

Global estimates and determinants of antituberculosis drug pharmacokinetics in children and adolescents: a systematic review and individual patient data meta-analysis

Fajri Gafar ¹, Roeland E. Wasmann², Helen M. McIlleron^{2,3}, Rob E. Aarnoutse⁴, H. Simon Schaaf ⁵, Ben J. Marais ^{6,7}, Dipti Agarwal⁸, Sampson Antwi^{9,10}, Nguyen D. Bang¹¹, Adrie Bekker⁵, David J. Bell¹², Chishala Chabala ^{2,13,14}, Louise Choo¹⁵, Geraint R. Davies^{16,17}, Jeremy N. Day^{18,19}, Rajeshwar Dayal²⁰, Paolo Denti², Peter R. Donald⁵, Ephrem Engidawork ²¹, Anthony J. Garcia-Prats ^{5,22}, Diana Gibb ³¹⁵, Stephen M. Graham ^{623,24}, Anneke C. Hesseling⁵, Scott K. Heysell²⁵, Misgana I. Idris²⁶, Sushil K. Kabra²⁷, Aarti Kinikar²⁸, Agibothu K. Hemanth Kumar²⁹, Awewura Kwara³⁰, Rakesh Lodha²⁷, Cecile Magis-Escurra³¹, Nilza Martinez³², Binu S. Mathew³³, Vidya Mave^{28,34}, Estomih Mduma ⁶³⁵, Rachel Mlotha-Mitole³⁶, Stellah G. Mpagama³⁷, Aparna Mukherjee²⁷, Heda M. Nataprawira³⁸, Charles A. Peloquin³⁹, Thomas Pouplin⁴⁰, Geetha Ramachandran²⁹, Jaya Ranjalkar³³, Vandana Roy⁴¹, Rovina Ruslami⁴², Ira Shah⁴³, Yatish Singh²⁰, Marieke G.G. Sturkenboom⁴⁴, Elin M. Svensson^{4,45}, Soumya Swaminathan^{29,46}, Urmila Thatte⁴⁷, Stephanie Thee ⁶⁴⁸, Tania A. Thomas²⁵, Tjokosela Tikiso², Daan J. Touw⁴⁴, Anna Turkova¹⁵, Thirumurthy Velpandian⁴⁹, Lilly M. Verhagen^{50,51,52}, Jana L. Winckler⁵, Hongmei Yang⁵³, Vycke Yunivita⁴², Katja Taxis¹, Jasper Stevens^{44,56} and Jan-Willem C. Alffenaar ^{67,54,55,56} for the Global Collaborative Group for Meta-Analysis of Paediatric Individual Patient Data in Pharmacokinetics of Anti-TB Drugs

¹University of Groningen, Groningen Research Institute of Pharmacy, Unit of PharmacoTherapy, -Epidemiology and -Economics, Groningen, The Netherlands. ²University of Cape Town, Department of Medicine, Division of Clinical Pharmacology, Cape Town, South Africa. ³University of Cape Town, Institute of Infectious Disease and Molecular Medicine, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Cape Town, South Africa. ⁴Radboud University Medical Center, Radboud Institute of Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands. ⁵Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Paediatrics and Child Health, Desmond Tutu Tuberculosis Centre, Tygerberg, South Africa. ⁶The Children's Hospital at Westmead, Sydney, Australia. ⁷The University of Sydney, Sydney Institute for Infectious Diseases, Sydney, Australia. ⁸Ram Manohar Lohia Institute of Medical Sciences, Department of Paediatrics, Lucknow, India. ⁹Komfo Anokye Teaching Hospital, Department of Child Health, Kumasi, Ghana. ¹⁰Kwame Nkrumah University of Science and Technology, School of Medical Sciences, Department of Child Health, Kumasi, Ghana. ¹¹Pham Ngoc Thach Hospital, Ho Chi Minh City, Vietnam. ¹²NHS Greater Glasgow and Clyde, Infectious Diseases Unit, Glasgow, UK. ¹³University of Zambia, School of Medicine, Department of Paediatrics, Lusaka, Zambia. ¹⁴University Teaching Hospitals – Children's Hospital, Lusaka, Zambia. ¹⁵University College London, Medical Research Council Clinical Trials Unit, London, UK. ¹⁶Malawi Liverpool Wellcome Clinical Research Programme, Clinical Department, Blantyre, Malawi. ¹⁷University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences, Liverpool, UK. ¹⁸Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam. ¹⁹University of Oxford, Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, Oxford, UK. ²⁰Sarojini Naidu Medical College, Department of Pediatrics, Agra, India. ²¹Addis Ababa University, College of Health Sciences, School of Pharmacy, Department of Pharmacology and Clinical Pharmacy, Addis Ababa, Ethiopia. ²²University of Wisconsin-Madison, School of Medicine and Public Health, Department of Pediatrics, Madison, WI, USA. ²³University of Melbourne, Department of Paediatrics and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia. ²⁴International Union Against Tuberculosis and Lung Disease, Paris, France. ²⁵University of Virginia, Division of Infectious Diseases and International Health, Charlottesville, VA, USA. ²⁶University of Alabama at Birmingham, Department of Biology, Birmingham, AL, USA. ²⁷All India Institute of Medical Sciences, Departments of Pediatrics, New Delhi, India. ²⁸Byramjee Jeejeebhoy Government Medical College – Johns Hopkins University Clinical Research Site, Pune, India. ²⁹Indian Council of Medical Research, National Institute for Research in Tuberculosis, Chennai, India. ³⁰University of Florida, Emerging Pathogens Institute, College of Medicine, Gainesville, FL, USA. ³¹Radboud University Medical Center – TB Expert Centre, Nijmegen, The Netherlands. ³²Instituto Nacional de Enfermedades Respiratorias y Del Ambiente, Asunción, Paraguay. ³³Christian Medical College and Hospital, Department of Pharmacology and Clinical Pharmacology, Vellore, India. ³⁴Johns Hopkins University, Department of Medicine and Infectious Diseases, Baltimore, MD, USA. ³⁵Haydom Lutheran Hospital, Center for Global Health Research, Haydom, Tanzania. ³⁶Queen Elizabeth Central Hospital, Department of Paediatrics, Blantyre, Malawi. ³⁷Kibong'oto Infectious Diseases Hospital, Sanya Juu, Tanzania. ³⁸Universitas Padjadjaran, Hasan Sadikin Hospital, Faculty of Medicine, Department of Child Health, Division of Paediatric Respirology, Bandung, Indonesia. ³⁹University of Florida College of Pharmacy, Gainesville, FL, USA. ⁴⁰Mahidol University, Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand. ⁴¹Maulana Azad Medical College, Department of Pharmacology, New Delhi, India. ⁴²Universitas Padjadjaran, Faculty of Medicine, Department of Biomedical Sciences, Division of Pharmacology and Therapy, Bandung, Indonesia. ⁴³Bai Jerbai Wadia Hospital for Children, Department of Pediatric Infectious Diseases, Pediatric TB Clinic, Mumbai, India. ⁴⁴University of Groningen,

