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ABSTRACT: Pulmonary hyperinflation is usually defined as an abnormal increase
in functional residual capacity, i.e. lung volume at the end of tidal expiration. As
such, it is virtually universal in patients with symptomatic diffuse airway obstruc-
tion. Hyperinflation inferred from a standard chest radiograph implies an increase
in total lung capacity.

The relaxation volume of the respiratory system (Vr) increases in patients with
chronic airway disease as a result of changes in the elastic properties of the lungs
and chest wall. In addition, a variable degree of dynamic hyperinflation may be
present. This results from the onset of inspiration before lung volume has fallen
to Vr. Dynamic hyperinflation is frequently present at rest in patients with mod-
erate-to-severe airway obstruction, and it increases further on exercise, thereby
increasing the mechanical load on the inspiratory muscles and at the same time
reducing their mechanical advantage.

Important clinical consequences and associations of hyperinflation include: dis-
tortions of chest wall motion; impaired inspiratory muscle function; increased
oxygen cost of breathing; greater likelihood of hypercapnia; impaired exercise per-
formance; and greater severity of breathlessness. The symptomatic improvement
after treatment with a bronchodilator may be due, in part, to lessening of hyper-
inflation.
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Definitions

To the radiologist, hyperinflation of the lungs implies
an increase in total lung capacity (TLC), as this is the
lung volume at which chest radiographs are normally
obtained. In a clinical context, however, hyperinflation
implies an abnormal increase in the volume of gas in
the lungs at the end of tidal expiration. For the purpose
of this review, this end-expiratory lung volume (some-
times abbreviated as EELV) is regarded as the func-
tional residual capacity (FRC). It should be noted that
some authors reserve use of the term FRC for the true
neutral or relaxation volume (Vr) of the respiratory sys-
tem. where inward lung recoil is balanced by outward
chest wall recoil. In patients with airway obstruction
and hyperinflation, FRC often exceeds Vr because of
the phenomenon of "dynamic hyperinflation", i.e. the
situation where tidal inspiration begins before expira-
tion to Vr is complete (see below).

Sometimes, hyperinflation is inferred from an incre-
ase in residual volume (RV), or in the ratio of RV to
total lung capacity (TLC), a feature otherwise known
as air-trapping. An increase in RV is virtually always
accompanied by an increased FRC, but an increased
RV/TLC (or FRC/TLC) ratio is less specific as it may
occur due to a reduced TLC as well as to an increased
RV.

Another relevant volume is the end-inspiratory lung
volume (EILV). During exercise in patients with hyper-
inflation, this may approach TLC and may have impor-
tant implications for exercise capacity and dyspnoea
(see below).

Hyperinflation occasionally occurs in patients with
conditions other than airway obstruction if the RV is
increased by some other mechanism. Examples include
patients with expiratory muscle weakness or mitral valve
disease. For practical purposes, however, hyperinflation
relates essentially to patients with generalized airway
narrowing, as in chronic obstructive pulmonary disease
(COPD) and emphysema, asthma, bronchiectasis and
cystic fibrosis.

Radiographic and physical features

Because, conventionally, chest radiographs are obtained
at TLC, the radiographic impression may underestimate
the severity of hyperinflation during tidal breathing.
Radiographically, hyperinflation is manifest by depres-
sion of the diaphragm, a loss of its normal curvature,
and an increase in the retrosternal airspace (fig. 1). The
diaphragmatic attachments to the lower ribs are not nor-
mally visible on plain chest radiography, but are ex-
posed when the diaphragm is depressed, giving the
costophrenic angles a blunted appearance (fig. 2).

In clinical practice, the radiographic assessment of hy-
perinflation is usually subjective, but specific quantita-
tive indices are sometimes applied.  Thus, the diaphragm
is low if the level of the right dome is at or below the
anterior end of the 7th rib, and it is flat if the maximum
curvature of the dome is less than 1.5 cm [1]. The width
of the retrosternal space can be measured on the lateral
projection, as the horizontal distance from the posteri-
or aspect of the sternum 3 cm below the sternomanubrial
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junction to the anterior margin of the aorta. The precise
range of normality is uncertain, with suggested upper
limits ranging 2.5–4.5 cm. The larger distance is more
specific for hyperinflation and values greater than this
are associated with very severe airway obstruction [2].

