
Supplementary Text S1 - Detailed methods 

Consent/ethics 

The study (access to patients’ clinical data) was approved by the NHS Health Research 

Authority (HRA) and Health and Care Research Wales (HCRW) (REC reference 

21/HRA/2554). 

 

Culturing, DNA extraction and sequencing 

Sputum samples were grown in BBL MGIT media (Becton Dickinson; BD) in a BACTEC 

MGIT 960 (BD) culture system until the system indicated likely Mycobacterial growth.  

NTM species confirmation was performed using the GenoTypeMycobacterium CM VER 2.0 

(Hain Lifescience) System.  Confirmed MAC cultures were regrown from bead stock cultures 

in BBL MGIT media (BD) in a BACTEC MGIT 960 (BD) culture system until the system 

indicated growth.  In the absence of growth, DNA was extracted from the bead stock.  DNA 

extractions were performed as previously described 

(https://dx.doi.org/10.17504/protocols.io.bf28jqhw).  A total of 1189 DNA extracts were 

sequenced by the core pipeline teams at the Wellcome Sanger Institute. 

 

Clinical data pertaining to patients from whom NTM cultures were isolated were collected 

from electronic health records at the RBH. Data included patients’ sex, age at the time of first 

positive NTM culture, height, weight, lung function test results, comorbidities, medication 

history and date of death (where applicable). Anonymization was undertaken by removing 

personal data, including patients’ hospital numbers, prior to analysis. 

 

Sequence QC, mapping and phylogenetics 



Basic quality control metrics for the raw sequence data were generated using FastQC v0.11.9 

[1].  Sequence reads with similarity to Mycobacterium species were identified using Kraken 

v0.10.6 [2] and Bracken v1.0 [3].  Samples with < 70% reads mapping to a Mycobacterium 

species were excluded from further analyses (n = 116).  Seven isolates not belonging to the 

MAC (M. abscessus, M. chelonae, M. simiae) were removed from the dataset. Sequence 

reads for each species were trimmed using Trimmomatic v0.33 [4] and mapped to appropriate 

references (supplementary table 1) using BWA mem v0.7.17 (minimum and maximum insert 

sizes of 50 bp and 1000 bp respectively) [5].  Single nucleotide polymorphisms (SNPs) were 

called using SAMtools v1.2 mpileup and BCFtools v1.2 (minimum base call quality of 50 

and minimum root squared mapping quality of 30) as previously described [6].  Samples with 

reads that mapped to < 80% of the reference were excluded (n = 70).  Variant sites were 

extracted from the resulting alignments using snp-sites v2.5.1 [7].  Whole species maximum 

likelihood phylogenetic trees were built using IQ-tree v1.6.5 accounting for constant sites (-

fconst; determined using snp-sites -C) with the built-in model testing (-m MFP) to determine 

the best phylogenetic model and 1000 ultrafast bootstraps (-bb 1000) [8].     

 

For higher-resolution phylogenies within fastBAPS lineages, recombinant regions were 

identified and removed from alignments using GUBBINS [9] and new phylogenetic trees 

were constructed as described above.  Pairwise SNP distances were calculated for all pairs of 

isolates using pairsnp [10]. 

 

Global collections 

To provide context for each the isolates sequenced for each species in this study, datasets 

consisting of published sequenced isolates were assembled (Supplementary File 3) [11–31].  

Sequence data were downloaded from the European Nucleotide Archive (ENA) and trimmed; 



Sample QC, mapping and phylogenetic tree construction were performed as detailed above.  

Only the first isolate from each patient was included from the RBH isolates for each 

species/subspecies. 

 

Genome assemblies 

A previously published pipeline was used to produce annotated assemblies [32].  Briefly, 

sequence reads were assembled with spades v 3.10.10 [33] and assemblies were improved by 

first scaffolding the assembled contigs using SSPACE v2.0 [34] and filling the sequence gaps 

with GapFiller v1.11 [35]. 