University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands. ⁴⁵Uppsala University, Department of Pharmacy, Uppsala, Sweden. ⁴⁶World Health Organization, Public Health Division, Geneva, Switzerland. ⁴⁷Seth Gordhandas Sunderdas Medical College and King Edward Memorial Hospital, Department of Clinical Pharmacology, Mumbai, India. ⁴⁸Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Berlin, Germany. ⁴⁹All India Institute of Medical Sciences, Ocular Pharmacology and Pharmacy Division, Dr R.P. Centre, New Delhi, India. ⁵⁰Radboud University Medical Center, Radboud Center for Infectious Diseases, Laboratory of Medical Immunology, Section of Pediatric Infectious Diseases, Nijmegen, The Netherlands. ⁵¹Radboud University Medical Center, Amalia Children's Hospital, Department of Paediatric Infectious Diseases and Immunology, Nijmegen, The Netherlands. ⁵²Stellenbosch University, Family Centre for Research with UBUNTU, Department of Paediatrics and Child Health, Cape Town, South Africa. ⁵³University of Rochester, School of Medicine and Dentistry, Department of Biostatistics and Computational Biology, Rochester, NY, USA. ⁵⁴The University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, Australia. ⁵⁵Westmead Hospital, Sydney, Australia. ⁵⁶Both authors contributed equally and shared senior authorship.

Corresponding author: Fajri Gafar (f.gafar@rug.nl)

Cite this article as: Gafar F, Wasmann RE, McIlleron HM, *et al.* Global estimates and determinants of antituberculosis drug pharmacokinetics in children and adolescents: a systematic review and individual patient data meta-analysis. *Eur Respir J* 2023; 61: 2201596 [DOI: 10.1183/13993003.01596-2022].

This single-page version can be shared freely online.

Abstract

Copyright ©The authors 2023.

This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org

This article has an editorial commentary: https://doi.org/10.1183/ 13993003.02003-2022

Received: 12 Aug 2022 Accepted: 10 Oct 2022 *Background* Suboptimal exposure to antituberculosis (anti-TB) drugs has been associated with unfavourable treatment outcomes. We aimed to investigate estimates and determinants of first-line anti-TB drug pharmacokinetics in children and adolescents at a global level.

Methods We systematically searched MEDLINE, Embase and Web of Science (1990–2021) for pharmacokinetic studies of first-line anti-TB drugs in children and adolescents. Individual patient data were obtained from authors of eligible studies. Summary estimates of total/extrapolated area under the plasma concentration–time curve from 0 to 24 h post-dose (AUC_{0–24}) and peak plasma concentration (C_{max}) were assessed with random-effects models, normalised with current World Health Organization-recommended paediatric doses. Determinants of AUC_{0–24} and C_{max} were assessed with linear mixed-effects models.

Results Of 55 eligible studies, individual patient data were available for 39 (71%), including 1628 participants from 12 countries. Geometric means of steady-state AUC₀₋₂₄ were summarised for isoniazid (18.7 (95% CI 15.5–22.6) h·mg·L⁻¹), rifampicin (34.4 (95% CI 29.4–40.3) h·mg·L⁻¹), pyrazinamide (375.0 (95% CI 339.9–413.7) h·mg·L⁻¹) and ethambutol (8.0 (95% CI 6.4–10.0) h·mg·L⁻¹). Our multivariate models indicated that younger age (especially <2 years) and HIV-positive status were associated with lower AUC₀₋₂₄ for all first-line anti-TB drugs, while severe malnutrition was associated with lower AUC₀₋₂₄ for isoniazid and pyrazinamide. *N*-acetyltransferase 2 rapid acetylators had lower isoniazid AUC₀₋₂₄ and slow acetylators had higher isoniazid AUC₀₋₂₄ than intermediate acetylators. Determinants of C_{max} were generally similar to those for AUC₀₋₂₄.

Conclusions This study provides the most comprehensive estimates of plasma exposures to first-line anti-TB drugs in children and adolescents. Key determinants of drug exposures were identified. These may be relevant for population-specific dose adjustment or individualised therapeutic drug monitoring.