In routine radiological reporting, hyperinflation is some-
times incorrectly equated with emphysema, but other
more specific features, such as the presence of bullae
or attenuation of vessels, are required for confident re-
cognition of this condition.

In principle, hyperinflation of the lungs can be ac-
commodated by a varying combination of increased rib
cage size and lowered diaphragm. The classic sign of rib

cage expansion is the so-called "barrel chest" deform-
ity, which has long been described as a sign of "emphy-
sema" [3]. Direct measurements of rib cage dimensions,
however, have produced conflicting results: KILBURN and
ASMUNDSSON [4], studying a group of unselected patients
with "emphysema", found that the anteroposterior (AP)
dimension of the rib cage measured with calipers at full
inflation was not different from measurements in con-
trol subjects. They suggested that the impression of
increased AP diameter of the chest was actually the
result of a reduced AP diameter of the abdomen, due
to wasting. On the other hand, GILMARTIN and GIBSON

[5] measured the dimensions of the rib cage at FRC and
showed an increase in the ratio of AP to lateral diam-
eters, i.e. the rib cage was more circular in cross-sec-
tion than in normal subjects. This discrepancy may be
due to the different volumes at which the two studies
were performed, since a greater relative difference com-
pared with normal subjects would be expected at FRC
than at TLC.

The few available radiographic measurements of rib
cage dimensions in COPD are also difficult to recon-
cile. BURKI and KRUMPELMAN [6] showed clear correla-
tions of TLC with both the width of the retrosternal space
and the height of the diaphragm. SHARP et al. [7], how-
ever, measured the angulation of the ribs on the lateral
chest radiograph and showed that only 5 of 12 subjects
accommodated the increased volume by elevating the
rib cage, while the others had lower diaphragmatic posi-
tion. In a subsequent study of 22 patients with COPD,
the same group [8], surprisingly, showed no significant
differences from normal either in the dimensions of the
rib cage or the rib angles, with all the increased volume
apparently accommodated by diaphragmatic descent.
The authors suggested that the radiographic impression

a) b)

Fig. 1.  –  a) Posteroanterior (PA); and b) lateral chest radiograph taken at total lung capacity (TLC) and showing hyperinflation.

Fig. 2.  –  Close up of posteroanterior (PA) chest radiograph at full
inflation in a patient with hyperinflation, showing costal attachments
of the diaphragm. These are not usually visible in normal subjects.



of increased retrosternal airspace is simply a consequence
of diaphragmatic descent and that the apparent increase
in AP diameter is illusory. The level of the rib cage at
which the measurements are made may be critical to
the interpretation, as in acutely induced asthma an in-
crease in the AP diameter of the upper rib cage at (the
elevated) FRC has been reported [9], while changes in
the AP diameter of the lower rib cage were less pro-
nounced.

Hyperinflation results in abnormal distribution of rest-
ing tidal breathing between the rib cage and abdominal
compartments. In addition, distortions of chest wall motion
are frequently present. In general, the greater the FRC
the less the AP motion of the abdomen during tidal in-
spiration [5]. Although AP motion of the upper rib cage
is generally preserved and may even be increased [9],
presumably due to greater use of intercostal and acces-
sory muscles, AP motion at the lower sternum and lat-
eral motion of the rib cage are often distorted. The best
recognized distortion is lateral inspiratory paradox of
the rib margin, otherwise known as Hoover's sign [10].
In one study [5], this was detectable in as many as 31
of 40 otherwise unselected patients with COPD. Parado-
xical lateral motion typically develops with the onset of
inspiration, continuing to late inspiration, sometimes
with an increase in the dimension in the terminal part
of inspiration. The peak distortion corresponds both to
the peak negative pleural pressure and the peak trans-
diaphragmatic pressure, and has been attributed to direct
traction by the flattened diaphragm on the lateral rib
margins [11]. 

