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ABSTRACT: The selective recruitment of eosinophils into the mucosal lining of
the airways is a prominent feature of atopic asthma, and is believed to be an impor-
tant component in the disease pathogenesis. The precise stimuli responsible for the
influx of eosinophils remain unclear. Using a semiquantitative reverse transcrip-
tase polymerase chain reaction (RT-PCR) technique, the numbers of copies (rela-
tive to the ""housekeeping"" gene β-actin) of messenger ribonucleic acid (mRNA)
encoding the eosinophil-active chemotactic cytokines, the factor regulated upon
activation in normal T-cells expressed and secreted (RANTES) and monocyte
chemotactic protein-3 (MCP-3), was measured in bronchial biopsies from atopic
asthmatic patients (n=9), and compared with atopic nonasthmatic (n=8) and
nonatopic nonasthmatic (n=8) control subjects. In addition, further biopsies from
each subject were prepared for immunohistochemistry and the numbers of acti-
vated (EG2+) eosinophils measured.

The expression of RANTES mRNA was significantly elevated in the atopic asth-
matic group as compared to the atopic nonasthmatic controls (p=0.013) and the
nonatopic nonasthmatic controls (p=0.007). Similarly, the expression of mRNA
encoding MCP-3 was significantly elevated in the atopic asthmatic group, relative
to the atopic nonasthmatic controls (p=0.014) and the nonatopic nonasthmatic con-
trol group (p=0.011). Elevated RANTES and MCP-3 mRNA expression was asso-
ciated with significantly increased numbers of bronchial mucosal eosinophils in
the atopic asthmatic patients as compared to the atopic nonasthmatic (p=0.03) and
nonatopic nonasthmatic (p=0.006) control subjects.

In conclusion, we have identified elevated expression of messenger ribonucleic
acid encoding RANTES and monocyte chemotactic protein-3 in the bronchial
mucosa of atopic asthmatic patients relative to controls. These findings are com-
patible with the hypothesis that eosinophil-active β-chemokines play a role in the
mechanism of eosinophil recruitment to the asthmatic bronchial mucosa.
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The accumulation of eosinophils in the airways mucos-
al lining is a consistently recognized feature of asthma
[1–3]. Furthermore, the numbers of infiltrating eosino-
phils are often observed to correlate with markers of dis-
ease severity [2, 3]. Eosinophils are believed to mediate
bronchial mucosal damage through the release of toxic
proteins, enzymes and lipid mediators [3], ultimately res-
ulting in the clinical features of asthma (variable airways
obstruction and bronchial hyperreactivity).

In view of this, much attention has been focused on
identifying the precise stimuli leading to the recruitment
and activation of eosinophils in the bronchial mucosa.
Eosinophil-active cytokines (interleukin-3 (IL-3), inter-
leukin-5 (IL-5) and granulocyte/macrophage colony-sti-
mulating factor (GM-CSF)) liberated locally by activated,
type 2 T-helper (Th2) T-lymphocytes [4] may play a
role by promoting (selectively in the case of IL-5) eo-
sinophil differentiation from committed precursors, and
enhancing survival, activation and hyperadherence of

mature cells [5–8]. It is not clear, however, how far
these cytokines play a role in inducing the selective
migration of eosinophils from the peripheral vascula-
ture. Furthermore, these cytokines are only weakly chemo-
tactic for eosinophils in vitro.

Increased understanding of the properties of the C-C
(or β) subfamily of chemotactic cytokines, or "chemo-
kines" has led to suggestions that certain of these medi-
ators may play an important role in inducing selective
eosinophil recruitment to the relevant mucosal surface
in allergic inflammatory diseases, such as atopic asth-
ma. In particular, the activities of the β-chemokines, the
factor regulated upon activation in normal T-cells, ex-
pressed and secreted (RANTES) and monocyte chemo-
tactic protein-3 (MCP-3), on granulocytes are restricted
to eosinophils and basophils, with no demonstrable acti-
vity on neutrophils. Both RANTES and MCP-3 are selec-
tively chemotactic for eosinophils in vitro [9–12], and
exert other selective stimulatory activities on these cells,



including rapid intracellular calcium mobilization, gran-
ule protein release and elevated expression of adhesion
molecules [9–12]. More significantly, RANTES causes
local accumulation of eosinophils after intradermal in-
jection into the skin of animals [13, 14] and humans [15],
indicating that certain β-chemokines may be capable of
inducing selective eosinophil extravasation in vivo as
well as chemotaxis in vitro. Similarly, intrabronchial
challenge of mice with RANTES or MCP-3 induced
an eosinophilic infiltration into the lung [16]. Thus, β-
chemokines have the potential to act in concert with
eosinophil-active cytokines in promoting selective eosi-
nophil accumulation in the asthmatic bronchial mucosa.

