Online data supplement

Global estimates and determinants of antituberculosis drug pharmacokinetics in children and adolescents: a systematic review and individual patient data meta-analysis

Fajri Gafar,^{*} Roeland E. Wasmann, Helen M. McIlleron, Rob E. Aarnoutse, H. Simon Schaaf, Ben J. Marais, Dipti Agarwal, Sampson Antwi, Nguyen D. Bang, Adrie Bekker, David J. Bell, Chishala Chabala, Louise Choo, Geraint R. Davies, Jeremy N. Day, Rajeshwar Dayal, Paolo Denti, Peter R. Donald, Ephrem Engidawork, Anthony J. Garcia-Prats, Diana Gibb, Stephen M. Graham, Anneke C. Hesseling, Scott K. Heysell, Misgana I. Idris, Sushil K. Kabra, Aarti Kinikar, Agibothu K. Hemanth Kumar, Awewura Kwara, Rakesh Lodha, Cecile Magis-Escurra, Nilza Martinez, Binu S. Mathew, Vidya Mave, Estomih Mduma, Rachel Mlotha-Mitole, Stellah G. Mpagama, Aparna Mukherjee, Heda M. Nataprawira, Charles A. Peloquin, Thomas Pouplin, Geetha Ramachandran, Jaya Ranjalkar, Vandana Roy, Rovina Ruslami, Ira Shah, Yatish Singh, Marieke G. G. Sturkenboom, Elin M. Svensson, Soumya Swaminathan, Urmilla Thatte, Stephanie Thee, Tania A. Thomas, Tjokosela Tikiso, Daan J. Touw, Anna Turkova, Thirumurthy Velpandian, Lilly M. Verhagen, Jana Winckler, Hongmei Yang, Vycke Yunivita, Katja Taxis, Jasper Stevens, Jan-Willem C. Alffenaar.

*Corresponding author:

Fajri Gafar (f.gafar@rug.nl)