AP paradox, seen typically at the lower end of the
sternum, is less easy to recognize clinically, but it can
be detected with the trained eye or by recording with
devices such as magnetometers. This occurs in early
inspiration and is unrelated to transdiaphragmatic pres-
sure (Pdi). GILMARTIN and GIBSON [11] showed that the
maximum distortion in the AP direction was most close-
ly related to the nadir of abdominal pressure in early
inspiration, and they suggested that the paradoxical mo-
tion was due to relaxation of abdominal muscles which
had contracted during the immediately preceding expi-
ration. A similar pattern has been described with in-
duced asthma [9], resulting in a "rocking" motion of the
sternum during inspiration, with the lower part moving
in as the upper part moves out. These observations em-
phasize the plasticity of the rib cage, which in condi-
tions of hyperinflation can move with several degrees
of freedom.

Paradoxical inspiratory motion of the abdominal wall
has also been described in patients with COPD. This
usually occurs in the presence of very severe disease
during exacerbations [12].

Mechanisms of hyperinflation

The pathophysiological mechanisms of hyperinflation
are discussed in detail in later reviews in this series.
Summarized here are the similarities and possible dif-
ferences between patients with asthma and those with
COPD, which may be relevant to the clinical conse-
quences in the different conditions. In normal subjects,

FRC, i.e. lung volume at end-tidal expiration, is very close
to Vr, the relaxation volume of the respiratory system.
In patients with airway obstruction, changes in the elas-
tic properties of the lungs and chest wall lead to an in-
crease in Vr, i.e. static hyperinflation. In addition, however,
there is a variable degree of dynamic hyperinflation, re-
flected by an increase in FRC above Vr. In general, with
increasing airway resistance and greater flow limitation,
expiration towards Vr becomes increasingly prolonged
and the next inspiration begins before Vr is reached. This
places an extra load on the inspiratory muscles at end-
expiration: they have to overcome an additional "thresh-
old" load related to the elastic recoil of the respiratory
system before inspiratory flow commences. Furthermore,
this occurs in the face of worsening mechanical advan-
tage of the inspiratory muscles as dynamic hyperinfla-
tion increases. Dynamic hyperinflation is often present
to some degree at rest and increases further on exercise
(see below). It may also worsen acutely during exacer-
bations associated with increasing airway obstruction.

In COPD, electrophysiological studies suggest that
the inspiratory muscles "switch off" early in expiration
[13, 14], but in asthma it appears that tonic inspiratory
muscle activity may remain throughout expiration and
this may contribute to the hyperinflation, at least when
asthma is induced acutely, e.g. with histamine or metha-
choline. Persistent inspiratory muscle activity will tend
to slow expiratory flow, and may have the advantage of
protecting diaphragmatic length and shape by increa-
sing rib cage size and reducing the relative abdominal
contribution to hyperinflation [15]. The persistent in-
spiratory activity has been inferred from electromy-
ography [16], pleural pressure measurements [15] and
measurement of external dimensions [9]. It is unclear
at present whether such tonic inspiratory muscle acti-
vity during expiration is limited to transiently induced
bronchoconstriction, or whether it also occurs in more
prolonged asthmatic episodes.

Respiratory muscle function

Hyperinflation is accompanied by a reduced mechan-
ical advantage of the inspiratory muscles and, conse-
quently, maximum static inspiratory pressure (PI,max)
measured at RV or FRC is often less (strictly less neg-
ative) than in normal subjects at the same "relative" lung
volumes, as originally reported by SHARP et al. [17].
However, BYRD and HYATT [18] showed that, in many
patients with COPD, PI,max was actually greater (more
negative) than would have been expected for the "absol-
ute" lung volume (FRC) at which the measurements
were made. Conventionally measured maximum respi-
ratory pressures include a contribution from the passive
recoil pressure of the respiratory system (Ppr,rs), and
later calculations by ROCHESTER et al. [19] showed that,
after allowing for Ppr,rs and differences in lung volume,
the pressure generated by the inspiratory muscles alone
was usually similar to normal. In some patients with
severe COPD, however, malnutrition may result in a
true impairment of inspiratory muscle force.