In view of these observations, we hypothesized that
the expression of messenger ribonucleic acid (mRNA)
encoding the eosinophil-active chemokines, RANTES
and MCP-3, is elevated in the bronchial mucosa of atopic
asthmatic patients as compared with atopic and non-
atopic, nonasthmatic controls. The aim of the present
study was to measure the numbers of copies of mRNA
encoding RANTES and MCP-3 in bronchial mucosal
biopsies from patients with atopic asthma as compared
to control subjects. A semiquantitative reverse tran-
scriptase polymerase chain reaction (RT-PCR) techni-
que was employed, in which β-chemokine mRNA copy
numbers were expressed relative to those of the "house-
keeping" gene, β-actin.

Materials and methods 

Study subjects

The study subjects comprised atopic asthmatic patients
(n=9), atopic nonasthmatic control subjects (n=8), and
nonatopic nonasthmatic controls (n=8). A comprehen-
sive clinical assessment of each volunteer was performed
to establish atopic and asthmatic status (table 1). Asthma
was defined as: 1) a documented clinical history with
current symptoms; 2) evidence of >20% reversibility in
forced expiratory volume in one second (FEV1) spon-
taneously or subsequent to inhaled β2-agonists, and/or
demonstration of nonspecific bronchial hyperrespon-
siveness in the preceding two weeks (as defined by a
provocative concentration of histamine producing a 20%
fall in FEV1 (PC20) ≤6 mg·mL-1). In contrast, nonasthma

was defined as: 1) a lifelong absence of asthma symp-
toms; 2) baseline lung function within the normal range
and <20% reversibility in FEV1 either spontaneously,
or after β2-agonist inhalation; 3) absence of nonspeci-
fic bronchial hyperresponsiveness (histamine PC20 >16
mg·mL-1). 

Atopy was defined as a positive skin-prick test and
radioallergosorbent test (RAST) of >0.70 IU·mL-1 (CAP
system, Pharmacia Diagnostics, Sweden) to extracts of
one or more aeroallergens. The atopic nonasthmatic con-
trols suffered from perennial or seasonal rhinitis. Con-
versely, nonatopic subjects were demonstrated to have
negative skin-prick tests and RAST (<0.70 IU·mL-1) to
a wide range of common aeroallergens. None of the sub-
jects had received systemic (2 months) or topical (2
weeks) corticosteroid therapy prior to the commence-
ment of the study, and all were apparently free from
any other chronic or acute disease. Exclusion criteria
included: any history of smoking, age <18 or >65 yrs;
and FEV1 <60% of its predicted value on the proposed
day of bronchoscopy. The study was approved by the
Ethics Committee of the Royal Brompton Hospital, and
all subjects gave written, informed consent.

Fibreoptic bronchoscopy was performed on each pa-
tient, and two biopsies acquired from the first gene-
ration (middle or inferior lobar bronchus) or second
generation (segmental bronchi) of the right bronchus,
as described previously [17]. One biopsy was immedi-
ately snap frozen in liquid nitrogen and stored at -80°C
pending RT-PCR analysis. The second biopsy was pre-
pared for immunohistochemistry, as described previ-
ously [17].

RNA extraction and semiquantitative RT-PCR

Total ribonucleic acid (RNA) was extracted from the
biopsies by thawing with homogenization in TRI reagent
(1 mL) containing 4 µL Microcarrier gel (both Molecular
Research Centre Inc., Oxford, UK), according to the
manufacturer's instructions. The total RNA extracted
from each biopsy was resuspended in 22 µL of diethyl
pyrocarbonate (DEPC) treated water and reverse tran-
scribed in a total volume of 40 µL using Moloney murine
leukaemia virus (M-MLV) reverse transcriptase (Gibco-
BRL, Paisley, UK) and oligo (dT)12-18 primers (Pharma-
cia, Uppsala, Sweden), as described previously [18]. The
resulting complementary deoxyribonucleic acid (cDNA)
was stored at -80°C until used.