 

Transmission and epidemiological linkage 

Genomic lineages were identified using fastBAPS [36] and new alignments were created for 

lineages  ten isolates by aligning sequence reads for included isolates against the assembly 

that had the smallest number of contigs (using the method described above). In order to 

calculate a pairwise SNP threshold to determine putative transmission clusters within each 

genomic lineage, pairwise SNP distances for all isolates for each species in the RBH datasets 

were calculated.  Using a previously described method [37], the transmission threshold for 

each species, regardless of lineage, was calculated by taking the 95
th

 percentile of the 

maximum within-patient isolate pairwise SNP distances for all patients and adding twice the 

number of mutations expected to occur in a six month period.  To account for excess within-

patient diversity observed in the M. chimaera FB1 and M. avium subsp. avium FB14 lineages 

(Fig A in S1 Data), pairwise SNP distances greater than 25 and 50 (assumed to result from 

infection with multiple lineages) were removed respectively before the above calculations 

were performed.  Based on these results, the R library iGRAPH [38,39] and pairwise SNP 

thresholds of 16 (M. intracellulare and M. avium subsp. hominissuis), 30 (M. chimaera) and 



58 SNPs (M. avium subsp. avium) were used to calculate putative transmission clusters in 

each genomic lineage. Finally, in order to identify possible epidemiological links between 

patients infected within the same transmission clusters, hospital stay records were examined 

for epidemiological contacts. The latter were defined as patients attending the same ward on 

the same day up to one year prior to the collection of the first sequenced isolate. 
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Supplementary Table 1. Reference genomes used in this study.  

Species/ 

subspecies 

Reference Length (Mb) Country of 

isolation 

Year(s) of 

isolation 

M. intracellulare ATCC 13950 5.4 South 

Korea 

2012 

M. avium subsp. avium 104 5.5 USA 1983 

M. avium subsp. 

hominissuis 

TH135 5.0 Japan 2004-2008 

M. chimaera DSM 44623 5.9 Italy 1999-2003 

 

Supplementary Table 2. Mycobacterium intracellulare transmission clusters 

fastBAP

S cluster 

Transmissio

n cluster 

Patient

s (n) 

Bronchiectas

is (n) 

Cystic 

Fibrosi

s (n) 

Other 

lung 

condition

s (n)  

No pre-

existing 

lung 

conditio

n (n) 

Patients 

undergoin

g 

treatment 

(n) 

Mi_FB2 Mi_FB2_1 2 0 2 0 0 1 

Mi_FB3 Mi_FB3_1 16 8 7 1 0 4 

Mi_FB5 Mi_FB5_1 3 2 0 1 0 2 

 

 

Supplementary Table 3. M. avium subsp. avium transmission clusters 

fastBAPS 

cluster 

Transmissio

n cluster 

Patien

ts (n) 

Bronchiecta

sis (n) 

Cystic 

Fibros

is (n) 

Other 

lung 

conditio

No pre-

existing 

lung 

Patients 

undergoi

ng 



ns (n) conditio

n (n) 

treatment 

(n) 

MAA_FB

5 

MAA_FB5_

1 

10 6 2 2 0 4 

MAA_FB

5 

MAA_FB5_

4 

2 1 1 0 0 0 

MAA_FB

5 

MAA_FB5_

5 

2 1 0 1 0 1 

MAA_FB

5 

MAA_FB5_

12 

2 1 1 0 0 1 

MAA_FB

7 

MAA_FB7_

1 

2 2 0 0 0 1 

MAA_FB

10 

MAA_FB10

_1 

2 0 2 0 0 0 

MAA_FB

14 

MAA_FB14

_1 

2 2 0 0 0 1 

 

 

Supplementary Table 4. M. avium subsp. hominissuis transmission clusters 

fastBAPS 

cluster 

Transmissio

n cluster 

Patien

ts (n) 

Bronchiecta

sis (n) 

Cystic 

Fibros

is (n) 

Other 

lung 

conditio

ns (n) 

No pre-

existing 

lung 

conditio

n (n) 

Patients 

undergoi

ng 

treatment 

(n) 

MAH_FB MAH_FB8_ 16 7 4 3 1 0 



8 1 

MAH_FB

10 

MAH_FB10

_1 

4 2 2 0 0 1 

MAH_FB

11 

MAH_FB11

_1 

6 3 1 2 0 0 

MAH_FB

12 

MAH_FB12

_2 

4 1 2 1 0 2 

MAH_FB

14 

MAH_FB14

_3 

4 2 2 0 0 0 

MAH_FB

14 

MAH_FB14

_7 

2 0 2 0 0 0 

MAH_FB

14 

MAH_FB14

_9 

7 3 2 1 0 1 

 

Supplementary Table 5. Mycobacterium chimaera transmission clusters 

 

fastBAP

S cluster 

Transmissio

n cluster 

Patient

s (n) 

Bronchiectas

is (n) 

Cystic 

Fibrosi

s (n) 

Other 

lung 

condition

s (n) 

No pre-

existing 

lung 

conditio

n (n) 

Patients 

undergoin

g 

treatment 

(n) 