Table of contents

Appendix 1 Search strategy 4 Appendix 2 Checklist and interpretation for quality assessment of included studies. 6 Appendix 3 Requested variables from contacted authors with individual-patient data. 10 Appendix 4 Methods used in the classification of acetylator straus of isoniazid. 11 Appendix 5 Pharmacokinetic assessments. 12 Table E1 Excluded studies with identical or overlapping cohorts with original eligible studies for which individual patient data were or the provided. 14 Table E3 Quality assessment results of the included studies for which individual patient data were or provided. 15 Table E4 Eligible studies for which individual patient data were on the overlapsing on the observations for which AUC ₆₅₂ and Cmax values could not be assessed due to 17 16 Table E4 Fligible studies for summary estimates of dose-normalized AUC ₆₅₂ for isoniazid in children and adolescents with tuberculosis, stratified by study-characteristics. 19 adolescents with tuberculosis, stratified by study characteristics. 20 Table E4 Forest plots for summary estimates of dose-normalized AUC ₆₂₄ for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. 19 adolescents with tuberculosis, stratified by study characteristics. 20 20			Page
Appendix 2 Checklist and interpretation for quality assessment of included studies. 6 Appendix 3 Requested variables from contacted authors with individual-patient data. 10 Appendix 5 Pharmacokinetic assessments. 12 Table 11 Excluded studies with identical or overlapping cohorts with original eligible studies for which individual patient data were or were not provided. 13 Table 52 Demographic information of all included studies for which individual patient data were inprovided. 14 Table 53 Quality assessment results of the included studies for which individual patient data were inprovided. 15 Table 54 Demographic information for which AUC _{0.24} and Cmax values could not be assessed due to 17 16 Table 55 Details of the observations for which AUC _{0.24} and Cmax values could not be assessed use to 17 18 Figure 51 Forest plots for summary estimates of dose-normalized AUC _{0.24} for isoniazid in children and adolescents with tuberculosis, stratified by study characteristics. 19 Table 126 Multivariate linear mixed-effects analyses on the effect of NAT2 acetylator genotypes on log-20 20 transformed AUC _{0.24} and Cmax values for isoniazid in children and adolescents with tuberculosis, stratified by study characteristics. 12 Figure 123 Forest	Appendix 1	Search strategy	4
Appendix 3 Requested variables from contacted authors with individual-patient data. 10 Appendix 4 Methods used in the classification of acetylator status of isoniazid. 11 Appendix 5 Pharmacokinetic assessments. 12 Table E1 Excluded studies with identical or overlapping cohorts with original eligible studies for which individual patient data were or were not provided. 13 Table E2 Demographic information of all included studies for which individual patient data were interprovided. 14 Table E4 Eligible studies for which individual patient data were not provided, and reasons for exclusion. 16 Table E5 Details of the observations for which AlCo ₂₄ and C _{max} values could not be assessed due to the limited number of samples available, or due to other reasons. 17 Figure E1 Forest plots for summary estimates of dose-normalized AUCo ₂₄ for isoniazid in children and adolescents with tuberculosis, stratified by study-characteristics. 19 Table E6 Multivariate linear mixed-effects analyses on the effect of NAT2 acetylator genotypes on log-transformed AUCo ₂₄ and C _{max} values for isoniazid in children and adolescents with tuberculosis, stratified by study characteristics. 20 Table E6 Forest plots for summary estimates of dose-normalized AUCo ₂₄ for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. 21 </td <td>Appendix 2</td> <td>Checklist and interpretation for quality assessment of included studies.</td> <td>6</td>	Appendix 2	Checklist and interpretation for quality assessment of included studies.	6
Appendix 4 Methods used in the classification of acetylator status of isoniazid. 11 Appendix 5 Pharmacokinetic assessments. 12 Table E1 Excluded studies with identicate or over not provided. 13 Table E2 Demographic information of all included studies for which individual patient data were read provided. 14 Table E4 Quality assessment results of the included studies for which individual patient data were read provided. 15 Table E4 Demographic information of all included studies for which individual patient data were reads. 16 Table E4 Details of the observations for which AUC _{0.24} and C _{max} values could not be assessed due to the initide number of samples available, or due to other reasons. 17 Figure E1 Forest plots for summary estimates of dose-normalized AUC _{0.24} for isoniazid in children and adolescents with tuberculosis, stratified by study characteristics. 19 Figure E3 Forest plots for summary estimates of dose-normalized AUC _{0.24} for iffampicin in children and adolescents with tuberculosis, stratified by study characteristics. 21 Figure E4 Forest plots for summary estimates of dose-normalized C _{max} for riffampicin in children and adolescents with tuberculosis, stratified by study characteristics. 22 Table E4 Multivariate linear mixed-effects analyses on the effect of NAT2 ace	Appendix 3	Requested variables from contacted authors with individual-patient data.	10
Appendix 5 Pharmacokinetic assessments. 12 Table E1 Excluded studies with identical or overlapping cohorts with original eligible studies for which individual patient data were or were not provided. 13 Table E2 Demographic information of all included studies for which individual patient data were provided. 14 Table E3 Quality assessment results of the included studies for which individual patient data were provided 15 Table E4 Eligible studies for which individual patient data were not provided, and reasons for exclusion. 16 Table E5 Details of the observations for which AlCo ₂₄ and C _{max} values could not be assessed due to the limited number of samples available, or due to other reasons. 17 Figure E1 Forest plots for summary estimates of dose-normalized AUCo ₂₄ for isoniazid in children and adolescents with tuberculosis, stratified by study-characteristics. 19 Table E6 Multivariate linear mixed-effects analyses on the effect of NAT2 acetylator genotypes on log- transformed AUC ₀₋₂₄ and C _{max} values for isoniazid in children and adolescents with tuberculosis, stratified by study characteristics. 20 Figure E3 Forest plots for summary estimates of dose-normalized AUCo ₂₄ for prazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 21 Figure E4 Forest plots for summary estimates of dose-normalized AUCo ₂₄ for pr	Appendix 4	Methods used in the classification of acetylator status of isoniazid.	11
Table E1 Excluded studies with identical or overlapping cohorts with original eligible studies for which 13 individual patient data were or were not provided. Table E2 Demographic information of all included studies for which individual patient data were provided. 14 Table E3 Quality assessment results of the included studies for which individual patient data were not provided. 15 Table E4 Eligible studies for which individual patient data were not provided, and reasons for exclusion. 16 Table E4 Eligible studies for which individual patient data were not provided, and reasons for exclusion. 16 Table E5 Details of the observations for which AUC _{0.24} and C _{max} values could not be assessed due to 17 17 the limited number of samples available, or due to other reasons. 18 adolescents with tuberculosis, stratified by study characteristics. 19 Figure E2 Forest plots for summary estimates of dose-normalized C _{ME} for rifampicin in children and adolescents with tuberculosis, adjusted for age, sex, nutritional status and HIV status. 21 Figure E3 Forest plots for summary estimates of dose-normalized AUC _{0.24} for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. 21 Figure E4 Forest plots for summary estimates of dose-normalized AUC _{0.24} for rifampicin in children a	Appendix 5	Pharmacokinetic assessments.	12
individual patient data were or were not provided. Table E2 Demographic information of all included studies for which individual patient data were provided. Table E3 Quality assessment results of the included studies for which individual patient data were 15 provided Table E4 Eligible studies for which individual patient data were not provided, and reasons for exclusion. 16 Table E5 Details of the observations for which AUC ₀₋₂₄ and Cmax values could not be assessed due to 17 the limited number of samples available, or due to other reasons. Figure E1 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for isoniazid in children and adolescents with tuberculosis, stratified by study-characteristics. Figure E2 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. Figure E3 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. Figure E4 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. Figure E4 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. Figure E5 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for rifampicin in children and adolesce	Table E1	Excluded studies with identical or overlapping cohorts with original eligible studies for which	13
Table E2 Demographic information of all included studies for which individual patient data were provided. 14 Table E3 Quality assessment results of the included studies for which individual patient data were in provided. 15 Table E4 Eligible studies for which individual patient data were not provided, and reasons for exclusion. 16 Table E5 Details of the observations for which AUC ₀₋₂₄ and Cmax values could not be assessed due to 17 17 figure E1 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for isoniazid in children and adolescents with tuberculosis, stratified by study-characteristics. 18 Figure E2 Forest plots for summary estimates of dose-normalized Cmax for isoniazid in children and adolescents with tuberculosis, stratified by study characteristics. 20 Table E6 Multivariate linear mixed-effects analyses on the effect of NAT2 acetylator genotypes on log-transformed AUC ₀₋₂₄ and Cmax values for isoniazid in children and adolescents with tuberculosis, stratified by study characteristics. 21 Figure E3 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. 22 Figure E4 Forest plots for summary estimates of dose-normalized Cmax for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 23 Figure E4 Forest plots for summary estimates of		individual patient data were or were not provided.	
Table E3 Quality assessment results of the included studies for which individual patient data were not provided, and reasons for exclusion. 16 Table E4 Eligible studies for which individual patient data were not provided, and reasons for exclusion. 16 Table E5 Details of the observations for which AUC _{0.24} and C _{max} values could not be assessed due to 17 17 the limited number of samples available, or due to other reasons. 17 Figure E1 Forest plots for summary estimates of dose-normalized AUC _{0.24} for isoniazid in children and adolescents with tuberculosis, stratified by study-characteristics. 19 Table E6 Multivariate linear mixed-effects analyses on the effect of NAT2 acetylator genotypes on log-transformed AUC _{0.24} and C _{max} values for isoniazid in children and adolescents with tuberculosis, stratified by study characteristics. 20 Figure E3 Forest plots for summary estimates of dose-normalized AUC _{0.24} for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. 21 Figure E4 Forest plots for summary estimates of dose-normalized C _{max} for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. 22 Figure E4 Forest plots for summary estimates of dose-normalized C _{max} for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 23 Figure E5 Forest plots for summary estimates of dose-normalized AU	Table E2	Demographic information of all included studies for which individual patient data were provided.	14
Table E4 Eligible studies for which individual patient data were not provided, and reasons for exclusion. 16 Table E5 Details of the observations for which AUC ₀₂₄ and C _{max} values could not be assessed due to the limited number of samples available, or due to other reasons. 17 Figure E1 Forest plots for summary estimates of dose-normalized AUC ₀₂₄ for isoniazid in children and adolescents with tuberculosis, stratified by study-characteristics. 18 Table E6 Multivariate linear mixed-effects analyses on the effect of NAT2 acetylator genotypes on log-transformed AUC ₀₂₄ and C _{max} values for isoniazid in children and adolescents with tuberculosis, stratified by study characteristics. 20 Figure E3 Forest plots for summary estimates of dose-normalized AUC ₀₂₄ for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. 21 Figure E4 Forest plots for summary estimates of dose-normalized AUC ₀₂₄ for prazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 22 Figure E4 Forest plots for summary estimates of dose-normalized AUC ₀₂₄ for prazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 23 Figure E5 Forest plots for summary estimates of dose-normalized C _{max} for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. 24 Figure E6 Forest plots for summary estimates of d	Table E3	Quality assessment results of the included studies for which individual patient data were provided	15
 Table E5 Details of the observations for which AUC₀₋₂₄ and C_{max} values could not be assessed due to Table E5 Details of the observations for which AUC₀₋₂₄ and C_{max} values could not be assessed due to Time E1 Forest plots for summary estimates of dose-normalized AUC₀₋₂₄ for isoniazid in children and adolescents with tuberculosis, stratified by study-characteristics. Figure E2 Forest plots for summary estimates of dose-normalized Cmax for isoniazid in children and adolescents with tuberculosis, stratified by study characteristics. Table E6 Multivariate linear mixed-effects analyses on the effect of NAT2 acetylator genotypes on log-transformed AUC₀₋₂₄ and Cmax values for isoniazid in children and adolescents with tuberculosis, adjusted for age, sex. nutritional status and HIV status. Figure E3 Forest plots for summary estimates of dose-normalized AUC₀₋₂₄ for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. Figure E4 Forest plots for summary estimates of dose-normalized AUC₀₋₂₄ for prazinamide in children and adolescents with tuberculosis, stratified by study characteristics. Figure E5 Forest plots for summary estimates of dose-normalized AUC₀₋₂₄ for prazinamide in children and adolescents with tuberculosis, stratified by study characteristics. Figure E6 Forest plots for summary estimates of dose-normalized AUC₀₋₂₄ for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. Figure E7 Forest plots for summary estimates of dose-normalized AUC₀₋₂₄ for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. Figure E8 Forest plots for summary estimates of dose-normalized AUC₀₋₂₄ for ethambutol in children and adolescents with tuberculosis, by patient characteristics. Figure E8 Forest plots for summary estimates of dose-ad	Table F4	Eligible studies for which individual natient data were not provided and reasons for exclusion	16
 Figure E1 Forest plots for summary estimates of dose-normalized AUC_{0.24} for isoniazid in children and adolescents with tuberculosis, stratified by study-characteristics. Figure E3 Forest plots for summary estimates of close-normalized AUC_{0.24} for isoniazid in children and adolescents with tuberculosis, stratified by study characteristics. Table E6 Multivariate linear mixed-effects analyses on the effect of NAT2 acetylator genotypes on log-transformed AUC_{0.24} and C_{max} values for isoniazid in children and adolescents with tuberculosis, stratified by study characteristics. Forest plots for summary estimates of dose-normalized AUC_{0.24} for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. Figure E3 Forest plots for summary estimates of dose-normalized AUC_{0.24} for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. Figure E4 Forest plots for summary estimates of dose-normalized AUC_{0.24} for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. Figure E5 Forest plots for summary estimates of dose-normalized AUC_{0.24} for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. Figure E6 Forest plots for summary estimates of dose-normalized AUC_{0.24} for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. Figure E7 Forest plots for summary estimates of dose-normalized AUC_{0.24} for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. Figure E8 Forest plots for summary estimates of dose-normalized AUC_{0.24} for ethambutol in children and adolescents with tuberculosis, by patient characteristics. Table	Table E5	Details of the observations for which $AUC_{0.24}$ and C_{max} values could not be assessed due to	17
Figure E1 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for isoniazid in children and adolescents with tuberculosis, stratified by study-characteristics. 18 Figure E2 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for isoniazid in children and adolescents with tuberculosis, stratified by study characteristics. 19 Table E6 Multivariate linear mixed-effects analyses on the effect of NAT2 acetylator genotypes on log-transformed AUC ₀₋₂₄ and C _{max} values for isoniazid in children and adolescents with tuberculosis, adjusted for age, sex, nutritional status and HIV status. 20 Figure E3 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. 21 Figure E4 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for prizarinamide in children and adolescents with tuberculosis, stratified by study characteristics. 23 Figure E4 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for prizarinamide in children and adolescents with tuberculosis, stratified by study characteristics. 24 Figure E5 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for prizarinamide in children and adolescents with tuberculosis, stratified by study characteristics. 25 Figure E6 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. 26		the limited number of samples available or due to other reasons	17
Figure E3 Forest plots for summary estimates of dose-normalized Cmax for isoniazid in children and adolescents with tuberculosis, stratified by study-characteristics. 19 Table E6 Multivariate linear mixed-effects analyses on the effect of NAT2 acetylator genotypes on log-transformed AUC_024 and Cmax values for isoniazid in children and adolescents with tuberculosis, stratified by study characteristics. 20 Figure E3 Forest plots for summary estimates of dose-normalized AUC_024 for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. 21 Figure E4 Forest plots for summary estimates of dose-normalized AUC_024 for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 23 Figure E5 Forest plots for summary estimates of dose-normalized AUC_024 for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 24 Figure E6 Forest plots for summary estimates of dose-normalized AUC_024 for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 25 Figure E7 Forest plots for summary estimates of dose-normalized Cmax for rotambutol in children and adolescents with tuberculosis, stratified by study characteristics. 26 Figure E7 Forest plots for summary estimates of dose-normalized Cmax for rotambutol in children and adolescents with tuberculosis, stratified by study characteristics. 27 Figure E8 Forest plots for summary	Figure E1	Forest plots for summary estimates of dose-normalized AUC _{0.24} for isoniazid in children and	18
Figure E2 Forest plots for summary estimates of dose-normalized C _{max} for isoniazid in children and adolescents with tuberculosis, stratified by study characteristics. 20 Table E6 Multivariate linear mixed-effects analyses on the effect of NAT2 acetylator genotypes on log-transformed AUC ₀₋₂₄ and C _{max} values for isoniazid in children and adolescents with tuberculosis, adjusted for age, sex, nutritional status and HIV status. 21 Figure E3 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. 21 Figure E4 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. 23 Figure E5 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 24 Figure E6 Forest plots for summary estimates of dose-normalized C _{max} for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 25 Figure E7 Forest plots for summary estimates of dose-normalized C _{max} for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. 26 Figure E8 Forest plots for summary estimates of dose-normalized C _{max} for ethambutol in children and adolescents with tuberculosis, by patient characteristics. 27 Figure E8	I Iguie EI	adolescents with tuberculosis stratified by study-characteristics	10
Trigue E2Forest plots for summary estimates of lose normalized Cmax for enhanced in enhanced and estimated in children and adolescents with tuberculosis, stratified by study characteristics.Table E6Multivariate linear mixed-effects analyses on the effect of NAT2 acetylator genotypes on log- transformed AUC ₀₋₂₄ and Cmax values for isoniazid in children and adolescents with tuberculosis, adjusted for age, sex, nutritional status and HIV status.20Figure E3Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics.21Figure E4Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for prazinamide in children and adolescents with tuberculosis, stratified by study characteristics.22Figure E5Forest plots for summary estimates of dose-normalized Cmax for prazinamide in children and adolescents with tuberculosis, stratified by study characteristics.23Figure E6Forest plots for summary estimates of dose-normalized Cmax for prazinamide in children and adolescents with tuberculosis, stratified by study characteristics.24Figure E7Forest plots for summary estimates of dose-normalized Cmax for enhambutol in children and adolescents with tuberculosis, stratified by study characteristics.25Figure E8Forest plots for summary estimates of dose-adjusted AUC ₀₋₂₄ in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics.27Table E7Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics.28Table E8 </td <td>Figure F2</td> <td>Forest plots for summary estimates of dose-normalized C for isoniazid in children and</td> <td>19</td>	Figure F2	Forest plots for summary estimates of dose-normalized C for isoniazid in children and	19
 Table E6 Multivariate linear mixed-effects analyses on the effect of NAT2 acetylator genotypes on log-transformed AUC₀₋₂₄ and C_{max} values for isoniazid in children and adolescents with tuberculosis, adjusted for age, sex, nutritional status and HIV status. Figure E3 Forest plots for summary estimates of dose-normalized AUC₀₋₂₄ for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. Figure E5 Forest plots for summary estimates of dose-normalized AUC₀₋₂₄ for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. Figure E5 Forest plots for summary estimates of dose-normalized AUC₀₋₂₄ for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. Figure E6 Forest plots for summary estimates of dose-normalized AUC₀₋₂₄ for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. Figure E7 Forest plots for summary estimates of dose-normalized AUC₀₋₂₄ for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. Figure E8 Forest plots for summary estimates of dose-normalized AUC₀₋₂₄ for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. Figure E8 Forest plots for summary estimates of dose-normalized AUC₀₋₂₄ in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics. Table E7 Linear mixed-effects models of dose-adjusted AUC₀₋₂₄ in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics. Table E8 Linear mixed-effects models of dose-adjusted AUC₀₋₂₄ in log-transformed values for isoniazid in children	I Iguie 12	adolescents with tuberculosis stratified by study characteristics	17
 Table E8 Transformed AUC_{0.24} and C_{max} values for isoniazid in children and adolescents with tuberculosis, adjusted for age, sex, nutritional status and HIV status. Figure E3 Forest plots for summary estimates of dose-normalized AUC_{0.24} for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. Figure E4 Forest plots for summary estimates of dose-normalized AUC_{0.24} for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. Figure E5 Forest plots for summary estimates of dose-normalized AUC_{0.24} for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. Figure E6 Forest plots for summary estimates of dose-normalized AUC_{0.24} for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. Figure E7 Forest plots for summary estimates of dose-normalized AUC_{0.24} for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. Figure E8 Forest plots for summary estimates of dose-normalized C_{max} for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. Figure E8 Forest plots for summary estimates of dose-normalized C_{max} for ethambutol in children and adolescents with tuberculosis, by patient characteristics. Table E7 Linear mixed-effects models of dose-adjusted AUC_{0.24} in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics. Table E8 Linear mixed-effects models of dose-adjusted AUC_{0.24} in log-transformed values for ifampicin in children and adolescents with tuberculosis, by patient characteristics. Table E10 Linear mixed-effects model	Table E6	Multivariate linear mixed-effects analyses on the effect of NAT2 acetylator genotypes on log-	20
Intervention Intervention Intervention Intervention Intervention Figure E3 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. 21 Figure E4 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. 22 Figure E5 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 23 Figure E6 Forest plots for summary estimates of dose-normalized Cmax for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 24 Figure E7 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. 25 Figure E8 Forest plots for summary estimates of dose-normalized Cmax for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 26 Figure E8 Forest plots for summary estimates of dose-anormalized Cmax for ethambutol in children and adolescents with tuberculosis, by patient characteristics. 27 Table E7 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics.		transformed AUC _{0.24} and C _{mm} values for isoniazid in children and adolescents with	20
Figure E3 Forest plots for summary estimates of dose-normalized AUC _{0.24} for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. 21 Figure E4 Forest plots for summary estimates of dose-normalized Cmax for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. 22 Figure E5 Forest plots for summary estimates of dose-normalized AUC _{0.24} for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 23 Figure E6 Forest plots for summary estimates of dose-normalized AUC _{0.24} for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 24 Figure E7 Forest plots for summary estimates of dose-normalized AUC _{0.24} for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. 25 Figure E8 Forest plots for summary estimates of dose-normalized Cmax for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. 26 Table E7 Linear mixed-effects models of dose-adjusted AUC _{0.24} in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics. 28 Table E8 Linear mixed-effects models of dose-adjusted AUC _{0.24} in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics. 29 Table E9 Linear mixed-effects models of dose-adjusted AUC _{0.24} in log-tra		tuberculosis adjusted for age sex nutritional status and HIV status	
Figure E2 Forest plots for summary estimates of dose normalized Cmax for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. 22 Figure E4 Forest plots for summary estimates of dose-normalized AUC _{0.24} for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 23 Figure E5 Forest plots for summary estimates of dose-normalized AUC _{0.24} for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 24 Figure E6 Forest plots for summary estimates of dose-normalized AUC _{0.24} for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. 25 Figure E7 Forest plots for summary estimates of dose-normalized AUC _{0.24} for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. 26 Figure E8 Forest plots for summary estimates of dose-normalized Cmax for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. 27 Table E7 Linear mixed-effects models of dose-adjusted AUC _{0.24} in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics. 28 Table E8 Linear mixed-effects models of dose-adjusted AUC _{0.24} in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics. 29 Table E10 Linear mixed-effects models of dose-adjusted AUC _{0.24} in log-tr	Figure E3	Forest plots for summary estimates of dose-normalized AUCo 24 for rifampicin in children and	21
Figure E4 Forest plots for summary estimates of dose-normalized C _{max} for rifampicin in children and adolescents with tuberculosis, stratified by study characteristics. 22 Figure E5 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 23 Figure E6 Forest plots for summary estimates of dose-normalized C _{max} for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 24 Figure E7 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. 25 Figure E8 Forest plots for summary estimates of dose-normalized C _{max} for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. 26 Table E7 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics. 28 Table E8 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for 29 29 rifampicin in children and adolescents with tuberculosis, by patient characteristics. 30 Table E9 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics. 30 Table E10 L	I Iguite ES	adolescents with tuberculosis stratified by study characteristics	21
Figure E1 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for pyrazinamide in children 23 Figure E5 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for pyrazinamide in children 23 and adolescents with tuberculosis, stratified by study characteristics. 24 adolescents with tuberculosis, stratified by study characteristics. 24 Figure E6 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. 25 Figure E7 Forest plots for summary estimates of dose-normalized C _{max} for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. 26 Figure E8 Forest plots for summary estimates of dose-adjusted AUC ₀₋₂₄ in log-transformed values for isoniazid adolescents with tuberculosis, by patient characteristics. 27 Table E7 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics. 28 Table E8 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for zeparative adolescents with tuberculosis, by patient characteristics. 29 rifampicin in children and adolescents with tuberculosis, by patient characteristics. 30 30 Table E9 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-	Figure F4	Forest plots for summary estimates of dose-normalized C _{max} for rifampicin in children and	22
Figure E5 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 23 Figure E6 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 24 Figure E7 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. 25 Figure E7 Forest plots for summary estimates of dose-normalized Cmax for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. 26 Figure E8 Forest plots for summary estimates of dose-adjusted AUC ₀₋₂₄ in log-transformed values for isoniazid adolescents with tuberculosis, by patient characteristics. 27 Table E7 Linear mixed-effects models of dose-adjusted Cmax in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics. 28 Table E8 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics. 29 Table E9 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for rifampicin in children and adolescents with tuberculosis, by patient characteristics. 31 Table E10 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in l	I Iguie E I	adolescents with tuberculosis, stratified by study characteristics.	22
Figure E5 Forest plots for summary estimates of dose normalized Cmax for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 24 Figure E6 Forest plots for summary estimates of dose-normalized Cmax for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 25 Figure E7 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. 26 Figure E8 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ in children and adolescents with tuberculosis, stratified by study characteristics. 27 Table E7 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics. 28 Table E8 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics. 29 Table E9 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for rifampicin in children and adolescents with tuberculosis, by patient characteristics. 30 Table E9 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for rifampicin 30 31 min children and adolescents with tuberculosis, by patient characteristics. 31 32 Table E10	Figure E5	Forest plots for summary estimates of dose-normalized AUCost for pyrazinamide in children	23
Figure E6 Forest plots for summary estimates of dose-normalized C _{max} for pyrazinamide in children and adolescents with tuberculosis, stratified by study characteristics. 24 Figure E7 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. 25 Figure E8 Forest plots for summary estimates of dose-normalized C _{max} for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. 26 Table E7 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for isoniazid 27 27 in children and adolescents with tuberculosis, by patient characteristics. 28 Table E7 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for isoniazid 27 28 in children and adolescents with tuberculosis, by patient characteristics. 28 Table E8 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for isoniazid in 28 28 rifampicin in children and adolescents with tuberculosis, by patient characteristics. 29 29 rifampicin in children and adolescents with tuberculosis, by patient characteristics. 30 30 Table E10 Linear mixed-effects models of dose-adjusted AuC ₀₋₂₄ in log-transformed values for 31 31 pyrazinamide in children and adolescents with	I Iguite Et	and adolescents with tuberculosis, stratified by study characteristics.	20
adolescents with tuberculosis, stratified by study characteristics. Figure E7 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. Figure E8 Forest plots for summary estimates of dose-normalized C _{max} for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. Table E7 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics. Table E8 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for isoniazid in 28 children and adolescents with tuberculosis, by patient characteristics. Table E9 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for rifampicin in children and adolescents with tuberculosis, by patient characteristics. Table E9 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for rifampicin 30 in children and adolescents with tuberculosis, by patient characteristics. Table E10 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for 31 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. Table E11 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for 31 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. Table E12 Linear mixed-effects models of dose-adjusted C _{max} in log-transforme	Figure E6	Forest plots for summary estimates of dose-normalized C _{max} for pyrazinamide in children and	24
Figure E7 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. 25 Figure E8 Forest plots for summary estimates of dose-normalized AUC ₀₋₂₄ for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics. 26 Table E7 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics. 27 Table E8 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics. 28 Table E9 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics. 30 Table E9 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for ifampicin in children and adolescents with tuberculosis, by patient characteristics. 30 Table E10 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for ifampicin 30 31 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. 31 Table E11 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for 31 32 pyrazinamide in children and adolescents with tuberculosis, by patient cha	1 igure 10	adolescents with tuberculosis stratified by study characteristics	2.
Argue D/ Forest plots for summary estimates of dose hormalized $1000_{0.24}$ for enhanced in enhanced enhanced in enhanced enhanced in enhanced enhan	Figure E7	Forest plots for summary estimates of dose-normalized AUC _{0.24} for ethambutol in children	25
Figure E8Forest plots for summary estimates of dose-normalized Cmax for ethambutol in children and adolescents with tuberculosis, stratified by study characteristics.26Table E7Linear mixed-effects models of dose-adjusted AUC_{0.24} in log-transformed values for isoniazid children and adolescents with tuberculosis, by patient characteristics.27Table E8Linear mixed-effects models of dose-adjusted Cmax in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics.28Table E9Linear mixed-effects models of dose-adjusted AUC_{0.24} in log-transformed values for rifampicin in children and adolescents with tuberculosis, by patient characteristics.29Table E10Linear mixed-effects models of dose-adjusted Cmax in log-transformed values for rifampicin in children and adolescents with tuberculosis, by patient characteristics.30Table E11Linear mixed-effects models of dose-adjusted AUC_0.24 in log-transformed values for in children and adolescents with tuberculosis, by patient characteristics.31Table E11Linear mixed-effects models of dose-adjusted AUC_0.24 in log-transformed values for in children and adolescents with tuberculosis, by patient characteristics.31Table E11Linear mixed-effects models of dose-adjusted AUC_0.24 in log-transformed values for yrazinamide in children and adolescents with tuberculosis, by patient characteristics.32Table E12Linear mixed-effects models of dose-adjusted Cmax in log-transformed values for yrazinamide in children and adolescents with tuberculosis, by patient characteristics.32Table E13Linear mixed-effects models of dose-adjusted AUC_0.24 in log-transformed values	I Iguie L/	and adolescents with tuberculosis stratified by study characteristics	20
Table E0 Forest protector summary estimates of dose normalized emax for enamotion in ematter and adolescents with tuberculosis, stratified by study characteristics. 27 Table E7 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics. 28 Table E8 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics. 28 Table E9 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for 29 29 rifampicin in children and adolescents with tuberculosis, by patient characteristics. 30 Table E10 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for rifampicin in children and adolescents with tuberculosis, by patient characteristics. 30 Table E11 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for 31 31 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. 31 Table E12 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for 32 32 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. 32 Table E12 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for 32 32 <td>Figure E8</td> <td>Forest plots for summary estimates of dose-normalized C for ethambutol in children and</td> <td>26</td>	Figure E8	Forest plots for summary estimates of dose-normalized C for ethambutol in children and	26
Table E7 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for isoniazid 27 Table E8 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for isoniazid in 28 Children and adolescents with tuberculosis, by patient characteristics. 28 Table E9 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for isoniazid in 28 Table E9 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for 29 rifampicin in children and adolescents with tuberculosis, by patient characteristics. 30 Table E10 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for rifampicin in children and adolescents with tuberculosis, by patient characteristics. 30 Table E11 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for 31 31 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. 32 Table E12 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for 32 32 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. 32 Table E12 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for 32 32 pyrazinamide in children and adolescents with tuberculosis, by	I Iguie Lo	adolescents with tuberculosis stratified by study characteristics	20
 Table E7 Endea mixed effects models of dose adjusted No Co_{2,4} in log numbrated values for isomazid in children and adolescents with tuberculosis, by patient characteristics. Table E8 Linear mixed-effects models of dose-adjusted C_{max} in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics. Table E9 Linear mixed-effects models of dose-adjusted AUC₀₋₂₄ in log-transformed values for 29 rifampicin in children and adolescents with tuberculosis, by patient characteristics. Table E10 Linear mixed-effects models of dose-adjusted C_{max} in log-transformed values for rifampicin 30 in children and adolescents with tuberculosis, by patient characteristics. Table E11 Linear mixed-effects models of dose-adjusted AUC₀₋₂₄ in log-transformed values for 31 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. Table E12 Linear mixed-effects models of dose-adjusted C_{max} in log-transformed values for 32 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. Table E12 Linear mixed-effects models of dose-adjusted C_{max} in log-transformed values for 32 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. Table E12 Linear mixed-effects models of dose-adjusted C_{max} in log-transformed values for 32 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. Table E13 Linear mixed-effects models of dose-adjusted AUC₀₋₂₄ in log-transformed values for 33 ethambutol in children and adolescents with tuberculosis, by patient characteristics. 	Table E7	Linear mixed-effects models of dose-adjusted AUC _{0.24} in log-transformed values for isoniazid	27
Table E8Linear mixed-effects models of dose-adjusted Cmax in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics.28Table E9Linear mixed-effects models of dose-adjusted AUC0-24 in log-transformed values for rifampicin in children and adolescents with tuberculosis, by patient characteristics.29Table E10Linear mixed-effects models of dose-adjusted Cmax in log-transformed values for rifampicin in children and adolescents with tuberculosis, by patient characteristics.30Table E11Linear mixed-effects models of dose-adjusted AUC0-24 in log-transformed values for pyrazinamide in children and adolescents with tuberculosis, by patient characteristics.31Table E12Linear mixed-effects models of dose-adjusted Cmax in log-transformed values for pyrazinamide in children and adolescents with tuberculosis, by patient characteristics.32Table E12Linear mixed-effects models of dose-adjusted Cmax in log-transformed values for pyrazinamide in children and adolescents with tuberculosis, by patient characteristics.32Table E13Linear mixed-effects models of dose-adjusted AUC0-24 in log-transformed values for pyrazinamide in children and adolescents with tuberculosis, by patient characteristics.33Table E13Linear mixed-effects models of dose-adjusted AUC0-24 in log-transformed values for pyrazinamide in children and adolescents with tuberculosis, by patient characteristics.33		in children and adolescents with tuberculosis by nation characteristics	27
Table E0 Entert inner effects models of dose adjusted Cmax in log dualstormed values for isomazid in 20 children and adolescents with tuberculosis, by patient characteristics. 29 rifampicin in children and adolescents with tuberculosis, by patient characteristics. 29 Table E10 Linear mixed-effects models of dose-adjusted Cmax in log-transformed values for rifampicin 30 30 in children and adolescents with tuberculosis, by patient characteristics. 30 Table E11 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for 31 31 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. 31 Table E12 Linear mixed-effects models of dose-adjusted Cmax in log-transformed values for 32 32 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. 32 Table E12 Linear mixed-effects models of dose-adjusted Cmax in log-transformed values for 32 32 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. 33 Table E13 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for 33 33 ethambutol in children and adolescents with tuberculosis, by patient characteristics. 33	Table E8	Linear mixed-effects models of dose-adjusted Commin log-transformed values for isoniazid in	28
Table E9Linear mixed-effects models of dose-adjusted AUC_{0-24} in log-transformed values for rifampicin in children and adolescents with tuberculosis, by patient characteristics.29Table E10Linear mixed-effects models of dose-adjusted Cmax in log-transformed values for rifampicin in children and adolescents with tuberculosis, by patient characteristics.30Table E11Linear mixed-effects models of dose-adjusted AUC_{0-24} in log-transformed values for pyrazinamide in children and adolescents with tuberculosis, by patient characteristics.31Table E12Linear mixed-effects models of dose-adjusted Cmax in log-transformed values for pyrazinamide in children and adolescents with tuberculosis, by patient characteristics.32Table E12Linear mixed-effects models of dose-adjusted Cmax in log-transformed values for pyrazinamide in children and adolescents with tuberculosis, by patient characteristics.32Table E13Linear mixed-effects models of dose-adjusted AUC_{0-24} in log-transformed values for pyrazinamide in children and adolescents with tuberculosis, by patient characteristics.33Table E13Linear mixed-effects models of dose-adjusted AUC_{0-24} in log-transformed values for pyrazinamide in children and adolescents with tuberculosis, by patient characteristics.33		children and adolescents with tuberculosis by natient characteristics	20
Table E3 Entering mixed effects models of dose adjusted Tree _{0.24} in Fig dualstonned values for the E3 Table E10 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for rifampicin 30 in children and adolescents with tuberculosis, by patient characteristics. Table E11 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for 31 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. Table E12 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for 32 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. Table E12 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for 32 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. Table E13 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for 33 ethambutol in children and adolescents with tuberculosis, by patient characteristics.	Table E9	Linear mixed-effects models of dose-adjusted AUCo24 in log-transformed values for	29
Table E10 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for rifampicin 30 Table E11 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for 31 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. 31 Table E12 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for 32 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. 32 Table E12 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for 32 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. 32 Table E13 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for 33 ethambutol in children and adolescents with tuberculosis, by patient characteristics. 33		rifampicin in children and adolescents with tuberculosis by patient characteristics	2)
Table E10 Entert infice effects models of dose adjusted C_{max} in fog databornied values for final prime Table E11 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for 31 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. 31 Table E12 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for 32 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. 32 Table E13 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for 33 33 ethambutol in children and adolescents with tuberculosis, by patient characteristics. 33	Table E10	Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for rifampicin	30
Table E11 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for 31 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. 31 Table E12 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for 32 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. 32 Table E13 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for 33 ethambutol in children and adolescents with tuberculosis, by patient characteristics. 33		in children and adolescents with tuberculosis, by patient characteristics.	50
Table E12 Linear mixed-effects models of dose-adjusted Cmax in log-transformed values for 32 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. Table E13 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for 33 ethambutol in children and adolescents with tuberculosis, by patient characteristics.	Table E11	Linear mixed-effects models of dose-adjusted AUC _{0.24} in log-transformed values for	31
Table E12 Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for 32 pyrazinamide in children and adolescents with tuberculosis, by patient characteristics. 32 Table E13 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for 33 ethambutol in children and adolescents with tuberculosis, by patient characteristics. 33	1	pyrazinamide in children and adolescents with tuberculosis. by national characteristics.	21
Table E12 Linear mixed effects models of dose-adjusted Cmax in log datastormed values for 32 Table E13 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for 33 ethambutol in children and adolescents with tuberculosis, by patient characteristics.	Table E12	Linear mixed-effects models of dose-adjusted C in log-transformed values for	32
Table E13 Linear mixed-effects models of dose-adjusted AUC ₀₋₂₄ in log-transformed values for 33 ethambutol in children and adolescents with tuberculosis, by patient characteristics.	14010 1112	pyrazinamide in children and adolescents with tuberculosis. by national characteristics	52
ethambutol in children and adolescents with tuberculosis, by patient characteristics.	Table E13	Linear mixed-effects models of dose-adjusted AUCo24 in log-transformed values for	33
		ethambutol in children and adolescents with tuberculosis, by patient characteristics.	