For PCR amplification, aliquots (5 µL) of cDNA (dilut-
ed 1:5) from all subjects were made up to 50 µL in PCR
buffer containing primers (table 2), final concentration
1.25 mM, and Taq polymerase (Gibco-BRL, total 2.5
U), as described previously [18], except that 0.44 µg of
"Taqstart" antibody (Clontech, Palo Alto, USA) was
added to each reaction to prevent primer extension prior
to specific annealing. The cycling conditions and final
Mg2+ concentration were optimized for each primer pair
(table 3) to maintain efficient exponential amplification.
Primer sequences for RANTES and MCP-3 were designed
in accord with the published human sequences [19, 20],
and β-actin primers specifically designed for quantita-
tive RT-PCR were purchased from Clontech. The PCR
primers employed in this study did not cross intron-exon
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Table 1.  –  Clinical features of study subjects

Ss Age Sex FEV1 PC20
Clinical status n yrs M/F % pred mg·mL-1

Atopic asthma 9 35 8/1 81 0.16
(24–55) (55–104) (0.02–3.66)

Atopic control 8 27 7/1 98* >16
(18–36) (81–125)

Normal control 8 29 4/4 108* >16
(2–42) (90–119)

Each variable is expressed as a median value, where appro-
priate. The ranges are displayed in parenthesis. Ss: subjects;
M: male; F: female; FEV1: forced expiratory volume in one
second; PC20: provocative concentration of histamine pro-
ducing a 20% fall in FEV1; % pred: percentage of predicted
value.  *: p<0.05, vs atopic asthma; **: p<0.005, vs atopic
asthma.



boundaries; therefore, to ensure that positive signals
were generated from cDNA derived from biopsy mRNA
(and not contaminating genomic deoxyribonucleic acid
(DNA)), two control experiments were performed. Firstly,
the RNA extracted from biopsy material was treated
with 1 U·reaction-1 of RQ1 ribonuclease (RNase)-free
deoxyribonuclease (DNase) (Promega, Madison, USA)
prior to reverse transcription and PCR amplification.
Furthermore, a PCR experiment was performed (under
identical conditions to those used for cDNA amplifica-
tion) on 5 µL of the extracted RNA to determine whether
contaminating genomic DNA was apparent in these sam-
ples.

All PCR amplifications were performed in a thermal
cycler (Hybaid, Teddington, UK). Serial 10 fold dilu-
tions of control DNA (β-actin: Clontech; RANTES and
MCP-3: kind gifts from P. Nelson and G. Opdenakker,
respectively), starting from a maximal number of start-
ing copies of standard DNA of 3×107 ranging down to
0 copies, were amplified in parallel with the patient's
cDNA samples. The lower limit of sensitivity of the
assay was in the region of 1–3,000 copies of starting
copies of cDNA (fig. 1). For each chemokine species
and β-actin, all samples along with the cDNA standards
were amplified in the same PCR reaction using the same
PCR mix.

Gene specific amplification was verified by visualiz-
ation of the appropriate sized band on ethidium bromide
stained 2.0% agarose gels following electrophoresis of
PCR product. To semiquantify β-actin and β-chemokine
cDNAs, 10 µL of PCR amplification product from all
subjects and DNA controls were denatured, Southern
blotted and probed with the appropriate gene-specific
internal oligonucleotide (table 2), as described previ-
ously [18], except that oligonucleotide probes were end-
labelled (specific activities approximately 1×107 counts

per minute (cpm)·ng-1) with γ-32P-adenosine triphosphate
(ATP) (Amersham, Little Chalfont, UK) using T4 poly-
nucleotide kinase (Promega), and then purified on Sepha-
rose G-20 spin columns (Pharmacia). Following two high
stringency washes (1×standard sodium citrate (SSC)/
0.1% sodium dodecyl sulphate (SDS) at 55°C) of the
membranes, autoradiography was performed using X-
OMAT AR film (Eastman Kodak, Rochester, NY). Ex-
posed film was developed and the optical density of the
blot autoradiographs measured using an automated flat
bed densitometer and associated software (Quantity One
Software, PDI Inc., New York, NY). Positive anneal-
ing of the gene-specific probes further verified the speci-
ficity of PCR amplification.