Clearly, at lung volumes which exceed the normal
TLC, adaptation of inspiratory muscle function to
hyperinflation must occur, since normal subjects are
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unable to achieve such volumes. In this context, most
attention has been paid to the diaphragm which, despite
its severe mechanical disadvantage at high lung vol-
umes, continues to generate an inspiratory pressure, as
demonstrated both by forceful voluntary efforts [20],
and phrenic nerve stimulation [21]. The possible mech-
anisms involved in this adaptation are discussed in a
later review in this series [22].

Lung volumes

Elevation of FRC is an almost universal accompani-
ment of significant diffuse intrathoracic airway obstruc-
tion. It may fail to occur if there is coexistent disease,
such as pulmonary fibrosis, which tends to reduce lung
volumes. Overall, there is a general relationship be-
tween the severity of hyperinflation and that of airway
narrowing. This has been demonstrated by the relation-
ship between FEV1 and both RV/TLC [23] and FRC/
TLC [24] (fig. 3). This association complicates the attri-
bution of various possible consequences to, on the one
hand, the degree of airway narrowing and, on the other
hand, the extent of hyperinflation.

In COPD, the greatest increases in TLC are usually
seen in patients with the most severe emphysema, but
the distinction is insufficiently reliable without other radio-
graphic or functional evidence of emphysema.

Increases in TLC in asthma have been the subject of
considerable interest and some dispute. In surveys or
routine reporting of chest radiographs of patients with
asthma, overinflation is frequently noted. It may be seen
even without severe airway obstruction. In chronic asth-
ma, radiographic overinflation is much more likely if
the onset was in childhood. In this context, age of onset
appears to be more important than duration of asthma
[25]. A recent study [26] of function has supported this
conclusion and suggested that the abnormality develops
early in childhood. More controversial has been the

question of apparently acute changes in TLC during
and following exacerbations of asthma. This was first
shown by WOOLCOCK and READ [27], who studied patients
during recovery from asthmatic attacks. During seve-
ral days of treatment, they showed the expected marked
reductions in FRC and RV (3 L or more), but in addi-
tion, there was a fall in TLC in 50% of the patients
studied. In this report, lung volumes were measured by
helium dilution. In a subsequent study [28] based on
plethysmographic measurements, the falls in FRC dur-
ing recovery and the proportion of patients showing a
reduction in TLC were even greater. Other studies sug-
gested acute increases in TLC (measured plethysmogra-
phically) following exercise challenge [29, 30] and
inhalation of histamine [31]. WOOLCOCK and co-work-
ers [28] had originally acknowledged the possibility that
plethysmographic volume measurement might be an
overestimate if changes in mouth pressure did not cor-
respond to changes in alveolar pressure. Later reports
in the early 1980s [32, 33] showed this to be the case,
casting considerable doubt on the validity of the acute
changes in TLC reported up to that time. Errors in the
plethysmographic technique are minimized by encour-
aging the subject to pant at a low frequency (<1 Hz),
and by ensuring adequate support of the cheeks and
floor of the mouth during panting in order to minimize
volume changes of the compliant upper airway [34].