		Page
Table E14	Linear mixed-effects models of dose-adjusted C _{max} in log-transformed values for ethambutol	34
	in children and adolescents with tuberculosis, by patient characteristics.	
Table E15	Multivariate linear mixed-effects analyses of factors associated with log-transformed AUC ₀ .	35
	24 values for isoniazid in children under 5 years of age with tuberculosis.	
Table E16	Multivariate linear mixed-effects analyses of factors associated with log-transformed C _{max}	36
	values for isoniazid in children under 5 years of age with tuberculosis.	
Table E17	Multivariate linear mixed-effects analyses of factors associated with log-transformed AUC ₀ .	37
	24 values for isoniazid in children under 2 years of age with tuberculosis.	
Table E18	Multivariate linear mixed-effects analyses of factors associated with log-transformed C _{max}	38
	values for isoniazid in children under 2 years of age with tuberculosis.	
Table E19	Multivariate linear mixed-effects analyses of factors associated with log-transformed AUC ₀₋	39
	24 values for first-line antituberculosis drugs in children and adolescents with tuberculosis who	
	had pharmacokinetic sampling at steady state or approaching steady state	
Table E20	Multivariate linear mixed-effects analyses of factors associated with log-transformed C _{max}	40
	values for first-line antituberculosis drugs in children and adolescents with tuberculosis who	
	had pharmacokinetic sampling at steady state or approaching steady state.	
Table E21	Multivariate linear mixed-effects analyses of factors associated with log-transformed AUC0-	41
	24 values for first-line antituberculosis drugs, in children and adolescents with tuberculosis	
	who had pharmacokinetic sampling at steady state or approaching steady state, and who	
	received daily dosing.	
Table E22	Multivariate linear mixed-effects analyses of factors associated with log-transformed C _{max}	42
	values for first-line antituberculosis drugs, in children and adolescents with tuberculosis who	
	had pharmacokinetic sampling at steady state or approaching steady state, and who received	
	daily dosing.	
Table E23	Multivariate linear mixed-effects analyses of factors associated with log-transformed AUC ₀ .	43
	24 values for first-line antituberculosis drugs in children and adolescents with tuberculosis,	
	considering WHO region as a third-level clustering variable.	
Table E24	Multivariate linear mixed-effects analyses of factors associated with log-transformed C _{max}	44
	values for first-line antituberculosis drugs in children and adolescents with tuberculosis,	
	considering WHO region as a third-level clustering variable.	
Table E25	Multivariate linear mixed-effects analyses on the effect of paediatric/adult dosing category on	45
	log-transformed AUC ₀₋₂₄ values for isoniazid, rifampicin and pyrazinamide in tuberculosis	
	patients weighing ≥25 kg, adjusted for at least age, sex, nutritional status, and HIV status.	
Table E26	Multivariate linear mixed-effects analyses on the effect of paediatric/adult dosing category on	46
	log-transformed C_{max} values for isoniazid, rifampicin and pyrazinamide in tuberculosis	
	patients weighing ≥ 25 kg, adjusted for at least age, sex, nutritional status, and HIV status.	
Table E27	Summary estimates of T _{max} , t _{1/2} , and K _e for first-line antituberculosis drugs in children and	47
	adolescents with tuberculosis, by study characteristics.	
References		48

