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Take-home message: 

Ozone inhalation could lead to depleted diversity of respiratory bacterial 

community, imbalanced proportion between commensal and pathogenic bacteria, and 

elevated levels of glucose and its metabolites in respiratory tract. 

  



To the Editor: 

The associations between atmospheric ozone pollution and increased risks of 

respiratory diseases have been well established [1, 2], but the underlying biological 

mechanisms are yet fully ascertained. Lung epithelial cells may be injured by inhaled 

ozone, but the results were not fully consistent [3, 4]. Furthermore, respiratory 

microbiota and metabolic homeostasis were deemed as key factors in maintaining 

human respiratory health, and any disturbances in this balance have the potential to 

increase the susceptibility to respiratory infectious diseases [5]. However, few human 

studies have investigated the potential effects of ozone inhalation on respiratory 

microbiota and metabolome.  

To address these gaps, we conducted a randomised, double-blind, crossover, 

controlled exposure trial in 30 healthy young adults to explore the respiratory effects 

of short-term ozone exposure. The sample size was calculated using an equivalence 

test, and was comparable to that in previous controlled exposure studies [4, 6-8]. 

Each subject was exposed sequentially to both filtered air and 200 ppb ozone for 

continuous 2 hours in random order. A washout period of at least 2 weeks was 

determined according to previous controlled exposure trials [8, 9]. Lung function was 

measured according to the recommended methods [10]. As a well-established 

biomarker of lung epithelial injury, serum Clara cell protein (CC16) was measured 

using enzyme-linked immunosorbent assays. Respiratory microbiota was analyzed 

with the nasal secretion using 16S rRNA amplicon sequencing. Airway metabolome 

was analyzed with the exhaled breath condensate (EBC) using gas 



chromatography-time of flight-mass spectrometry (GC-TOF-MS). 

We applied linear mixed-effect (LME) models to estimate the acute effects of 

ozone exposure on lung function and serum CC16. For microbiota analysis, we firstly 

evaluated alpha-diversity by calculating abundance-based coverage estimator (ACE), 

Simpson, and Shannon; then, we assessed beta-diversity by calculating weighted 

Unifrac distance and visualizing it via principal coordinate analysis; lastly, we identified 

taxa characterizing the differences between ozone and filtered air groups using a 

linear discriminant effect size analysis, and a taxon with a linear discriminant analysis 

score > 4 was considered significantly different between two groups. For 

metabolomics analyses, we firstly conducted an orthogonal partial least squares 

discriminant analysis and used the variance importance in the projection (VIP) scores 

to define contributions of each metabolite to the overall between-group difference; 

then, for metabolites with a VIP score > 1, we used LME models to evaluate the 

differences between groups. All tests were two-sided and a p-value < 0.05 was 

considered statistically significant. The study protocol was registered at 

ClinicalTrials.gov (NCT03697174), and all participants provided written informed 

consent at enrollment. 

Ozone concentrations in chamber were very close to the target values with an 

average of 201.0 ± 1.6 ppb in the ozone group and 8.0 ± 2.6 ppb in the filtered air 

group. The levels of fine particulate matter, nitrogen dioxide, temperature and relative 

humidity were quite similar between the two groups. Relative to the filtered air group, 

exposure to ozone resulted in significant declines in lung function at lag 2 h, and the 



decrements became more prominent at lag 15 h in the next morning. At lag 15 h, there 

were decrements of 3.70% [95% confidence interval (CI): 0.58%, 6.82%] in forced 

vital capacity and 3.14% (95%CI: 0.02%, 6.30%) in forced expiratory volume in 1 

second. The findings were consistent with previous chamber studies that revealed 

delayed impairment of lung function after acute ozone exposure [6, 7].  

Impaired lung function was always accompanied by increased epithelial 

permeability, which can be indicated by elevated serum levels of CC16 [4]. Similarly, 

we found serum CC16 increased by 41.93 % (95% CI: 31.96%, 51.89%) 2 hours after 

exposure to ozone compared with filtered air, and then the effect attenuated 

considerably but remained significant at lag 15 h. Elevated serum CC16 levels at lag 2 

h was significantly correlated with decrements in both FVC and FEV1 at lag 15 h, 

suggesting a potential temporal pattern ― from ozone exposure, increased epithelial 

permeability to impaired lung function. 