It now appears likely that many of the acute changes
in TLC reported in the earlier literature were artefac-
tual, or were at least exaggerated by the plethysmogra-
phic technique. Nevertheless, it is clear that true increases
in total lung capacity can occur during spontaneous
exacerbations. The shortest time scale over which TLC
increases and subsequently decreases is uncertain, but
it is probably a matter of days rather than hours or min-
utes. It should be recalled that the original study by
WOOLCOCK and REID [27] was performed using helium
dilution and, therefore, the conclusion was not com-
promised by plethysmographic errors. In addition, two
recent studies using radiographic measurements during
recovery from spontaneous asthma have confirmed red-
uctions in TLC averaging 0.29 and 0.7 L, respectively
[35, 36]. The magnitude of these changes was not clear-
ly correlated with increases in FEV1, but greater falls
in TLC were seen as the interval between the exacer-
bation and the recovery radiograph increased [36]. How-
ever, with short-term provocation, e.g. with methacholine,
it appears that TLC does not change significantly [37,
38].

Elevation of TLC is found in a significant propor-
tion of patients with widespread bronchiectasis [39], and
is probably simply a function of the severity of airway
obstruction in a heterogeneous group of subjects. In cys-
tic fibrosis, however, TLC is more often normal, despite
the presence of severe airway obstruction [40, 41]. This
may represent a counterbalancing effect of fibrotic scar-
ring in areas of recurrent infection. As would be expec-
ted, FRC is more consistently elevated [41]. Information
on the consequences of hyperinflation for inspiratory
muscle function in cystic fibrosis is conflicting, with
some series [42] showing impairment, especially in more
malnourished individuals, but the overall impression is
of well-preserved inspiratory muscle function in most
ambulant patients.
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Fig. 3.  –  Inverse relationship of functional residual capacity/total
lung capacity (FRC/TLC) to forced expiratory volume in one second
(FEV1) in 311 patients with chronic obstructive pulmonary disease
(COPD). (Modified from BÉGIN and GRASSINO [24]).



Cost of breathing and resting gas exchange

It has been proposed that the increased work of brea-
thing associated with airway obstruction and hyper-
inflation may contribute to the weight loss experienced
by many patients with COPD. The oxygen cost of brea-
thing is greater in malnourished patients than in those
with normal nutrition [43] and, in general, malnourished
patients have more hyperinflation (as assessed by RV/
TLC) and lower values of PI,max. DONAHOE et al. [43]
showed that the oxygen cost of breathing was most
closely correlated with RV/TLC%, but the interrelation
between indices of hyperinflation and airway narrow-
ing make confident attribution of the mechanism impos-
sible. It has been shown that hypercapnic patients with
COPD have a disproportionately high cost of breathing
and this also correlates with evidence of hyperinflation,
as assessed both by RV/TLC and radiographic diaph-
ragmatic flattening [44]. In theory, distortions and para-
doxical motion of the chest wall, which would reduce
efficiency of breathing, might further increase oxygen
consumption, but in one study [45] this appeared to make
no significant contribution.

In a study of the interrelations between indices of gas
exchange and mechanical function in a large number of
patients with COPD, BURROWS et al. [23] showed that
the mixed venous carbon dioxide tension (Pv,CO2) mea-
sured by rebreathing was directly related to hyperinfla-
tion as assessed by RV/TLC, but again the strong inverse
relationship between RV/TLC and FEV1 may account
for the correlation. ROCHESTER and BRAUN [46] showed
that arterial carbon dioxide tension (Pa,CO2) was inver-
sely related to PI,max (fig. 4), which in turn is related
to the severity of hyperinflation. They also compared
the implications of reduced PI,max for gas exchange in
patients with COPD and those with primary respiratory
muscle weakness. As might be expected in view of their
greater respiratory impedance, for a given PI,max, Pa,CO2

was relatively higher in patients with COPD than in

those with respiratory muscle weakness alone. Hyper-
capnia is also related to the degree of dynamic hyper-
inflation [10, 47], but interpretation is confounded by
the severity of airway obstruction, as well as by uncer-
tainty  over the validity of estimates of dynamic hyper-
inflation. The results of BEGIN and GRASSINO [24] further
support the importance of inspiratory muscle capacity,
and hence the importance of hyperinflation, in deter-
mining the presence of hypercapnia. In a large number
of patients with stable COPD, they showed that the best
predictor of Pa,CO2 among a number of variables was
the ratio of the load to the capacity of the inspiratory
muscles, as assessed by the ratio of pulmonary resis-
tance to PI,max.

