
https://paperpile.com/c/HsOsXW/ZbK4z
https://paperpile.com/c/HsOsXW/xViKq
https://paperpile.com/c/HsOsXW/2Su78
https://paperpile.com/c/HsOsXW/2Gtmg
https://paperpile.com/c/HsOsXW/e9abh
https://paperpile.com/c/HsOsXW/OuqPL
https://paperpile.com/c/HsOsXW/IEbkW
https://paperpile.com/c/HsOsXW/acult
https://paperpile.com/c/HsOsXW/8ktD7
https://paperpile.com/c/HsOsXW/A78Hw
https://paperpile.com/c/HsOsXW/WW6Ma
https://paperpile.com/c/HsOsXW/syj3M
https://paperpile.com/c/HsOsXW/UNgTQ
https://paperpile.com/c/HsOsXW/idBBc


[74] DT 107 Clinical 10-fold CV Acc=82.4% 
Th2-mediated inflammation, 
corticosteroid insensitivity 

[75] GMM 1642 Clinical CV - IL-13, IL-5 

[76] SVM 378 Clinical LOOCV Acc=93% 

Age of asthma onset, quality of 
life, symptoms, medications, 
health care use 

[77] HMM 2255 Clinical 10-fold CV  
Patterns of IgE responses over 
time 

[78] LR 1048 Clinical 10-fold CV Acc=85%  

[79] RF 348 Genomic - 
Misclassification 
rate=44% ADAM33 

[80] DT 205 Genomic, Clinical - Acc=78% 

Gene expression, clinical 
covariates, indicators of health 
outcomes 

[81] DT 3160 Clinical 
Independent 
test set AUC=0.72 

Change in PEF, hospitalization 
for asthma, initial oxygen 
saturation on room air, initial 
PEF, risk stratification, 
emergency care of acute 
asthma 

[59] ANN  Capnogram  Acc=95.65%  

[60] DT 1104 Clinical 10-fold CV Se=93%, Sp=85% 

Ever had asthma, current 
asthma, shortness of breath, 
atopy and wheezing, breathless 
but no family history 

[82] 
Fuzzy expert 
system 42 Clinical - 

Cohen kappa 
coefficient=1  

[83] ANN 128 Clinical 10-fold CV Acc=80%  

[84] ANN 486 Clinical Training-Testing 
Acc=98.7%, Se=97.63%, 
Sp=97.83% FEF25-75% 

[85] DT 872 Clinical 
Independent 
test set 

Cluster 1: Se=84.1%, 
Sp=96.3%; Cluster 2: 
Se=94.1%, Sp=99.5%, 
Cluster 3: Se=90.1%, 
Sp=99.3%; Cluster 4: 
Se=91.6%, Sp=91.9% 

Comorbidities, adherence, 
cognitive dysfunction, 
depression 

[86] LR 12792 Patient records 
Independent 
test set AUC=0.67 Age, BMI, race, smoking history 

[87] BN 9801 Clinical 
Independent 
test set 

Average posterior 
probability=0.833 Eczema, wheeze, rhinitis 

[88] LR & SVM 1019 Clinical 5-fold CV 

Short-term 
prediction=0.86; 
Long-term 
prediction=0.66 Obesity, allergy 

[61] 

ANN & 
Fuzzy expert 
system 908 Genomic (SNPs) 

Independent 
test set Acc=94% 

MS4A2 Glu237Gly, IL4Ra 
Glu375Ala 

https://paperpile.com/c/HsOsXW/TzW52
https://paperpile.com/c/HsOsXW/HdWt8
https://paperpile.com/c/HsOsXW/PKjT1
https://paperpile.com/c/HsOsXW/WRimP
https://paperpile.com/c/HsOsXW/J4hBC
https://paperpile.com/c/HsOsXW/4aFXl
https://paperpile.com/c/HsOsXW/K2wo2
https://paperpile.com/c/HsOsXW/rILDN
https://paperpile.com/c/HsOsXW/g6Lqi
https://paperpile.com/c/HsOsXW/ZbK4z
https://paperpile.com/c/HsOsXW/Btsvc
https://paperpile.com/c/HsOsXW/Hi5XV
https://paperpile.com/c/HsOsXW/r5sZn
https://paperpile.com/c/HsOsXW/UuMA4
https://paperpile.com/c/HsOsXW/6FE2H
https://paperpile.com/c/HsOsXW/eakJk
https://paperpile.com/c/HsOsXW/b6CTQ
https://paperpile.com/c/HsOsXW/xViKq


SVM: Support Vector Machine; ANN: Artificial Neural Networks; JDINAC: Joint density-based non-parametric differential; interaction 
network analysis and classification; HMM: Hidden Markov Models; k-NN: k Nearest Neighbors; LR: Logistic Regression; RF: 
Random Forests; DT: Decision Trees; GMM: Gaussian Mixture Models; BN: Bayesian Networks 

 
 

Asthma management and monitoring 
 
Table S5: Publications relevant to ‘Asthma management and monitoring’. 