Mc_FB3 Mc_FB3_1 106 43 24 25 3 15 

Mc_FB3 Mc_FB3_3 2 1 1 0 0 0 

Mc_FB3 Mc_FB3_4 2 2 0 0 0 0 

Mc_FB3 Mc_FB3_6 2 1 0 1 0 0 

Mc_FB3 Mc_FB3_1 4 1 1 1 1 1 



3 

Mc_FB3 Mc_FB3_1

6 

2 0 0 1 1 1 

Mc_FB3 Mc_FB3_1

7 

2 1 1 0 0 0 

Mc_FB3 Mc_FB3_1

9 

2 0 1 0 1 0 

Mc_FB3 Mc_FB3_2

5 

2 1 1 0 0 1 

Mc_FB3 Mc_FB3_3

0 

4 0 1 0 0 0 

Mc_FB4 Mc_FB4_1 2 1 1 0 0 1 

Mc_FB4 Mc_FB4_2 9 3 3 3 0 2 

Mc_FB4 Mc_FB4_3 6 1 2 2 0 1 

 

 

Supplementary Table 6. Mycobacterium chimaera epidemiological links (n =15 patients) 

 

Patients with 

epidemiological link 

Hospital ward Dates of overlapping stay 

24/218 FOUL 02/02/12-12/02/12 

163/218 FOUL 13/02/12 

175/218 FOUL 05/04/12-16/04/12 

130/218 LIND 30/04/12 

76/218 FOUL 06/06/12-11/06/12 

32/163 LIND 29/06/12 



79/241 LIND 05/07/12 

241/272 LIND 06/07/12 

177/186 LIND 06/08/12 

122/175/306 FOUL 25/10/12-30/10/12 

30/122 FOUL 05/11/12-06/11/12 

30/218 FOUL 12/11/12-13/11/12 

 

Supplementary Table 7. Mycobacterium chimaera global transmission clusters containing 

RBH isolates 

fastBAPS 

cluster 

Transmission 

cluster 

Total 

isolates 

(n) 

Patients 

(n) 

HCU (n) Other (n) 

FB5 FB5_1 21 4 15 2 

FB5 FB5_2 7 7 0 0 

FB5 FB5_3 5 5 0 0 

FB5 FB5_6 4 4 0 0 

FB6_FB1 FB6_FB1_1 489 230 258 1 

FB6_FB1 FB6_FB1_2 6 6 0 0 

FB6_FB1 FB6_FB1_8 5 5 0 0  

FB6_FB1 FB6_FB1_21 4 4 0 0 

FB6_FB2 FB6_FB2_1 22 22 0 0 

FB6_FB2 FB6_FB2_2 36 36 0 0 

FB6_FB2 FB6_FB2_8 16 16 0 0 

FB6_FB2 FB6_FB2_17 10 10 0 0 



FB6_FB2 FB6_FB2_32 11 11 0 0 

FB6_FB2 FB6_FB2_35 2 2 0 0 

FB6_FB4 FB6_FB4_8 4 4 0 0 

FB6_FB4 FB6_FB4_11 3 3 0 0 

FB6_FB4 FB6_FB4_16 2 2 0 0 

 

 



Supplementary Figure 1. Within-host isolate pairwise SNP diversity in fastBAPS 

lineages for A) Mycobacterium intracellulare; B) Mycobacterium avium subsp. avium; C) 

Mycobacterium avium subsp. hominissuis and D) Mycobacterium chimaera. 

 

 

 

Supplementary Figure 2. Population structure of Mycobacterium avium at the Royal 

Brompton Hospital. Maximum likelihood phylogenetic tree of 406 Mycobacterium avium 

isolates rooted with a Mycobacterium avium subsp. paratuberculosis isolate (DRR263663).  



The subspecies of each isolate is shown in the datastrip to the right of the phylogeny. The 

scale bar is shown in SNPs per site. 

 

 

 

Supplementary Figure 3. Global fastBAPS cluster pairwise SNP distance distributions. 

Boxplots showing isolate pairwise SNP distances for A) Mycobacterium intracellulare; B) 

Mycobacterium avium subsp. avium and C) Mycobacterium avium subsp. hominissuis  



 

 

Supplementary Figure 4: Distribution of pairwise SNP distances between isolates from 

the Royal Brompton Hospital and other studies. Histograms showing distribution of 



pairwise SNP distances for fastBAPS clusters for A) Mycobacterium avium subsp. avium; B) 

Mycobacterium avium subsp. hominissuis and C) Mycobacterium chimaera. 

 

 