Appendix 1. Search strategy

PubMed:

("Tuberculosis"[Mesh] OR tubercul*[tiab] OR TB[tiab] OR TBC[tiab])

AND

("Antitubercular Agents"[Mesh] OR antitubercul*[tiab] OR anti-tubercul*[tiab] OR "anti-TB"[tiab] OR "Isoniazid"[Mesh] OR isoniazid[tiab] OR INH[tiab] OR "Rifampin"[Mesh] OR rifampi*[tiab] OR RMP[tiab] OR RIF[tiab] OR "Pyrazinamide"[Mesh] OR pyrazinamide[tiab] OR PZA[tiab] OR "Ethambutol"[Mesh] OR ethambutol[tiab] OR EMB[tiab])

AND

("Pharmacokinetics"[Mesh] OR "pharmacokinetics"[Subheading] OR pharmacokinetic*[tiab] OR PK OR kinetic*[tiab] OR "clinical pharmacology"[tiab] OR AUC[tiab] OR AUCs[tiab] OR area under the curve*[tiab] OR area under curve*[tiab] OR Cmax[tiab] OR concentration*[tiab] OR level*[tiab] OR (drug*[tiab] AND monitor*[tiab]) OR (therapeutic[tiab] AND monitor*[tiab]) OR TDM[tiab] OR exposure*[tiab])

AND

("Child"[Mesh] OR "Infant"[Mesh] OR "Child, Preschool"[Mesh] OR "Infant, Newborn"[Mesh] OR child*[tiab] OR pediatr*[tiab] OR paediatr*[tiab] OR infant*[tiab] OR baby[tiab] OR babies[tiab] OR toddler*[tiab] OR kids[tiab] OR minors[tiab] OR newborn*[tiab] OR neonate*[tiab] OR "Adolescent"[Mesh] OR adolescen*[tiab] OR teen*[tiab] OR youth*[tiab] OR young[tiab])

Total articles retrieved from PubMed between January 1st, 1990, and February 2nd, 2021: 2000. Total articles retrieved from PubMed between February 3rd, 2021, and December 31st, 2021: 113.

Embase:

('tuberculosis'/exp OR (tubercul* OR TB OR TBC):ab,ti)

AND

('isoniazid'/exp OR 'rifampicin'/exp OR 'pyrazinamide'/exp OR 'ethambutol'/exp OR 'tuberculostatic agent'/exp OR (antitubercul* OR 'anti-tubercul*' OR 'anti-TB' OR isoniazid OR INH OR rifampi* OR RMP OR RIF OR pyrazinamide OR PZA OR ethambutol OR EMB):ab,ti)

AND

('pharmacokinetics'/exp OR (pharmacokinet* OR PK OR kinetic* OR 'clinical pharmacology' OR AUC OR AUCs OR 'area under the curve*' OR 'area under curve*' OR Cmax OR concentration* OR level* OR (drug* AND monitor*) OR (therapeutic AND monitor*) OR TDM OR exposure*):ab,ti) AND

('child'/exp OR 'adolescent'/exp OR 'infant'/exp OR (child* OR pediatr* OR paediatr* OR infant* OR baby OR babies OR toddler* OR kids OR minors OR newborn* OR neonate* OR adolescen* OR teen* OR youth OR young):ab,ti)

Total articles retrieved from Embase between January 1st, 1990, and February 2nd, 2021: 2416. Total articles retrieved from Embase between February 3rd, 2021, and December 31st, 2021: 155

Web of Science:

TS=(tuberculosis OR tubercul* OR TB OR TBC)

AND

TS=(isoniazid OR INH OR rifampicin OR Rifampi* OR RMP OR RIF OR pyrazinamide OR PZA OR ethambutol OR EMB OR antitubercul* OR "anti-tubercul*" OR "anti-TB")

AND

TS=(Pharmacokinet* OR PK OR kinetic* OR "clinical pharmacology" OR AUC OR AUCs OR "area under the curve*" OR "area under curve*" OR Cmax OR concentration* OR level* OR (drug* AND monitor*) OR (therapeutic AND monitor*) OR TDM OR exposure*)

AND

TS=(child* OR pediatr* OR paediatr* OR infant* OR baby OR babies OR toddler* OR kids OR minors OR newborn* OR neonate* OR adolescen* OR youth OR teen* OR young)

Total articles retrieved from Web of Science between January 1st, 1990, and February 2nd, 2021: 901. Total articles retrieved from Web of Science between February 3rd, 2021, and December 31st, 2021: 79

Appendix 2. Checklist and interpretation for quality assessment of included studies

In the absence of a validated tool for quality assessment of pharmacokinetic studies, we developed a checklist to assess the quality of included studies by including some relevant criteria according to the ROBINS-I tool for non-randomized studies of interventions,¹ supplemented by the proposed essential components required for a critical appraisal of clinical pharmacokinetic studies by Soliman et al.² The checklist was slightly modified to suit pharmacokinetic studies of first-line antituberculosis drugs in children and adolescents. An expert panel (DJT, MS, JS, and JWCA) evaluated and approved the components to be included in the checklist.

The maximum points obtained from this checklist is 33, including 12 points from the modified ROBINS-I tool,¹ and 21 points from the critical appraisal tool for clinical pharmacokinetic studies.² Every 'Yes' answer was given the corresponding two or one point, and every 'No/NA' answer was given zero point. Studies with a total of 23-33 points, 12-22 points, and ≤ 11 points, were classified as high, moderate, and low quality, respectively.

Below are the study specification, and items to be included in the checklist:

Design	:	Pharmacokinetic or pharmacokinetic/pharmacodynamic study.
Participants	:	Children and adolescents aged 0-18 years with tuberculosis.
Intervention	:	First-line anti-TB drugs, including isoniazid, rifampicin, pyrazinamide and/or ethambutol.
Comparator	:	None
Outcomes	:	Pharmacokinetic measures or clinical responses to treatment, where applicable.