Sleep

Careful measurements of lung volumes during sleep
have been performed in small groups of patients with
hyperinflation studied while sleeping supine in a vol-
ume displacement plethysmograph. BALLARD et al. [48]
showed that, while the FRC of patients with mild asth-
ma when awake was greater than control subjects, dur-
ing sleep the fall in FRC exceeded that in normals, so
that during rapid eye movement (REM) sleep FRC was
similar in the two groups (fig. 5a). They suggested that,
since the reduction of lung volume during sleep would
inevitably be accompanied by an increase in airway re-
sistance, it might contribute to nocturnal worsening of
asthma. However, this seems unlikely as in a subse-
quent study [49], in which negative pressure was ap-
plied around the chest in order to maintain FRC, the
fall in forced expiratory volume in one second (FEV1)
following sleep was not prevented. In a further study
[50], the same group showed that the reduction in FRC
during sleep in asthma was accompanied by reduced
tonic activity of the inspiratory muscles. On waking,
there was a "rebound" increase in FRC to values greater
than before sleep. This was associated with increased
tonic and phasic inspiratory muscle activity, presumably
as a consequence of the greater airway narrowing on
waking. In a parallel study of patients with COPD [51],
the same group showed no reduction in FRC during
sleep (fig. 5b). This may reflect different mechanisms
of hyperinflation in the two conditions, with persistent
activity of inspiratory muscles in expiration contribu-
ting in asthma, but not in COPD.

One proposed mechanism for the well-recognized hy-
poxaemia during sleep (particularly REM sleep) in COPD
was a reduction in FRC, but the failure to demonstrate
such a fall negates this suggestion. WHITE et al. [52] fur-
ther investigated whether distortions of chest wall move-
ment, in particular worsening lateral paradox, might
contribute to hypoxaemia during REM sleep. They hypo-
thesized that reduction in activity of inspiratory mus-
cles other than the diaphragm in REM sleep might lead
to greater distortion, but in the event Hoover's sign dur-
ing REM sleep became less evident, rather than more
evident, presumably as a consequence of the reduced
force of diaphragmatic contraction (fig. 6).

In summary, therefore, it appears unlikely that hy-
perinflation is related directly either to nocturnal asth-
ma or to REM sleep hypoxaemia in patients with COPD.
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Breathlessness and exercise performance

O'CONNELL and CAMPBELL [53] showed that patients
with COPD with inspiratory dyspnoea at rest had grea-
ter FRC than those who were not dyspnoeic, but they
also had lower values of FEV1. The clearest discrimi-
nant between dyspnoeic and nondyspnoeic patients was
the ratio of the pressure required to generate tidal flow
to that available statically at the same lung volume, i.e.
an index of the load/capacity ratio. A similar conclu-
sion was reached by LEBLANC et al. [54] studying pati-
ents with various diseases during exercise. They found
that one important correlate of the breathlessness score

on exercise was the ratio of mean pleural pressure to
PI,max, again an index of the load/capacity ratio of the
inspiratory muscles, that will depend on the severity of
hyperinflation. This factor was independent of other
determinants of breathlessness, which included overall
ventilation and respiratory frequency.

Several studies [55–60] have shown that, on exercise,
the FRC of patients with COPD rises because of increas-
ing dynamic hyperinflation. The residual volume incre-
ases similarly, but there appears to be no acute change
in TLC [57]. The increase in FRC contrasts with the
pattern shown in normal subjects, in whom FRC falls
on exercise [56, 59]. In two studies, average increases