Ref 
ML algorithm 

Sampl
e size Input features 

Evaluation 
method Performance Important features 

[89] 
Fuzzy expert 
system 25 

Clinical 
(exacerbations)    

[90] 
Ensemble 
classifier 96 

Clinical, Patients 
record 5-fold CV Acc=91.66% 

Out of 140 initial variables,35 clinical 
variables were chosen 

[91] RF 42 Genomic LOOCV Acc=74% 20 features out of 30 

[92] RF 2 Clinical 10-fold CV Acc=80.10% FEV1, PEF,dust density, heart rate 

[93] 
Association 
rule mining 

20959 
ED 

visits 

Environmental 
data, Patients 
records Training-Testing FDR=13% SO2, NO, NO2, PM 

[94] 

Multiboost & 
Decision 
stumps 180 Clinical 10-fold CV 

Acc=71.8%, 
Se=73.8%, Sp=71.4 
%, AUC=0.757  

[95] ANN & DT  

Social media, 
Environmental 
data 10-fold CV Precision=70% asthma tweets, CO, NO2 and PM2.5 

[96] PCA & SVM 112 Clinical 10-fold CV Se=95.54% 18 features 

[97] 

Pattern Based 
Decision Tree 
(PBDT) and 
Pattern Based 
Class-Associa
tion Rule 
(PBCAR) 33 

Patient records, 
Clinical, 
Environmental 
data 

Training-Testing 
(70-30) 

PBCAR Acc=86.89%, 
Recall=84.12%; PBDT 
Acc=87.52%, 
Recall=85.59%  

[98] ANN  
Patients records, 
Clinical CV Acc=84%  

[99] SVM 162 
Clinical (cough 
signals) - 

Probability of correct 
classification=90% - 

[100] RF 3206 
Clinical, Patients 
records 

Lasso 
penalization, 
out-of-bag 
estimation, CV, 
Ridge 
penalization 

Critical care prediction: 
C-statistics=0.80, 
Se=79%; 
Hospitalization 
prediction: 
C-statistics=0.83, 
Se=75% 

Advanced age, vital signs, arrival 
mode, comorbidities 

https://paperpile.com/c/HsOsXW/x1olO
https://paperpile.com/c/HsOsXW/Rr28U
https://paperpile.com/c/HsOsXW/10934
https://paperpile.com/c/HsOsXW/ODqA7
https://paperpile.com/c/HsOsXW/0p01w
https://paperpile.com/c/HsOsXW/qNqsl
https://paperpile.com/c/HsOsXW/HuHJR
https://paperpile.com/c/HsOsXW/N6crK
https://paperpile.com/c/HsOsXW/53Oie
https://paperpile.com/c/HsOsXW/wTgLN
https://paperpile.com/c/HsOsXW/SthK9
https://paperpile.com/c/HsOsXW/1ortV


[101] RF 16 Clinical LOOCV 
Acc=87.4%, 
Se=47.2%, Sp=96.3% Heart rate, respiratory parameters 

[102] ANN  
Meteorological, 
Air pollution CV Acc=81%  

[103] ANN 3602 

Clinical, 
Meteorological, 
Air pollution 

R2, Index of 
Agreement (IA), 
Root Mean 
Square Error 
(RMSE), Mean 
Bias Error (MBE) 

0–4 years: R2=0.567; 
5–14 years: R2= 
0.207; 0–14 years: 
R2=0.528  

[104] ANN 42 Clinical    

[105] ANN  
Clinical, 
Pollution data Training-Testing Acc=53% Air pollution levels (NOx) 

[106] ANN 27 

Clinical, 
Environmental 
data CV  

SO2, NO2, temperature, intake of 
medicine, relative humidity 

[107] 

Gradient 
boosting 
models 29354 

Clinical, Patients 
records, 
Environmental, 
Air pollution, 
Neighborhood 
characteristics, 
Community viral 
load 3-fold CV AUC=0.85 

Oxygen saturation, pulse rate, 
respiratory rate, weight, age, triage 
acuity, weather variables 

[108] DT 200 Clinical CV Se=80%, Sp=89% 
Dyspnea, accessory muscle use, 
wheezing 