Quantification was performed by constructing stan-
dard curves relating the optical density of the blots pro-
duced by amplification of the 10 fold serial dilutions of
DNA standards to their starting concentrations (fig. 1).
In each case, the logarithms of the blot optical densi-
ties were approximately linearly related to the starting
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Table 2.  –  Primer and probe nucleotide sequences

Target Primer nucleotide sequences Gene specific probe nucleotide sequence
cDNA (5' to 3') (5' to 3')

β-actin FP: AAGGCCAACCGCGAGAAGATG GGCTGGGGTGTTGAAGGTCTCAAACATGAT
RP: ACAGGACTCCATGCCCAGGAA

RANTES FP: TTGCTCTTGTCCTAGCTTGGGAGG CAAAGTGCTGGGATTACAAGGCTGAGCCAC
RP: AGCAGCGCCTCAGAAGCTCTTCTA

MCP-3 FP: CAAACTGGACAAGGAGATCTGTGC TCTCAGAACCACTCTGAGAAAGGACAGGGT
RP: ATGAGGTAGAGAAGGGAGGAGCAT

cDNA: complementary deoxyribonucleic acid; RANTES: factor regulated upon activation in normal T-cells, expressed
and secreted; MCP-3: monocyte chemotactic protein-3; FP: forward primer; RP: reverse primer; A: adenine; G: gua-
nine; T: thymine; C: cytosine.

Table 3.  –  Thermal cycling conditions used for ampli-
fication of RANTES, MCP-3 and β-actin

Primer set: RANTES MCP-3 β-actin

[Mg2+] mM 3.0 5.0 2.5
Cycle number 40 35 30
Denaturation temperature  ˚C* 94 94 94
Annealing temperature  ˚C* 60 56 60
Extension temperature  ˚C* 72 72 72

*: Denaturation, annealing and extension were allowed to pro-
ceed for 1 min with each primer set. For definitions see leg-
end to table 2.  
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Fig. 1.  –  A typical standard curve graph, showing Southern blot
optical densities (arbitrary units (au)) resulting from PCR amplifica-
tion and probing of 10 fold serial dilutions of MCP-3 cDNA stan-
dards. The linearity of the graph demonstrates that PCR amplification
was exponential. All samples from the study subjects generated blot
optical densities within the linear range of the standard curve. Standard
curve graphs constructed from RANTES and β-actin standards were
very similar to the MCP-3 graph in terms of linearity and sensitivity.
PCR: polymerase chain reaction; MCP-3 monocyte cytotactic protein-
3; cDNA: complementary deoxyribonucleic acid; RANTES: factor
regulated upon activation in normal T-cells, expressed and secreted.



concentrations of the DNA standards within the range
of concentrations measured. The optical density mea-
surements from each blotted subject sample were com-
fortably within the linear range of the 10 fold serially
diluted standards, and thus could be accurately extrap-
olated from the standard curve graphs. The optical den-
sities of the blots from each amplified cDNA species
from the subject samples were then expressed in terms
of the numbers of starting copies of standard DNA mol-
ecules required to generate a blot of equivalent optical
density. Finally, for each subject sample the numbers
of starting copies of β-chemokine cDNA were expressed
as percentages of the numbers of starting copies of β-
actin cDNA. No signals were obtained from blotted,
irrelevant DNA, or amplified water controls.

Immunohistochemistry

Sections, 6 µm thick, were cut from frozen biopsies
onto slides coated with 0.1% poly-L-lysine (BDH, Lei-
cester, UK). The sections were air-dried for 2 h at room
temperature and stored at -80°C until analysed. Immu-
nohistochemistry was performed using the alkaline phos-
phatase antialkaline phosphatase method, as described
previously [17]. A mouse monoclonal antibody (anti-
EG2: Sanbio BV, Amsterdam, The Netherlands) speci-
fic for the cleaved form of eosinophil cationic protein
was employed to identify eosinophils.

Statistical analysis 

All data were analysed by nonparametric statistics
using a software package (Minitab, State College, PA,
USA). Significant intergroup variability was first estab-
lished using the Kruskal-Wallis test. The Mann-Whitney
U-test was then employed between groups to determine
significance. A p-value of less than 0.05 was consid-
ered significant.

Results

The clinical and demographic features of the three
subject groups are shown in table 1. The histamine PC20
for the asthmatics ranged 0.02–3.66 mg·mL-1, whereas
the corresponding values in the nonasthmatic groups
were uniformly >16 mg·mL-1. In addition, the asthmat-
ics had significantly lower prebronchodilator FEV1 mea-
surements, expressed as a percentage of the predicted
value, as compared both with the atopic (p<0.05) and
nonatopic (p<0.005) nonasthmatic controls.