Fig. 5.  –  Effect of sleep on functional residual capacity (FRC) in: a) asthmatic (❍) compared to normal (●) subjects; b) in patients with COPD
(▲). Bars indicate SEM. W: awake; 2, 3 and 4: stages 2, 3 and 4 non-rapid eye movement sleep; REM: rapid eye movement sleep. COPD: chronic
obstructive pulmonary disease. (Modified from BALLARD and co-workers [48] and [51], respectively).
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in FRC of 0.63 and 0.32 L between rest and maximal
exercise were reported [58, 60]. The size of the increase
depends on the severity of airway narrowing, but increa-
ses can occur even in patients with mild-to-moderate
disease [59]. Increasing hyperinflation appears to be a
consequence of expiratory flow limitation. In mild asth-
ma, as in healthy subjects, FRC may fall during light
exercise, but in heavier exercise it increases again as
flow limitation develops [61]. This pattern is similar to
that seen in healthy elderly subjects, in whom flow lim-
itation at lower lung volumes can occur during heavy
exercise [61]. Clearly, an increase in FRC has the advan-
tage of maintaining expiratory flow, and consequently
ventilation, when increases are required on exercise. On
the other hand, as discussed above, dynamic hyperin-
flation has adverse effects on the inspiratory muscles.
The implications of dynamic hyperinflation for the seve-
rity of breathlessness in patients with COPD are appar-
ent from the work of O'DONNELL and WEBB [60]. They
showed that the increase in breathlessness on maximal
exercise was clearly related to the extent of dynamic hy-
perinflation, as assessed by the rise in FRC and conse-
quent loss of inspiratory reserve volume.

The increase in hyperinflation from rest to exercise
can be estimated with reasonable accuracy since the evi-
dence suggests that TLC does not change. The magni-
tude of dynamic hyperinflation at rest is more difficult

to quantitate directly. By extrapolation of resting tidal
expiratory flow curves and calculation of the area under
the extrapolated curve, MORRIS and co-workers [14] esti-
mated the average volume of dynamic hyperinflation in
a group of patients with severe COPD to be 0.43 L. In
a subsequent study [62], the same authors concluded that
the relaxation volume may actually be less than RV. If
an additional 0.6 L or so is added on exercise, the end-
expiratory volume may increase to more than a litre above
the relaxation volume. In a patient with severe airway
obstruction and often greatly reduced vital capacity,
such a degree of dynamic hyperinflation severely con-
strains the tidal volume available on exercise, and con-
sequently the end-inspiratory lung volume may rise to
values exceeding 95% of TLC [61, 63].

Although appreciable, the magnitude of the increase
in FRC on exercise actually underestimates the seve-
rity of hyperinflation of the rib cage compartment (fig.
7). This was first illustrated by the study of GRIMBY et
al. [56], who compared the separate motion of the rib
cage and abdomen in normal subjects and patients with
moderate airway obstruction at rest and on exercise.
They showed that the increase in FRC was due entirely
to an increase in the end-expiratory volume of the rib
cage, while the volume of the abdomen actually decrea-
sed. All the increased volume was accommodated with-
in the rib cage, but, in addition, this compartment had
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Fig. 7.  –  Changes in lung (total) and compartmental volumes of rib cage (rc) and abdomen (ab) during exercise: a) in patients with hyperin-
flation (COPD); and b) in normal subjects. Broken lines indicate end-expiratory (FRC) and end-inspiratory volumes at rest. In the patients with
COPD, FRC increased on exercise and abdominal volume decreased such that the rib cage compartment was even more hyperinflated than would
be estimated from the changes in overall lung volume. FRC: functional residual capacity; TLC: total lung capacity. (Modified from GRIMBY et
al. [56]).
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to compensate for the reduction in abdominal volume.
Nevertheless, despite a reduction in its volume, the rela-
tive displacement of the abdomen increased on exercise
in most subjects. This was in contrast to the situation
in normal subjects in whom the relative abdominal dis-
placement on exercise was similar to that at rest. Simi-
lar findings were reported by DODD et al. [58], who
confirmed that the relatively greater abdominal dis-
placement on exercise in patients with COPD was all
in the expiratory direction. It results from abdominal mus-
cle contraction during expiration, which exerts a "pro-
tective" effect on the diaphragm. Thus, although patients
may be unable to deflate their lungs on exercise to the
resting FRC, the compartmental changes allow diaphrag-
matic contour and length to be conserved, albeit at the
cost of impaired capacity of the rib cage muscles.