[109] SVM 26 

Clinical, Patient 
records (daily 
asthma diary) Training-Testing 

Acc=80%, Se=84%, 
Sp=80%  

[110] RF 417 
Clinical, 
Genomic 

Independent test 
set 

160-320 SNPs: 
AUC=0.66; 10 SNPs: 
AUC=0.57; Clinical 
traits: AUC=0.54  

[111] 

Gradient 
boosting 
models 4548 

Clinical, 
Environmental 
data 5-fold CV AUC=0.78 Previous year bronchitic symptoms 

[112] XGBoost 7503 

Air pollution, 
Meteorological 
data, Historical 
data CV AUC=0.832 

Air pollution data, weather data, 
historical admissions data 

[113] LR 2691 Patients records Training-Testing 
Se=23%, PPV=56%, 
AUC=0.86 

Number of ED visits in year 1, type 
of Insurance 

[114] BN 7001 Clinical Training-Testing 
Acc=100%, Se=100%, 
Sp=100% 63 variables out of 147 attributes 

[115] HMM  

Clinical 
(respiration 
sounds) CV Se=85.7% Cough 

[116] ANN & PCA 130 Clinical 3-fold CV Se=100%, Sp=79.6% 
FeNO, FEV1, FVC, FEV1/FVC, 
FEF25-75% 

https://paperpile.com/c/HsOsXW/LK6g3
https://paperpile.com/c/HsOsXW/vF4zU
https://paperpile.com/c/HsOsXW/OyvW9
https://paperpile.com/c/HsOsXW/t6yus
https://paperpile.com/c/HsOsXW/755Oa
https://paperpile.com/c/HsOsXW/xjj46
https://paperpile.com/c/HsOsXW/Iu5PZ
https://paperpile.com/c/HsOsXW/yoPDy
https://paperpile.com/c/HsOsXW/Aqgwt
https://paperpile.com/c/HsOsXW/TMVQh
https://paperpile.com/c/HsOsXW/KU9Rh
https://paperpile.com/c/HsOsXW/S955x
https://paperpile.com/c/HsOsXW/XL200
https://paperpile.com/c/HsOsXW/59j05
https://paperpile.com/c/HsOsXW/dAoZg
https://paperpile.com/c/HsOsXW/qpWOZ


[67] ANN 344 Genomic 5-fold CV Acc=74.4%  

[68] RF 96 Clinical Training-Testing 
Acc=70%, Se=81%, 
Sp=67%, AUC=0.86 15 VOCs 

[58] NB 322 
Clinical, patients 
history 10-fold CV Acc=70.7%  

[82] 
Fuzzy expert 
system 42 Clinical - 

Cohen kappa 
coefficient=1  

[83] ANN 128 Clinical 10-fold CV Acc=80%  

[84] ANN 486 Clinical Training-Testing 

Acc=98.7%, 
Se=97.63%, 
Sp=97.83% FEF25-75% 

[85] DT 872 Clinical 
Independent test 
set 

Cluster 1: Se=84.1%, 
Sp=96.3%; Cluster 2: 
Se=94.1%, Sp=99.5%, 
Cluster 3: Se=90.1%, 
Sp=99.3%; Cluster 4: 
Se=91.6%, Sp=91.9% 

Comorbidities, adherence, cognitive 
dysfunction, depression 

[86] LR 12792 Patient records 
Independent test 
set AUC=0.67 Age, BMI, race, smoking history 

[87] BN 9801 Clinical 
Independent test 
set 

Average posterior 
probability=0.833 Eczema, wheeze, rhinitis 

[88] LR & SVM 1019 Clinical 5-fold CV 

Short-term 
prediction=0.86; 
Long-term 
prediction=0.66 Obesity, allergy 

RF: Random Forests; ANN: Artificial Neural Networks; DT: Decision Tree; PCA: Principal Component Analysis; SVM: Support 
Vector Machine; LR: Logistic Regression; BN: Bayesian Network; HMM: Hidden Markov Model; NB: Naive Bayes 

 

https://paperpile.com/c/HsOsXW/2Su78
https://paperpile.com/c/HsOsXW/2Gtmg
https://paperpile.com/c/HsOsXW/8ktD7
https://paperpile.com/c/HsOsXW/Btsvc
https://paperpile.com/c/HsOsXW/Hi5XV
https://paperpile.com/c/HsOsXW/r5sZn
https://paperpile.com/c/HsOsXW/UuMA4
https://paperpile.com/c/HsOsXW/6FE2H
https://paperpile.com/c/HsOsXW/eakJk
https://paperpile.com/c/HsOsXW/b6CTQ