Productive RNA extraction and cDNA synthesis was
demonstrable, since all patient samples generated strong
β-actin signals (fig. 2) by PCR and Southern dot blot
analysis (the minimum number of starting cDNA mole-
cules encoding β-actin was 28,000). The absence of con-
taminating genomic DNA was demonstrated by PCR
amplification of extracted RNA samples. No chemokine
or β-actin signals were generated from any of the RNA
samples in the presence of a positive control cDNA.

The numbers of copies of mRNA encoding RANTES
(relative to β-actin) were significantly elevated in bronchial
biopsies from the atopic asthmatics, as compared both

with the atopic (p=0.013) and nonatopic (p=0.007) non-
asthmatic controls (fig. 3). The numbers of copies of
RANTES mRNA in biopsies from the nonasthmatic con-
trols were statistically equivalent, regardless of atopic
status. Similarly, the numbers of copies of mRNA encod-
ing MCP-3 (relative to β-actin) were significantly in-
creased in the same biopsies from the atopic asthmatics,
as compared with the atopic (p=0.014) and nonatopic (p=
0.011) nonasthmatic control subjects (fig. 4). No signifi-
cant differences in MCP-3 mRNA copy numbers were
detected between the atopic and nonatopic nonasthmatic
controls.
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Fig. 2.  –  The numbers of starting copies of cDNA encoding the
"housekeeping" gene, β-actin, in bronchial biopsies from atopic asth-
matic (AA) patients (n=9), atopic control (AC) subjects (n=8), and
normal control (NC) (n=8). Median values are represented by the
horizontal bars. The efficiency of RNA extraction and cDNA syn-
thesis is demonstrable, since all of the β-actin signals are strong and
equivalent in each subject group. RNA: ribonucleic acid; cDNA: com-
plimentary deoxyribonucleic acid; mRNA: messenger ribonucleic
acid.
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Fig. 3.  –  The number of copies of RANTES mRNA (expressed rel-
ative to β-actin) in bronchial biopsies from atopic asthmatic (AA)
patients (▲), atopic nonasthmatic control (AC) subjects (●) and nonatopic
nonasthmatic control (NC) subjects (❍). Bars illustrate median copy
numbers. Statistical analysis by Mann-Whitney U-test. For definitions
see legend to figures 1 and 2.



The numbers of EG2+ eosinophils were significantly
elevated in the bronchial mucosal sections of the atopic
asthmatic patients, as compared to the atopic nonasth-
matic (p=0.03) and nonatopic nonasthmatic (p=0.006)
control subjects. There was no significant difference
(p>0.05) between the numbers of eosinophils in bronchial
biopsies from the atopic nonasthmatic controls as com-
pared to the nonatopic nonasthmatic controls (fig. 5). In
the atopic asthmatic group, the numbers of copies of
RANTES and MCP-3 mRNA (relative to β-actin) did
not correlate with the number of infiltrating eosinophils.

Discussion

In this study, we have demonstrated significantly eleva-
ted expression, relative to β-actin, of mRNA encoding
the eosinophil-active β-chemokines, RANTES and MCP-
3, in the bronchial mucosa of atopic asthmatics, as com-
pared with atopic and nonatopic nonasthmatic control
subjects. This expression was associated with increased
local numbers of eosinophils. These data are consistent
with the hypothesis that locally secreted eosinophil-
selective β-chemokines play a role in the mechanism of
eosinophil recruitment to the asthmatic bronchial mu-
cosa, and are thus potentially important mediators of
disease.

It is worth noting that elevated bronchial mucosal
expression of RANTES and MCP-3 mRNA was dem-
onstrably not a feature of atopy per se, but instead a
feature specific to atopic asthma. Furthermore, since
the atopic nonasthmatic subjects in the present study
had allergic rhinitis, with possible elevation of β-chemo-
kine secretion locally in the nasal mucosa, our findings
suggest that we have not detected elevated chemokine
mRNA expression in itinerant leucocytes, activated re-
mote from the site of the disease. It is also noteworthy
that β-chemokine mRNA expression was detectable in
a proportion of the control subjects. This might reflect
a basal, physiological degree of chemokine expression
in the bronchial mucosa, allowing the trafficking of
patrolling leucocytes involved in host defence. It also
highlights the sensitivity of the RT-PCR technique.