Items ad	Items adapted from the modified ROBINS-I tool. ¹					
Bias due	to confounding					
1.	No confounding is expected;	Yes/No/NA	2/0/0			
	or					
	Confounding is expected but all known important confounding domains (e.g. co- administration of drugs or foods, liver/kidney impairment, and disease severity, younger vs older age, etc.) are appropriately measured and controlled for.	Yes/No/NA	1/0/0			
Bias due	to selection of participants into the study					
2.	All patients who would have been eligible for the study were included (e.g., participants were consecutively included in the study); and for each participant, start of follow-up and start of intervention coincided;	Yes/No/NA	2/0/0			
	or					
	Selection into the study may have been related to intervention and outcome, and the authors used appropriate methods to adjust for the selection bias; or start of follow-up and start of intervention do not coincided for all participants, and the proportion of participants for which this was the case was too low to induce important bias or the authors used appropriate methods to adjust for the selection bias.	Yes/No/NA	1/0/0			
Bias in c	lassification of interventions					
3.	Intervention status (drug and dosing characteristics) is well-defined; and intervention definition is based solely on information collected at the time of intervention and could have not been affected by knowledge of the outcome;	Yes/No/NA	2/0/0			
	or					
	Intervention status (drug and dosing characteristics) is well-defined; and some aspects of the assignments of intervention status were determined retrospectively (e.g., based on treatment guidelines recommended by authorities)	Yes/No/NA	1/0/0			
Bias due	to missing data					
4.	Data were reasonably complete; or proportions of and reasons for missing participants were similar across intervention groups (if there was only one group of intervention	Yes/No/NA	2/0/0			

	available, the proportions of missing participants were similar between pre- and post- intervention); or the analysis addressed missing data and is likely to have removed any risk of bias.		
	or		
	Proportions of and reasons for missing participants differ slightly across intervention groups (if there was only one group of intervention available, the proportions of missing participants differ slightly between pre- and post-intervention).	Yes/No/NA	1/0/0
Bias in m	easurement of outcomes		
5.	The methods of outcome assessment were comparable across intervention groups (if applicable); and the outcome measure was unlikely to be influenced by knowledge of the intervention received by study participants (i.e., is objective) or the outcome assessors were unaware of the intervention received by study participants; and any error in measuring the outcome is unrelated to intervention status.	Yes/No/NA	2/0/0
	or		
	The methods of outcome assessment were comparable across intervention groups; and the outcome measure is only minimally influenced by knowledge of the intervention received by study participants (e.g., the intervention received by study participants was according to the guidelines recommended by authorities); and any error in measuring the outcome is minimally related to intervention status.	Yes/No/NA	1/0/0
Bias in se	lection of the reported result		
6.	There is clear evidence (usually through examination of a pre-registered protocol or statistical analysis plan) that all reported results correspond to all intended outcomes, analyses and sub-cohorts;	Yes/No/NA	2/0/0
	or		
	The outcome measurements and analyses are consistent with an a priori plan, or are clearly defined and both internally and externally consistent; and there is no indication of selection of the reported analysis from among multiple analyses; and there is no indication of selection of the cohort or subgroups for analysis and reporting on the basis of the results.	Yes/No/NA	1/0/0
Items ad	apted from the critical appraisal tool for clinical pharmacokinetic studies. ²		
Appraisin	g Background		
7.	Was a clear description of the objectives of the study provided?	Yes/No/NA	1/0/0
	Authors should provide a clear statement of the objectives of the research to clarify the purpose and the scope of the study		
8	Was a clear and comprehensive rationale provided to support the purpose of the study?	Yes/No/NA	1/0/0
Appraisin	study Design and Experimental Methods	100/110/111	1/0/0
<u>9</u> .	Was the chosen study design appropriately selected and justified?	Yes/No/NA	1/0/0
10.	[Slightly modified from the original version] Was the description of at least the drug	Yes/No/NA	1/0/0
10.	dose (in mg or mg/kg of body weight) and dosing interval (single-dose, daily, or intermittent [trice weekly] dose, etc.), with addition of drug administration (taken whole by mouth, crushed/dispersed and taken via syringe/nasogastric tube, etc.) justified for the intended study?	100/100/10/1	1/0/0
	Examples:		
	Authors should justify the use of single-dose versus steady-state dosing, daily versus intermittent dosing, flat-dosing versus weight hand dosing, etc.)		
11.	Were the outcome measures endpoints of the study appropriate to address the objectives of the study?	Yes/No/NA	1/0/0
12.	Were the exclusion criteria of participants included and appropriate for the intended outcomes of the study?	Yes/No/NA	1/0/0

	Examples:		
	The exclusion criteria should be relevant to assist with decreasing significant		
	confounders (e.g. co-administration of drugs and foods, organ impairment, and special		
	populations) that may impact outcomes		
13.	Were the relevant baseline characteristics of the participants adequately described?	Yes/No/NA	1/0/0
	Examples:		
	Sex, race, age, weight, height, HIV status, nutritional status, concomitant disease,		
	administered medications, severity of illness, and pharmacogenetics that may affect		
1.4	pharmacokinetic parameters, renal function, and nepatic function.		1/0/0
14.	Were plausible interacting covariates described <i>a priori</i> or in post hoc evaluation?	Yes/No/NA	1/0/0
	Examples		
	Demographic variables laboratory values concomitant medications and relevant		
	disease states to the drug being studied		
15	Was the description of the used biological sample analytical methods or citations of	Ves/No/NA	1/0/0
15.	nrior validation studies provided in the publication or affiliated appendix?	1 CS/110/11/A	1/0/0
	pror variation studies provided in the publication of anniated appendix:		
	Examples:		
	- Chromatography type.		
	- Assav characteristics: mobile phase composition, gradient and flow rate.		
	chromatographic column (packing material, dimensions).		
	- Analytical runtime.		
	- Operating temperature.		
	- Detection type and parameters.		
	- Validation method: specificity, recovery, linearity and sensitivity, the stability of the		
	assay and its reproducibility. Refer also to EMA/FDA guidelines for bioanalytical		
	method validation.		
16.	Was the method of data sampling of analytics appropriate for the study?	Yes/No/NA	1/0/0
	Examples:		
	- First vs. zero order absorption, and lag time.		
	- Evaluating for nonlinearity requires multiple dose levels and a complete profile is		
	recommended.		
	- Researchers obtain these data from previously conducted studies with completed		
	The method of date sempling should reference providually validated quantitative		
	- The method of data sampling should reference previously validated quantitative		
	of data sampling should be included		
17	Was a clear description of the sampling site provided and justified?	Ves/No/NA	1/0/0
17.	was a creat description of the sampling site provided and justified.	103/100/10/1	1/0/0
	Examples:		
	- Sampling site should be consistent for all subjects in the study.		
	- Venous sampling is preferable during frequent sampling schedule.		
18.	[Slightly modified from the original version] Was the number of samples taken within	Yes/No/NA	1/0/0
	the sampling period appropriate for the assessment of total plasma exposure (i.e., area		
	under the concentration-time curve from 0-24 h post-dose [AUC ₀₋₂₄]), including		
	assessment of AUC ₀₋₂₄ using non-compartmental pharmacokinetic analysis or		
	population pharmacokinetic modelling?		
	Examples:		
	- Blood samples taken at 0, 1, 2, 4, and 8 h post-dose were considered sufficient for		
	AUC ₀₋₂₄ calculation of isoniazid, ritampicin, pyrazinamide, or ethambutol.		
10	- Other possible combinations of sampling time points (more points are preferable).	$\mathbf{V} = - / \mathbf{N} \mathbf{I} = / \mathbf{N} \mathbf{I} \mathbf{A}$	1/0/0
19.	were sample storage conditions appropriate and described in a manner that could be	I CS/INO/INA	1/0/0
	accurately replicated:		
	Examples:		
	Sample storage, temperature, use and description of anticoagulants stabilizers		
	centrifugation etc.		

20.	If applicable, was there a clear description of the pharmacokinetic model, its development, validation and justification for use?	Yes/No/NA	1/0/0
	It is recommended to provide the following details about the selected modelling		
	- Description of studies from which dataset was driven - Model structure		
	- Validated software for the pharmacokinetic analysis		
	- Criteria for accepting valid model's parameters		
	- Fitting procedure defined prior to the initiation of the analysis.		
	- A reasonable assumption based on which the scheme for weighting is considered to be appropriate and the transformation of data [e.g. logarithmic transformation to		
	achieve the homoscedastic (constant) variance requirements] should be provided.		
21.	If applicable, was the described population pharmacokinetic approach validation method appropriate for the analysis?	Yes/No/NA	1/0/0
	Examples:		
	- Basic internal method (e.g., visual predictive checks [VPCs], goodness-of-fit [GOF]		
	plot)		
	- Advanced internal method		
22	Were the essential pharmacokinetic parameters required to make the results applicable	Yes/No/NA	1/0/0
22.	in clinical settings included?		1,0,0
	Examples:		
	Primary parameters for non-compartmental PK (AUC and C_{max}) and for population DK (total algorithms [CL] and volume of distribution at stoody state [V(s)]). Other		
	secondary parameters if applicable: terminal half-life (t_{10}) fraction of the unbound		
	drug in plasma (fu), absorption rate constant (Ka), C_{min} , t_{max} , etc.		
23.	Were the pharmacokinetic equations used to calculate the patient's pharmacokinetic parameters presented or cited within the article?	Yes/No/NA	1/0/0
	Examples:		
	Equations used to calculate the following pharmacokinetic parameters: creatinine clearance body weight calculations, elimination rate constant, elimination half life		
	area under the concentration-time curve, clearance, volume of distribution, etc.		
Apprais	ing Applied Statistics		
24	Were the chosen statistical tests and software to perform the statistical analysis	Yes/No/NA	1/0/0
<u> </u>	appropriate to achieve the study objectives?		
Apprais	ing Results		1/0/0
25	Were all patients enrolled in the study accounted for?	Yes/No/NA	1/0/0
	Examples:		
	Description of patient screening, enrolment, run-in or wash out phases, study period		
	and follow-up periods are adequately described. Any loss to follow-up or withdrawals		
- 26	are described.		1/0/0
26	in the event of missing data or outliers, was the process for analysis justified and appropriate?	r es/ino/inA	1/0/0
27	Were appropriate summary statistics to describe centrality and variance used to present the pharmacokinetic results?	Yes/No/NA	1/0/0
	r turnum output rooms.		
	Examples:		
	Descriptive statistics such as confidence interval, standard deviation, mean, median,		
	range, interquartile range, standard error and trimmed range.		

	Appendix 3. Requested	variables from	contacted authors	with individual-	patient data
--	-----------------------	----------------	-------------------	------------------	--------------

Demographic characteristics:
Age (in years) [*]
Sex (male/female)
Site of study
Weight $(in kg)^*$
Height (in cm)
Clinical characteristics:
Type of tuberculosis (pulmonary, extrapulmonary, and pulmonary + extrapulmonary)
HIV status (positive, negative, and unknown)
NAT2 genotypes and acetylator status (slow, intermediate, or rapid acetylator) for isoniazid
SLCO1B1 genotypes for rifampicin
Serum creatinine (in mg/dL) [*]
Serum albumin (in g/dL) [*]
Drug and dosing characteristics:
Drug formulation and administration (taken whole tablet orally, crushed tablet swallowed
orally or delivered via syringe or nasogastric tube, liquid formulation delivered orally, etc.)
Dose-date
Dose-time (clock time)
Dose-amount administered (in mg)
Dosing interval (daily or intermittent [e.g. thrice weekly] dosing)
Confirmation of drug administration at steady state
Pharmacokinetic information:
Sampling date
Sampling time (clock time)
Observed plasma concentrations (in mg/L)

*At baseline and at pharmacokinetic sampling, if both are available. HIV: human immunodeficiency virus; NAT2: N-acetyltransferase 2; SLCO1B1: solute carrier organic anion transporter 1B1.

Appendix 4. Methods used in the classification of acetylator status of isoniazid.

Acetylator status was defined genotypically based on arylamine N-acetyltransferase 2 (NAT2) genotypes), and phenotypically based on isoniazid elimination half-life ($t_{1/2}$).