Notably, we presented, to our knowledge for the first time, the human-based 

evidence that short-term ozone exposure could significantly decrease the diversity of 

nasal bacterial community. As shown in Figure 1a, ACE, Simpson and Shannon were 

significantly lower in the ozone group than in the filtered air group, suggesting distinct 

reductions in both nasal bacterial community richness and evenness after ozone 

inhalation. Meanwhile, we observed a clear separation between the ozone groups and 

the filtered air group in the Figure 1b (p = 0.007), indicating an evident difference in 

nasal bacterial community between groups. Some in vitro studies also demonstrated 

the anti-microbial potential of ozone [11]. Diminished diversity of bacterial community 



in upper respiratory tract have been associated with several respiratory infectious 

diseases in clinical studies [12, 13]. In addition, we found the composition of the nasal 

bacterial community was altered by ozone inhalation. Specifically, we observed 

significant decrements in the relative abundance of 2 phyla Actinobacteria and 

Firmicutes (see Figure 1c), also known as harmless commensal bacteria in nasal 

capacity. The deceases in the two commensal bacteria may result in diminished 

resistance against the colonization of foreign pathogens, and thus increase risks of 

bacterial or viral infection in the respiratory system [5]. In contrast, at the family level, 

we observed an relative enrichment of Moraxellaceae and Pseudomonadaceae 

following ozone exposure (see Figure 1c), which were often involved in the 

development of pneumonia and other infectious diseases [12]. Therefore, it is 

reasonable to assume that the imbalance between commensal and pathogenic 

bacteria in upper respiratory tract induced by ozone exposure may lead to individual 

vulnerability to respiratory infection. 

The colonization and proliferation of bacteria in the respiratory tract may also be 

influenced by some substances in airway surface liquid. In this metabolomic analysis 

with EBC, we found that glucose was significantly elevated after an inhalation of 

ozone relative to filtered air with a fold change (FC) of 1.59, accompanied by 

significantly increased D-glyceric acid (FC=1.27) and lactic acid (FC=1.15). The 

alteration of airway glucose metabolism by ozone was in accordance with a previous 

study [8]. Increased glucose in EBC possibly resulted from an enhanced leakage of 

glucose from the blood into the airway through impaired lung epithelial tight junctions, 



which could be supported by an elevation of serum CC16. Higher airway glucose may 

potentially enhance the proliferation of some specific bacteria that take glucose as 

carbon source by providing nutrient [14, 15]. This kind of imbalanced overgrowth may 

lead to perturbation in bacterial community composition, and ultimately increase the 

risk of respiratory infection.  

This randomised, double-blind, crossover trial has the advantage of allowing for 

causal inference on the associations between ozone and adverse respiratory 

outcomes. However, this study has several limitations. First, the sample size is 

relatively small, adding statistical uncertainty to our results. Second, we only enrolled 

healthy college students as the subjects to better control behavior risk factors, but this 

strategy might restrict the generalizability of our findings to vulnerable populations. 

Third, some differential metabolites in EBC might have been missed because we only 

perform GC-TOF-MS analyses due to the limited amount of EBC. Fourth, the 

microbiota and metabolome were analysed with samples collected immediately after 

exposure, which did not allow for an exploration of temporal relationships. 

To conclude, this randomised, double-blind, crossover, controlled exposure trial 

revealed that an acute inhalation of ozone could impair lung function and increase 

airway permeability. Our results further provided a novel mechanistic insight that 

ozone inhalation may increase susceptibility to respiratory infection through disturbing 

microbiota and glucose homeostasis in the respiratory tract. 
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Figure 1 Changes in the diversity and composition of nasal bacterial community 

comparing the ozone group to the filtered air group. (a) Alpha-diversity metrics of 

nasal bacterial community in the two groups, including ACE, Simpson, and Shannon. 

*p < 0.05 versus filtered air group. (b) Beta-diversity of nasal bacterial community in 

the two groups. The cycles refer to the 95% confidence ellipses. (c) The cladogram of 

nasal bacterial community from a linear discriminant effect size analysis. The red area 

represents significantly enriched taxa in the filtered air group; the green area 

represents significantly enriched taxa in the ozone group; and the yellow area 

represents no differences in taxa between the two groups. The central point 

represents the root of the tree (bacteria), and each ring represents the next lower 

taxonomic level (from phylum to genus). The diameter of each circle represents the 

relative abundance of the taxon. Abbreviations: ACE, abundance-based coverage 

estimator; PCoA, principal coordinate analysis. 

  



 