The data reported here are consistent with other recent
studies showing elevated local RANTES and MCP-3
mRNA expression in association with allergen chal-
lenge of the skin [21] and nasal mucosa [22], in which
eosinophil influx is a prominent feature. In addition to
their eosinophil-active properties, both RANTES [23]
and MCP-3 [24, 25] show chemotactic activity for T-
lymphocytes (CD4+ "memory" T-cells in the case of
RANTES), cells which have also been implicated in
the pathogenesis of asthma. Interestingly, both of these
chemokines also induce histamine release by human
basophils [12, 26], another cellular mechanism impli-
cated in allergic inflammation. Recent evidence indi-
cates that certain β-chemokines, including RANTES,
might be capable of enhancing immunoglobulin E (IgE)
synthesis, further supporting a role for these mediators
in allergic reactions [22].

The measurement of cytokine mRNA expression, using
the RT-PCR technique described here, is an advanta-
geous approach, since it permits the analysis of the
mRNA profiles derived from millions of cells contained
within an entire bronchial biopsy, in contrast to the much
smaller numbers of cells analysed within a tissue sec-
tion, as might be examined by immunohistochemical or
in situ hybridization techniques. The principal reserva-
tion with this technique, and any other in which mRNA
expression is examined, is that mRNA expression might
not necessarily equate with synthesis of the corresponding
protein. It is arguable, however, that demonstration of
mRNA expression is more physiologically relevant, since
it implies de novo synthesis of the relevant protein,
whereas the detection of protein expression might reflect
storage or even uptake of proteins secreted by other
cells. However, it was recently demonstrated [27], in an
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Fig. 4.  –   The number of copies of MCP-3 mRNA (expressed rel-
ative to β-actin) in bronchial biopsies from atopic asthmatic (AA)
patients (▲), atopic nonasthmatic control (AC) subjects (●) and nonatopic
nonasthmatic control (NC) subjects (❍). Bars illustrate median copy
numbers. Statistical analysis by Mann-Whitney U-test. For definitions
see legend to figures 1 and 2.
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Fig. 5.  –  The numbers of activated eosinophils·mm-2 of submucosa
in bronchial biopsy sections from atopic asthmatic (AA) patients (▲),
atopic nonasthmatic control (AC) subjects (●) and nonatopic nonasth-
matic control (NC) subjects (❍). Bars illustrate median cell numbers.
Statistical analysis by Mann-Whitney U-test.



allergen challenge model of allergic rhinitis, that ele-
vated RANTES mRNA expression was associated with
increased expression of the protein product. Thus, there
is a good precedent for the assumption that increased
expression of chemokine mRNA is associated with ele-
vated expression of the corresponding protein.

The demonstration of elevated RANTES mRNA ex-
pression in lymph node granulomas of patients with
sarcoidosis and tuberculosis (prototypical delayed-type
hypersensitivity reactions), as compared with controls
[28], suggests that localized β-chemokine expression
might be a feature of inflammatory mechanisms other
than those involved in allergic inflammation. In the case
of asthma, it seems probable that net eosinophil accu-
mulation in the bronchial mucosa would be influenced
not only by chemokines but by cytokines (such as IL-
3, IL-5 and GM-CSF), which may influence eosinophil
endothelial adhesion, transmigration, and subsequent
survival. Tissue eosinophil numbers might reflect the
rate of local eosinophil death or apoptosis, which is not
known to be influenced by β-chemokines. Thus, RANTES
and MCP-3 expression might be necessary, but not suf-
ficient to effect local eosinophil accumulation. Further-
more, other β-chemokines, such as the recently described
eotaxin [29], which has eosinophil-specific chemotactic
and endothelial transmigatory activities, may also play
a role. Given this multiplicity of potential influences on
eosinophil accumulation within the asthmatic bronchial
mucosa, it is perhaps not surprising that we did not
observe a direct correlation with the degree of RANTES
or MCP-3 mRNA expression considered in isolation.
This does not, however, detract from our hypothesis that
these mediators play some role in the mechanism of eo-
sinophil recruitment to the asthmatic bronchial mucosa.

It was not the purpose of this study to examine the
cellular sources of β-chemokine mRNA in asthmatic
inflammation. Possible cellular sources of RANTES and
MCP-3 include infiltrating leucocytes, such as T-cells
[19], monocytes [30] and eosinophils [31], as well as
bronchial epithelial cells [32, 33]. An interesting future
project would be to identify the cell populations respon-
sible for the in situ production and release of β-chemo-
kines with eosinophil chemotactic properties.

In conclusion, these data support the hypothesis that
the β-chemokines, RANTES and MCP-3, represent part
of the molecular apparatus responsible for the selective
recruitment of eosinophils to the bronchial mucosa in
atopic asthma.
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