

Monocyte migration profiles define disease severity in acute COVID-19 and unique features of long COVID

Nicholas A. Scott ^[1,13], Laurence Pearmain ^[2,3,4,13], Sean B. Knight^{1,5}, Oliver Brand¹, David J. Morgan ^[1], Christopher Jagger¹, Sarah Harbach¹, Saba Khan¹, Halima A. Shuwa¹, Miriam Franklin¹, Verena Kästele¹, Thomas Williams¹, Ian Prise¹, Flora A. McClure¹, Pamela Hackney⁶, Lara Smith⁶, Madhvi Menon¹, Joanne E. Konkel¹, Criag Lawless⁴, James Wilson^{7,8}, Alexander G. Mathioudakis^{2,9}, Stefan C. Stanel^{2,9}, Andrew Ustianowski^{1,7}, Gabriella Lindergard⁷, Seema Brij¹⁰, Nawar Diar Bakerly ^[1], Paul Dark⁵, Christopher Brightling¹¹, Pilar Rivera-Ortega², Graham M. Lord¹, Alex Horsley ^[1], CIRCO, Karen Piper Hanley^{3,4}, Timothy Felton⁹, Angela Simpson⁹, John R. Grainger ^{[1],14}, Tracy Hussell^{1,14} and Elizabeth R. Mann^{1,12,14}

¹Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK. ²North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK. ³Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK. ⁴Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK. ⁵Department of Respiratory Medicine, Salford Royal NHS Foundation Trust, Manchester, UK. ⁶Research Innovation, Manchester University NHS Foundation Trust, Manchester, UK. ⁷Regional Infectious Diseases Unit, North Manchester General Hospital, Manchester, UK. ⁸Department of Microbiology, Salford Royal NHS Foundation Trust, Manchester, UK. ⁹Division of Infection, Immunity and Respiratory Medicine, Manchester NIHR BRC, Education and Research Centre, Wythenshawe Hospital, Manchester, UK. ¹⁰Department of Respiratory Medicine, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK. ¹²Maternal and Fetal Health Centre, Division of Developmental Biology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK. ¹³Equal contribution. ¹⁴Joint senior authors.

Corresponding author: Elizabeth R. Mann (elizabeth.mann@manchester.ac.uk)

Check for updates	 Shareable abstract (@ERSpublications) Immune dysfunction is a key factor in acute COVID-19 pathophysiology, with monocyte abnormalities sustained during convalescence for at least 9 months following hospital discharge and corresponding to specific long COVID symptoms https://bit.ly/3xEIY0H Cite this article as: Scott NA, Pearmain L, Knight SB, <i>et al.</i> Monocyte migration profiles define disease severity in acute COVID-19 and unique features of long COVID. <i>Eur Respir J</i> 2023; 61: 2202226 [DOI: 10.1183/13993003.02226-2022]. This single-page version can be shared freely online.
Copyright ©The authors 2023. This version is distributed under the terms of the Creative Commons Attribution Non- Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org	Abstract Background COVID-19 is associated with a dysregulated immune response but it is unclear how immune dysfunction contributes to the chronic morbidity persisting in many COVID-19 patients during convalescence (long COVID). Methods We assessed phenotypical and functional changes of monocytes in COVID-19 patients during hospitalisation and up to 9 months of convalescence following COVID-19, respiratory syncytial virus or influenza A. Patients with progressive fibrosing interstitial lung disease were included as a positive control for severe, ongoing lung injury. Results Monocyte alterations in acute COVID-19 patients included aberrant expression of leukocyte
This article has an editorial commentary: https://doi.org/10.1183/ 13993003.00409-2023	migration molecules, continuing into convalescence (n=142) and corresponding with specific symptoms of long COVID. Long COVID patients with unresolved lung injury, indicated by sustained shortness of breath and abnormal chest radiology, were defined by high monocyte expression of C-X-C motif chemokine receptor 6 (CXCR6) (p<0.0001) and adhesion molecule P-selectin glycoprotein ligand 1 (p<0.01), alongside preferential migration of monocytes towards the CXCR6 ligand C-X-C motif

Received: 19 May 2022 Accepted: 16 Feb 2023

chemokine ligand 16 (CXCL16) (p<0.05), which is abundantly expressed in the lung. Monocyte CXCR6 and lung CXCL16 were heightened in patients with progressive fibrosing interstitial lung disease (p<0.001), confirming a role for the CXCR6–CXCL16 axis in ongoing lung injury. Conversely, monocytes from long COVID patients with ongoing fatigue exhibited a sustained reduction of the prostaglandin-generating enzyme cyclooxygenase 2 (p<0.01) and CXCR2 expression (p<0.05). These monocyte changes were not present in respiratory syncytial virus or influenza A convalescence.

Conclusions Our data define unique monocyte signatures that define subgroups of long COVID patients, indicating a key role for monocyte migration in COVID-19 pathophysiology. Targeting these pathways may provide novel therapeutic opportunities in COVID-19 patients with persistent morbidity.