Genotypically, acetylator status was defined based on analysis of arylamine N-acetyltransferase 2 (NAT2) genetic polymorphisms. Data on N-acetyltransferase 2 (NAT2) genotypes were available from eight studies for which AUC₀₋₂₄ and C_{max} values for isoniazid could be assessed. In six studies (Schaaf et al., 2005;³ McIlleron et al., 2009;⁴ Thee et al., 2011;⁵ Verhagen et al., 2012;⁶ Ibrahim et al., 2013;⁷ and Denti et al., 2021 [Desmond Tutu TB Center study site]⁸), NAT2 genotypes were evaluated according to several established methods for the NAT2*4, NAT2*5, NAT2*6, NAT2*7, NAT2*12, NAT2*13, NAT2*14 alleles.^{9,10} In these studies, allele characterization and designation were performed using NAT2 allele nomenclature consensus.^{11,12} Based on this nomenclature, the wild-type rapid alleles (R) were assigned as NAT2*4, NAT2*12, and NAT2*13, while decreased NAT2 enzyme activity is encoded by NAT2*5, NAT2*6, NAT2*7, and NAT2*14 alleles, which define the slow mutant alleles (S). Depending on the allele combinations observed, the study participants were classified as homozygous rapid (RR), heterozygous intermediate (RS), or homozygous slow (SS) acetylators. Single-nucleotide polymorphisms (SNPs) genotyping were used in three studies, including one SNP (rs1495741) in Denti et al study (Red Cross Children Hospital study site),⁸ four SNPs (rs1801279 [191G>A], rs1801280 [341T>C], rs1799930 [590G>A], and rs1799931 [857G>A]) in Antwi et al study,¹³ and three SNPs (rs1801280 [341T>C], rs1799930 [590G>A] and rs1208 [803A>G]) in van Aartsen et al study.¹⁴ For each of the three- and four-SNP panel assays, samples homozygous common for all SNPs were classified as rapid acetylator phenotype, samples heterozygous for any of one of the SNPs were classified as intermediate acetylator phenotype, and samples homozygous variant for one or more SNPs or heterozygous for two or more SNPs were classified as slow acetylator phenotype.¹⁵

Phenotypically, acetylator status was defined based on isoniazid elimination half-life ($t_{1/2}$), in which patients were categorized as rapid ($t_{1/2} < 1.25$ h), intermediate (1.25 h $\leq t_{1/2} \leq 2$ h), and slow ($t_{1/2} > 2$ h) acetylator phenotypes.¹⁶

Appendix 5. Pharmacokinetic assessments

Drug concentrations below the lower limit of quantification (LLOQ) before the time to maximum concentration (T_{max}) were set to half of the LLOQ assuming the drug concentrations to be at steady state (\geq 14 days after the first dose) or approaching steady state (7-11 days after the first dose), and were set to zero following first dose. After T_{max} , the first LLOQ values were set to half the LLOQ and subsequent LLOQ values were removed from the analysis. Outliers of concentration-time data points were carefully identified by visual inspection and pharmacokinetic plausibility (e.g., data points deviating more than three times the interquartile range). Two reviewers (FG and JS) first identified the possible outliers of drug concentration data. After consultation and agreement with a third reviewer (JWCA), outliers were then excluded from further pharmacokinetic and statistical analyses.

All pharmacokinetic parameters in patients with intensive sampling (Table E2; n=35 studies)^{3-8,13,14,17-43} were calculated non-compartmentally with the *PKNCA* package (version 0.9.4) in R for Windows; sparse sampling data, especially in four studies were excluded from the analysis.⁴⁴⁻⁴⁷ Assessment of individual parameters included area under the concentration-time curve during the daily dosing interval from 0-24 h post-dose (AUC₀₋₂₄), peak plasma concentration (C_{max}), time to reach peak plasma concentration (T_{max}), first order elimination rate constant (K_e), and elimination half-life ($t_{1/2}$). Both C_{max} and T_{max} were derived directly from the concentration-time observations. K_e and its individual derived parameters (e.g. t_{2}) were excluded from analysis when K_e could not be estimated over at least three data points on the apparent terminal slope. Exclusion was done in the following cases: poor fit (adjusted R-squared <0.5), a non-positive value for K_e , and if less than two of the data points were taken after T_{max} .

If drug concentration at pre-dose (C₀) was not measured, C₀ was assumed to reflect the concentration at 24 h post-dose at steady-state or approaching steady-state (C₀ = C₂₄). In studies where patients received first-line antituberculosis drugs at first dose, C₀ was set to zero. If C₂₄ was not measured, it was estimated using the equation: $C_{24} = C_{last} \times e^{-K_e \times (24-T_{last})}$, in which C_{last} is the last measurable concentration at T_{last}. For individuals where K_e could not reliably be estimated over at least three data points on the apparent terminal slope, C₂₄ was assumed to reflect the concentration at pre-dose at steadystate (C₂₄ = C₀). In this case, a virtual C₂₄ with the same plasma concentration as C₀ was added. The calculation of AUC₀₋₂₄ was performed using the linear-up/log-down trapezoidal method. For reporting, AUC₀₋₂₄ and C_{max} data from a larger group of studies with stead-steady concentrations, were combined with data from two studies with drug concentrations approaching steady state.^{21,35}

Table E1. Excluded studies with identical or overlapping cohorts with original eligible studies for which individual patient data were or were not provided.

No	Publication details of studies with identical or overlapping cohorts with original studies	Original studies
1	Aruldhas BW, et al. Optimization of dosing regimens of isoniazid and rifampicin in children with tuberculosis in India. Br Clin Pharmacol. 2019;85(3):644-654.	Ranjalkar et al., 2018. ³⁰
2	Dompreh A, et al. Effect of genetic variation of NAT2 on isoniazid and SLCO1B1 and CES2 on rifampicin pharmacokinetics in Ghanaian children with tuberculosis.	Antwi et al., 2017. ¹³
	Antimicrob Agents Chemother. 2018;62(3):e02099-17.	D 11 . 1 1000 18
3	Gent WL, et al. Factors in hydrazine formation from isoniazid by pediatric and adult patients. Eur J Clin Pharmacol. 1992;43(2):131-6.	Donald et al., 1992.**
4	modifications. Clin Pharmacol Ther. 2018;104(4):733-741.	Ramachandran et al., 2013 & 2015.2720
5.	Horita Y, et al. Evaluation of the adequacy of WHO revised dosages of the first-line antituberculosis drugs in children with tuberculosis using population pharmacokinetic modelling and simulations. Antimicrob Agents Chemother. 2018;62(9):e00008-18.	Antwi et al., 2017. ¹³
6	Panjasawatwong N, et al. Population pharmacokinetic properties of antituberculosis drugs in Vietnamese children with tuberculosis meningitis. Antimicrob Agents Chemother. 2020;65(1):e00487.	Pouplin et al., 2016.46
7	Pariente-Khayat A, et al. Isoniazid acetylation metabolic ratio during maturation in children. Clin Pharmacol Ther. 1997;62(4):377-83.	Rey et al., 1998.49
8	Ramachandran G, et al. Low serum concentrations of rifampicin and pyrazinamide associated with poor treatment outcomes in children with tuberculosis related to HIV status. Pediatr Infect Dis J. 2016;35(5):530-4.	Ramachandran et al., 2013 & 2015. ^{27,28}
9	Rogers et al. The non-linear child: Ontogeny, isoniazid concentration, and NAT2 genotype modulate enzyme reaction kinetics and metabolism. EBioMedicine. 2016;11:118-126.	Hiruy et al., 2015. ⁵⁰
10	Savic RM, et al. Pediatric tuberculous meningitis: Model-based approach to determining optimal doses of the antituberculosis drugs rifampicin and levofloxacin for children. Clin Pharmacol Ther. 2015;98(6):622-9.	McIlleron et al., 2009 & 2011; ^{4,23} Schaaf et al., 2009; ³⁶ Thee et al., 2011. ⁵
11	Seneadza NAH, et al. Effect of malnutrition on the pharmacokinetics of anti-TB drugs in Ghanaian children. Int J Tuberc Lung Dis. 2021;25(1):36-42	Antwi et al., 2017. ¹³
12	Swaminathan S, et al. Drug concentration thresholds predictive of therapy failure and death in children with tuberculosis: Bread crumb trails in random forests. Clin Infect Dis. 2016;63:S63-S74	Ramachandran et al., 2013 & 2015. ^{27,28}
13	Verhagen LM, et al. Full-gene sequencing analysis of NAT2 and its relationship with isoniazid pharmacokinetics in Venezuelan children with tuberculosis. Pharmacogenomics. 2014;15(3):285-96	Verhagen et al., 2012. ⁶
14	Yang H, et al. Evaluation of the adequacy of the 2010 revised World Health Organization recommended dosages of the first-line antituberculosis drugs for children: Adequacy of revised dosages of TB drugs for children. Pediatr Infect Dis. 2018;37(1):43-51.	Antwi et al., 2017. ¹³
15	Zvada S, et al. Population pharmacokinetics of rifampicin, pyrazinamide and isoniazid in children with tuberculosis: in silico evaluation of currently recommended doses. J Antimicrob Chemother, 2014;69(5):1339-49.	McIlleron et al., 2009 & 2011; ^{4,23} Schaaf et al., 2009; ³⁶ Thee et al., 2011. ⁵
16	Bekker A, et al. Pharmacokinetics of rifampicin, isoniazid, pyrazinamide, and ethambutol in infants dosed according to revised WHO-recommended treatment guidelines. Antimicrob Agents Chemother. 2016;60(4):2171-2179	Denti et al., 2022. ⁸
17	Szipszky C, et al. Determination of rifampicin concentrations by urine colorimetry and mobile phone readout for personalized dosing in tuberculosis treatment. J Pediatr Infect Dis Soc. 2021;10(2):104-111.	Van Aartsen et al., 2022. ¹⁴
18	Kwara A, et al. Pharmacokinetics of first-line antituberculosis drugs using WHO revised dosage in children with tuberculosis with and without HIV coinfection. J Pediate Infect Dis Soc. 2016;5(4):356-55	Antwi et al., 2017. ¹³
19	McIlleron H, et al. Bioavailability of two licensed paediatric rifampicin suspensions: implications for quality control programmes. Int J Tuberc Lung Dis. 2016;20(7):915-919	Denti et al., 2022. ⁸
20	Arya A, et al. Pharmacol 2013:45:S102-103	Arya et al., 2015. ⁴²
21	Justine M, et al. Therapeutic drug levels of first-line tuberculosis medications among children from rural Tanzania. Am J trop Med Hyg. 2017;97(5):581	Justine et al., 2020.44

Table E2.	Demograph	nic inform	nation of	all included	studies for	which in	ndividual	patient data	were p	provided.
1				an monade	5000000			parter and		