In a recent study with important clinical implications,
BELMAN et al. [63] studied the responses to exercise of
patients with COPD after treatment with either placebo
or a bronchodilator (salbutamol). Earlier studies had sug-
gested that the symptomatic response to a bronchodila-
tor might result not only from reversal of airway narrowing
but also from relief of hyperinflation. This was, for
instance, proposed by WOOLCOCK and READ [27] in their
classic study of lung volumes during recovery from spon-
taneous asthma. Also, MULLER et al. [16] showed that
after inhaled salbutamol a reduction in tonic inspira-
tory muscle activity was accompanied by an average
reduction in FRC of 13%. In the study by BELMAN et
al. [63], changes in FRC at rest after bronchodilatation
were small and not statistically significant, but at the
highest workload during progressive exercise both FRC
and end-inspiratory lung volume fell significantly more
with salbutamol than with placebo. The accompanying
reduction in breathlessness correlated most closely with
the reduction in dynamic hyperinflation on exercise, as
assessed by the fall in end-inspiratory lung volume. On
the other hand, reduction in the breathlessness score was
unrelated to improvement in spirometric indices or to
changes in resting FRC. Therefore, this study clearly
has potential implications for the mechanism of symp-
tomatic relief in patients with airway obstruction, per-
haps particularly in those with COPD in whom changes
in conventional tests of airway function are generally
small. The mechanism of improvement is probably a
combination of reduced load and improved inspiratory
muscle capacity accompanying partial reversal of hyper-
inflation, i.e. a reduction in the all important load/ capa-
city ratio, which appears to be a major determinant of
breathlessness in patients with airway disease.

Further evidence of the importance of dynamic hyper-
inflation in the genesis of dyspnoea comes from studies
of the possible beneficial effects of continuous positive
airway pressure (CPAP) applied externally with the aim
of assisting inspiration and balancing the inspiratory
threshold load. Beneficial effects in terms both of the
calculated inspiratory effort and the severity of breath-
lessness have been reported in patients with acute exac-
erbations of COPD during weaning from mechanical
ventilation [64], and more recently in similar patients
during acute hypercapnic exacerbations breathing spon-
taneously without ventilatory support [65]. Provided
that modest pressures are used, CPAP produces no fur-
ther increase in FRC [65]. Furthermore, in ambulant

patients with stable COPD, CPAP of 4–5 cmH2O has been
shown to reduce dyspnoea during exercise [66], and to
increase exercise endurance time [67], again without pro-
ducing greater dynamic hyperinflation. 

CPAP has not proved to be beneficial in all studies
of COPD however, [68], and application of pressure
during inspiration only (inspiratory pressure support)
appears to have more consistent beneficial effects [65,
68, 69]. Pressure support during inspiration alone as-
sists the inspiratory muscles during airflow, but does not
counterbalance the initial effect on the muscles of inspi-
ratory threshold loading, since the patient still needs to
generate inspiratory force to overcome this load before
developing the flow which triggers the ventilating de-
vice to provide assistance. The relative importance of
these factors in the genesis of dyspnoea is not clear.
Recent data suggest that the response to applied pres-
sure in acutely induced asthma may differ from that
which pertains during exercise in patients with stable
chronic airway obstruction. 

While studies in COPD during exercise have shown
that inspiratory pressure support gives more consistent
symptomatic relief, a recent study of patients with in-
duced asthma showed that CPAP produced greater symp-
tomatic benefit than pressure during inspiration only
[70]. The apparently different responses may be a con-
sequence of persistent inspiratory muscle activity dur-
ing expiration in asthma, while in COPD dynamic
hyperinflation is essentially passive.

The application of positive pressure at the mouth for
symptomatic relief during exercise is currently not a
practicable proposition for routine treatment, but it might
be of value in rehabilitation programmes.
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