No	Authors	Year of	Country	N patients	Median age	INH	RIF	PZA	EMB	PK sampling time-points,	Intensive	Steady-
	12	publication	~	Included	(IQR), years					(n)	sampling	state PK
1	Antwi et al. ¹³	2017	Ghana	113	5.0 (2.2-8.2)	Yes	Yes	Yes	Yes	0, 2, 4, 8	Yes	Yes
2	Arya et al. ⁴²	2015	India	20	10.0 (9.0-12.0)	No	Yes	No	No	1, 2, 3, 4, 6, 8, 12	Yes	No
3	Chabala et al. ⁴³	2022	South Africa, Zambia	77	3.7 (1.4-6.6)	Yes	Yes	Yes	Yes	1, 2, 4, 6, 8, 12	Yes	Yes
4	Dayal et al. ¹⁷	2018	India	37	8.0 (3.0-10.0)	Yes	No	Yes	No	0, 2, 4, 6, 8	Yes	Yes
5	Denti et al. ^{8,8}	2022	South Africa, Malawi	184	2.0 (0.9-4.9)	Yes	Yes	Yes	No	0, 1, 2, 4, 6, 8	Yes	Yes
6	Garcia-Prats et al. ¹⁸	2021	South Africa	60	2.1 (1.1-4.4)	No	Yes	No	No	0, 1, 2, 4, 6, 8, 24	Yes	Yes
7	Graham et al. ¹⁹	2006	Malawi	27/18	4.1 (2.2-9.6)	No	No	Yes	Yes	0, 2, 3, 4, 7, 24, 48	Yes	No
8	Gupta et al. ²⁰	2008	India	20	10.0 (6.7-12.0)	No	No	Yes	No	0, 1, 2, 4, 6, 8, 12, 24	Yes	No
9	Ibrahim et al. ⁷	2013	Ethiopia	29	9.5 (6.0-9.5)	Yes	No	No	No	2, 3, 4, 5	Yes	No
10	Justine et al.44	2020	Tanzania	51	5.3 (2.4-9.5)	Yes	Yes	Yes	Yes	2	No	Yes
11	Martial et al. ²¹	2018	Paraguay	15	1.5 (0.9-2.7)	Yes	Yes	Yes	Yes	0, 2, 4, 8	Yes	Yes
12	Mave et al. ²²	2017	India	16	7.7 (5.2-8.9)	Yes	No	No	No	0, 2, 4, 6	Yes	Yes
13	McIlleron et al. ⁴	2009	South Africa	56	3.2 (1.5-5.4)	Yes	No	No	No	0.75, 1.5, 3, 4, 6	Yes	Yes
14	McIlleron et al. ²³	2011	South Africa	34	3.1 (1.5-5.2)	No	No	Yes	No	0.75, 1.5, 3, 4, 6	Yes	Yes
15	Mlotha et al. ²⁴	2014	Malawi	30	7.5 (1.7-10.9)	Yes	Yes	Yes	Yes	0, 0.5, 1, 2, 3, 4, 6, 8, 24	Yes	Yes
16	Mlotha et al.45	unpublished	Malawi	47	6.2 (2.5-8.1)	Yes	No	Yes	Yes	$(0, 0.5, 1, 2, 3, 4, 6, 8)^*$	No	Yes
17	Mukherjee et al.25	2015	India	127	9.4 (6.1-11.6)	Yes	Yes	Yes	Yes	$0, 1, 2, (3)^*, 4$	Yes	Yes
18	Mukherjee et al. ²⁶	2016	India	24	9.7 (6.7-11.1)	Yes	Yes	Yes	Yes	$0, 1, 2, (3)^*, 4$	Yes	Yes
19	Pouplin et al.46	2016	Vietnam	99	3.0 (1.0-7.0)	Yes	Yes	Yes	No	$(1, 2, 3, 4, 5, 6, 8, 12, 18, 24)^*$	No	Yes
20	Ramachandran et al. ²⁷	2013	India	84	7.0 (4.0-10.0)	Yes	Yes	Yes	No	0, 2, 4, 6, 8	Yes	Yes
21	Ramachandran et al. ²⁸	2015	India	77	9.0 (7.0-11.0)	Yes	Yes	Yes	No	0, 2, 4, 6, 8	Yes	Yes
22	Rangari et al.29	2015	India	20	10.5 (8.7-11.0)	Yes	No	No	No	0, 1, 2, 4, 6, 10, 24	Yes	No
23	Ranjalkar et al. ³⁰	2018	India	39	6.8 (3.4-13.5)	Yes	Yes	No	No	0.5, 1, 1.5, 2, 2.5, 4, 6	Yes	Yes
24	Rov et al. ³¹	1996	India	20	8.0 (7.0-10.0)	Yes	No	No	No	0, 1, 2, 3, 6, 24	Yes	Yes
25	Roy et al. ³²	1999	India	10	8.0 (7.0-9.7)	No	No	Yes	No	0, 1, 2, 4, 6, 12, 24	Yes	No
26	Rov et al. ³³	2010	India	20	9.0 (8.0-10.0)	Yes	No	No	No	0, 1, 2, 4, 6, 8, 24	Yes	No
27	Rov et al. ³⁴	2012	India	20	5.5 (5.0-6.0)	No	No	Yes	No	0, 1, 2, 4, 6, 8, 12, 24	Yes	No
28	Ruslami et al. ^{35,§}	2021	Indonesia	20	11.4 (6.2-14.0)	Yes	Yes	Yes	No	0. 1. 2. 4. 8	Yes	No/Yes
29	Schaaf et al. ³	2005	South Africa	64	3.7 (1.8-7.7)	Yes	No	No	No	2. 3. 4. 5	Yes	Yes
30	Schaaf et al. ³⁶	2009	South Africa	54	3.2(1.5-1.4)	No	Yes	No	No	0.75, 1.5, 3, 4, 6	Yes	Yes
31	Schipani et al. ⁴⁷	2016	Malawi	50	6.2 (2.5-8.1)	No	Yes	No	No	$(0, 0.5, 1, 2, 3, 4, 6, 8)^*$	No	Yes
32	Shah et al ³⁷	2010	India	36	70(39-110)	Ves	No	No	No	(0, 0.0, 1, 2, 0, 1, 0, 0)	Ves	Ves
32	Shah et al ³⁸	2019	India	24	65(30-101)	Ves	No	No	No	0, 1, 2, 3, 0, 21 0 2 4 6 8	Ves	Ves
34	Thee et al 5	2020	South A frica	24	10(0.8-1.6)	Ves	Ves	Ves	No	051535	Ves	Ves
35	Van Aartsen et al ¹⁴ .	2011	Tanzania	51	2.2(1.3.5.2)	Ves	Vec	Vec	Vec	1 2 6	Ves	Ves
36	Verbagen et al 6	2022	Venezuela	30	2.2(1.3-3.2) 3.8(2.6.8.3)	Vec	Vec	Vec	Vec	0.2.4.8	Vec	Vec
37	Tikiso et al 41,8	2012	South Africa Malawi	70	2.0(2.0-0.3)	No	No	No	Vec	0, 2, 7, 0 0 1 2 4 6 8	Vec	Vec
28	Thu at al 3^9	2022	United States	73	2.9(1.0-0.0) 2.0(2.2.5.2)	No	No	Voc	No	0, 1, 2, 4, 0, 0 0 0 5 1 2 6 10	Vac	Vac
20	Zhu et al. ⁴⁰	2002	United States	2 4 10	3.7(2.3-3.2)	No	No	I CS	INU Vac	0, 0.5, 1, 2, 0, 10 0 0 5 1 2 6 10	Vec	1 CS
39	Znu et al.	∠004	United States	19	4.0 (3.3-8.1)	INO	INO	INO	r es	0, 0.3, 1, 2, 0, 10	res	res

*Randomly performed in ≤ 2 sampling-time points for each sampling occasion. INH: isoniazid; RIF: rifampicin, PZA: pyrazinamide; EMB: ethambutol; IQR: interquartile range; PK: pharmacokinetics. [§]Raw data were obtained through contact with investigators before the official publication of the studies.

No	Authors	Iten	ıs incl	uded	in the	develo	oped o	checkli	st for	qualit	y asse	ssmen	t of ir	cludeo	l stud	ies (de	etails a	re sho	own ir	ı Appe	ndix 2	2)							Total	Quality
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	points	
1	Antwi et al.13	1	1	1	1	1	2	1	1	1	1	1	1	1	0	1	1	1	1	1	0	0	1	0	1	1	0	1	23	+++
2	Arya et al.42	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	0	0	1	0	1	1	0	1	21	++
3	Chabala et al.43	1	2	1	1	1	2	1	1	1	1	1	1	1	0	1	1	1	1	1	0	0	1	1	1	1	0	1	25	+++
4	Dayal et al. ¹⁷	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	0	1	23	+++
5	Denti et al. ⁸	2	2	2	2	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	32	+++
6	Garcia-Prats et al.18	2	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	31	+++
7	Graham et al. ¹⁹	1	2	1	2	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	0	0	1	1	1	1	0	1	24	+++
8	Gupta et al. ²⁰	0	1	1	0	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	0	0	1	0	0	1	0	1	18	++
9	Ibrahim et al. ⁷	0	1	1	0	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	0	0	1	1	1	1	0	1	20	++
10	Justine et al.44	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	0	1	0	0	0	0	1	1	0	1	19	++
11	Martial et al. ²¹	0	2	1	2	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	0	0	1	1	1	1	1	1	24	+++
12	Mave et al. ²²	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	0	1	0	0	1	0	1	1	0	1	20	++
13	McIlleron et al. ⁴	1	2	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	0	0	1	1	1	1	1	1	24	+++
14	McIlleron et al.23	1	2	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	0	1	0	0	1	1	1	1	1	1	23	+++
15	Mlotha et al. ²⁴	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	0	0	1	1	1	1	1	1	23	+++
16	Mlotha et al.45	0	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	0	1	0	0	0	0	1	1	1	0	18	++
17	Mukherjee et al.25	1	2	1	2	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	1	1	1	1	1	1	25	+++
18	Mukherjee et al. ²⁶	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	1	1	1	1	1	1	23	+++
19	Pouplin et al. ⁴⁶	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	0	1	0	0	1	1	1	1	0	1	21	++
20	Ramachandran et al. ²⁷	1	1	1	2	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	0	1	24	+++
21	Ramachandran et al.28	1	1	1	2	1	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	1	1	1	1	0	1	23	+++
22	Rangari et al.29	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	0	0	1	0	1	1	0	1	21	++
23	Ranjalkar et al.30	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	0	0	1	1	1	1	1	1	23	+++
24	Roy et al. ³¹	0	1	1	0	1	0	1	1	1	1	1	0	0	0	1	1	1	1	1	0	0	1	0	1	0	0	1	16	++
25	Roy et al. ³²	0	1	1	0	1	0	1	1	1	1	1	0	0	0	1	1	1	1	1	0	0	1	0	1	0	0	1	16	++
26	Roy et al. ³³	0	1	1	0	1	0	1	1	1	1	1	0	0	0	1	1	1	1	1	0	0	1	0	1	0	0	1	16	++
27	Roy et al. ³⁴	0	1	1	0	1	0	1	1	1	1	1	1	0	0	1	1	1	1	1	0	0	1	0	1	0	0	1	17	++
28	Ruslami et al.35	1	2	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	0	1	24	+++
29	Schaaf et al. ³	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	1	1	1	1	0	1	22	++
30	Schaaf et al. ³⁶	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1	24	+++
31	Schipani et al.47	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	24	+++
32	Shah et al. ³⁷	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	0	0	1	1	1	1	1	1	23	+++
33	Shah et al. ³⁸	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1	24	+++
34	Thee et al. ⁵	1	1	1	2	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	0	1	24	+++
35	Van Aartsen et al. ¹⁴	1	2	1	2	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	0	1	27	+++
36	Verhagen et al.6	1	2	1	2	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	0	1	25	+++
37	Tikiso et al.41	1	2	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	29	+++
38	Zhu et al.39	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	24	+++
39	Zhu et al.40	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	24	+++

Table E3. Quality assessment results of the included studies for which individual patient data were provided.

+++: high quality (total points: 23-33); ++: moderate quality (total points: 12-22); +: low quality (total points: ≤11).

	1. 6 1.				1 0 1 1
I able E.4 Eligible stu	idies for whic	h individual	natient data were no	nt nrovided sna	t reasons for evolusion
Table La Lingible stu	funco for mine	i mui i uuu	patient uata mere no	r providcu, and	a reasons for exclusion.

No	Authors	Year of publication	Year of data collection	Country	N patients included	INH	RIF	PZA	EMB	Reasons for exclusion	Quality
1	Arya et al. ⁵¹	2008	1991-1993	India	40	No	No	Yes	No	Authors no longer had data access.	++
2	Arya et al.52	2009	1990s	India	18	No	No	Yes	No	Authors no longer had data access.	++
3	Seth et al.53	1993	1990s	India	94	Yes	Yes	No	No	Principal investigator (V. Seth) had passed away; other authors did not have data access.	++
4	Seth et al.54	1994	1990s	India	20	Yes	No	No	No	Principal investigator (V. Seth) had passed away; other authors did not have data access.	++
5	Donald et al.55	1994	1990s	South Africa	32	Yes	No	No	No	Authors no longer had data access.	++
6	Donald et al.48	1992	1990s	South Africa	38	Yes	No	No	No	Authors no longer had data access.	++
7	Hiruy et al.50	2015	2012-2013	South Africa	31	Yes	Yes	Yes	Yes	Authors agreed to share the data, but data never sent.	+++
8	Mahajan et al.56	1997	1990s	India	20	No	Yes	No	No	Recent contact details of the investigators were unavailable.	+
9	Minchev et al.57	2005	unknown	Bulgaria	12	No	Yes	No	No	Recent contact details of the investigators were unavailable.	+
10	Rey et al.58	2001	unknown	France	34	Yes	No	No	No	No response from the corresponding author; other co-authors did not have data access.	++
11	Rey et al.49	1998	1990-1993	France	61	Yes	No	No	No	No response from the corresponding author; other co-authors did not have data access.	++
12	Seifart et al.16	1995	1990s	South Africa	13	Yes	No	No	No	Authors no longer had data access.	++
13	Thee et al.59	2010	1960s	Germany	45	Yes	No	No	No	Principal investigator (K. Magdorf) had passed away; other authors did not have data access.	++
14	Thee et al.60	2009	1973	Germany	27	No	Yes	No	No	Principal investigator (K. Magdorf) had passed away; other authors did not have data access.	++
15	Thee et al. ⁶¹	2008	1983	Germany	21	No	No	Yes	No	Principal investigator (K. Magdorf) had passed away; other authors did not have data access.	++
16	Thee et al.62	2007	1971-1973	Germany	48	No	No	No	Yes	Principal investigator (K. Magdorf) had passed away; other authors did not have data access.	++

INH: isoniazid; RIF: rifampicin, PZA: pyrazinamide; EMB: ethambutol; N: number; +++: high quality (total points: 23-33); ++: moderate quality (total points: 12-22); +: low quality (total points: ≤ 11).

Table E5. Details of the observations for which AUC₀₋₂₄ and C_{max} could not be assessed due to the limited number of samples available, or due to other reasons (e.g., all/most data were below the lower limit of quantification, and/or drug product of poor quality[¶]).

AUC ₀₋₂₄		C _{max}				
First author, year	No. of	First author, year	No. of			
	observations %)	, ,	observations (%)			
Total, n (isoniazid)	341	Total, n (isoniazid)	301			
Pouplin 1 (2016) ⁴⁶	99 (29.0%)	Pouplin 1 (2016) ⁴⁶	99 (32.9%)			
Pouplin 2 (2016) ⁴⁶	99 (29 3%)	Pouplin 2 $(2016)^{46}$	99 (32 9%)			
Justine $(2020)^{44}$	51 (15.0%)	(2010)	51 (16.9%)			
Mothe (uppublished) 45	JT(13.070) JT(12.8.04)	Mlothe (uppublished) ⁴⁵	47(15.6%)			
Multhering $(2015)^{25}$	4/(15.070)	Remerchen dren (2015) ²⁸	47(13.070)			
Mukherjee $(2013)^{-1}$	22 (0.4%)	Ramachandran $(2013)^{-3}$	2(0.7%)			
Martial $(2018)^{21}$	5 (1.5%)	Mave $(2017)^{22}$	1 (0.3%)			
Van Aartsen $(2022)^{14}$	4 (1.2%)	Shah (2019) ³⁷	1 (0.3%)			
Denti $(2022)^8$	3 (0.9%)	Denti (2022) ⁸	1 (0.3%)			
Mave (2017) ²²	2 (0.6%)					
Mlotha (2015) ²⁴	2 (0.6%)					
Ramachandran (2015) ²⁸	2 (0.6%)					
Mukherjee (2016) ²⁶	2 (0.6%)					
Dayal (2018) ; ¹⁷ Shah (2019) ; ³⁷ and	3 (0.9%)					
Ranjalkar (2018), ³⁰ 1 each						
Total, n (rifampicin)	429	Total, n (rifampicin)	365			
Pounlin 1 (2016) ⁴⁶	99 (23.1%)	Pounlin 1 (2016) ⁴⁶	99 (27 1%)			
Pouplin 2 (2016) ⁴⁶	99 (23.1%)	Pouplin 2 $(2016)^{46}$	99 (27.1%)			
1000000000000000000000000000000000000	55(25.170) 51(11.00/)	100pm.2(2010)	51(14.09/)			
Subjective (2020)	JI(11.970)	$\mathbf{M}_{1} \mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{2} \mathbf{A}_{2} \mathbf{A}_{1} \mathbf{A}_{2} \mathbf$	31(14.070)			
Schipani (2015) ²⁵	4/(10.9%)	Milotna (unpublished)	47(12.9%)			
Mukherjee (2015) ²³	21 (4.9%)	Denti.2 $(2022)^{\circ}$	60 (16.4%)			
Mlotha $(2015)^{24}$	10 (2.3%)	Ramachandran (2015) ²⁰	6 (1.6%)			
Denti.2 $(2022)^8$	60 (14.0%) [¶]	Van Aartsen (2022) ¹⁴	1 (0.3%)			
Van Aartsen $(2022)^{14}$	9 (2.1%)	Mlotha (2015) ²⁴	1 (0.3%)			
Ramachandran (2015) ²⁸	7 (1.6%)	Garcia-Prats (2021) ¹⁸	1 (0.3%)			
Garcia-Prats (2021) ¹⁸	5 (1.1%)	Denti.1 (2022) ⁸	1 (0.3%)			
Ranjalkar (2018) ³⁰	4 (0.9%)					
Mukherjee $(2016)^{26}$	4 (0.9%)					
Schaaf.2 (2009) ³⁶	4 (0.9%)					
Ramachandran $(2013)^{27}$	2 (0.5%)					
Verhagen $(2012)^6$	2(0.5%)					
Martial (2018) · ²¹ Ruslami 1 (2022) · ³⁵	3(0.6%)					
and Schaaf 1 (2009) 36 1 each	5 (0.070)					
Total n (nyrazinamida)	342	Total n (nyrazinamida)	283			
Pouplin 1 (2016) ⁴⁶	00 (28 0%)	Pouplin 1 $(2016)^{46}$	99 (35 0%)			
Pouplin 2 (2016) ⁴⁶	00 (28.0%)	Pouplin 2 $(2016)^{46}$	99 (35.0%)			
1000000000000000000000000000000000000	20.970)	100pm.2(2010)	28 (0.0%)			
$M_{1} = (2020)$	20(0.270)	$\mathbf{M}_{1} = (2020)$	28(9.970)			
Milotia (unpublished)	44(12.970)	Miotia (unpublished)	44 (13.3%)			
$\frac{1}{71} \frac{1}{(2002)^{39}}$	28 (8.2%)	$\sqrt{2}$ van Aartsen (2022)	4(1.4%)			
$Zhu (2002)^{33}$	11 (3.2%)	Antwi $(2017)^{15}$	3 (1.1%)			
Van Aartsen $(2022)^{14}$	7 (2.0%)	Zhu (2002) ³⁹	3 (1.1%)			
Martial $(2018)^{21}$	5 (1.5%)	Martial $(2018)^{21}$	2 (0.7%)			
Graham (2006) ¹⁹	4 (1.2%)	Denti (2022) ⁸	1 (0.3%)			
Denti (2022) ⁸	3 (0.9%)					
Antwi (2017) ¹³	3 (0.9%)					
Ramachandran (2013) ²⁷	2 (0.6%)					
Verhagen (2012) ⁶	2 (0.6%)					
McIlleron.2 $(2011)^{23}$	2 (0.6%)					
Mlotha $(2015)^{24}$	2 (0.6%)					
Mukheriee (2016); ²⁶ McIlleron.1	3 (0.9%)					
(2011); ²³ and Chabala (2022). ⁴³ 1 each	× /					
Total, n (ethambutol)	157	Total, n (ethambutol)	84			
Mlotha (unpublished) ⁴⁵	47 (29.9%)	Mlotha (unpublished) ⁴⁵	47 (55.9%)			
Justine (2020) ⁴⁴	24 (15.3%)	Justine (2020) ⁴⁴	24 (28.6%)			
Mukheriee $(2015)^{25}$	39 (24.8%)	Zhu $(2004)^{40}$	5 (5.9%)			
Van Aartsen $(2022)^{14}$	17(10.8%)	Antwi $(2017)^{13}$	3 (3.6%)			
$7 hu (2004)^{40}$	11 (7.0%)	Martial $(2018)^{21}$	3 (3 6%)			
Mukheriee $(2016)^{26}$	8 (5 1%)	Multherize $(2016)^{26}$	1(1,202)			
$M_{\text{ortiol}} (2018)^{21}$	6(3.170)	$Tilize (2010)^{4}$	1(1.2/0) 1(1.20/)			
$(2017)^{13}$	0 (3.8%)	$11 \text{KISO} (2022)^{11}$	1 (1.2%)			
Antwi $(2017)^{10}$	3 (1.9%) 1 (0.6%)					
$Graham (2016)^{17}$	1 (0.6%)					
Tikiso (2022) ⁴¹	1 (0.6%)					

Figure E1. Forest plots for summary estimates (geometric means [95% CIs]) of dose-normalized AUC₀₋₂₄ for isoniazid in all children and adolescents with tuberculosis (A), stratified by dosing intervals (B), World Health Organization Regions (C), and pharmacokinetic sampling schedules (D).

 AUC_{0-24} : area under the concentration-time curve from 0 to 24 hours post-dose; I²: the percentage of variation across studies that is due to heterogeneity, Q_M : the omnibus test of all model coefficients. AUC_{0-24} values were dose-normalized for isoniazid at 10 mg/kg, rifampicin at 15 mg/kg, pyrazinamide at 35 mg/kg, and ethambutol at 20 mg/kg

Figure E2. Forest plots for summary estimates (geometric means [95% CIs]) of dose-normalized C_{max} for isoniazid in all children and adolescents with tuberculosis (A), stratified by dosing intervals (B), World Health Organization Regions (C), and pharmacokinetic sampling schedules (D).

 C_{max} : peak plasma concentration; I²: the percentage of variation across studies that is due to heterogeneity, Q_M : the omnibus test of all model coefficients. C_{max} values were dose-normalized for isoniazid at 10 mg/kg, rifampicin at 15 mg/kg, pyrazinamide at 35 mg/kg, and ethambutol at 20 mg/kg.

	Fixed-effects coefficient (95% CI)					
	Isoniazid AUC ₀₋₂₄	Isoniazid C _{max}				
(Intercept)	2.88 (2.65-3.10)***	1.66 (1.44–1.87)***				
Dose, mg/kg [¶]	0.46 (0.35-0.56)***	0.41 (0.29–0.53)***				
Age	× ,					
<2 years	-0.32 (-0.450.18)***	-0.30 (-0.420.18)***				
2-4 years	$-0.12(-0.24-0.001)^*$	-0.10 (-0.20-0.01)#				
5-9 years	-0.06 (-0.16-0.05)	-0.05 (-0.14-0.05)				
10-14 years	Ref.	Ref.				
15-18 years	0.01 (-0.31-0.32)	-0.08 (-0.37-0.20)				
Sex	,					
Female	Ref.	Ref.				
Male	-0.08 (-0.150.004)*	-0.05 (-0.12-0.01)				
Malnourished ^{§§}						
No	Ref.	Ref.				
Yes, moderate	-0.04 (-0.14-0.06)	-0.01 (-0.10-0.08)				
Yes, severe	-0.07 (-0.17-0.03)	-0.05 (-0.14-0.04)				
Unknown	0.26 (-0.04-0.55)	0.21 (-0.06-0.49)				
HIV status						
Negative	Ref.	Ref.				
Positive	-0.18 (-0.300.06)**	-0.15 (-0.260.04)**				
Unknown	0.001 (-0.26-0.27)	0.03 (-0.21-0.28)				
Acetylator status, NAT2 genotyping [¶]						
Slow	0.71 (0.58–0.83)***	0.32 (0.21–0.43)***				
Intermediate	Ref.	Ref.				
Rapid	-0.30 (-0.460.15)***	-0.12 (-0.27-0.02)#				
Unknown	-0.07 (-0.25-0.11)	-0.28 (-0.450.10)**				
Random effects						
σ^2	0.42 (0.65) [§]	$0.36~(0.60)^{\$}$				
τ_{00} studies	$0.15(0.38)^{\$}$	0.13 (0.36)§				
τ11 studies*doses	$0.04(0.19)^{\$}$	$0.06(0.24)^{\$}$				
P01 studies	-0.63	-0.40				
ICC	0.28	0.32				
N studies	27	27				
Observations	1252	1292				
Conditional R ²	0.494	0.494				

Table E6. Multivariate linear mixed-effects analyses on the effect of NAT2 acetylator genotypes on log-transformed AUC₀₋₂₄ and C_{max} values for isoniazid in children and adolescents with tuberculosis, adjusted for age, sex, nutritional status and HIV status.

Data are presented as fixed-effects coefficients (beta coefficients) and 95% confidence intervals (CI), unless stated otherwise: [§]mean and standard deviation. AUC₀₋₂₄: area under the plasma concentration-time curve from 0 to 24 hours after dosing; C_{max}: peak plasma concentration; HIV: human immunodeficiency virus; σ^2 : residual variance, τ_{00} : random intercept variance, τ_{11} : random slope variance, ρ_{01} : random slope-intercept correlation, ICC: intraclass correlation coefficient, N: number of included studies, conditional R²: the proportion of variance explained by both the fixed and random effects. [¶]Drug dose was meancentred by subtracting the mean from each data point, then standardized by dividing each point by the standard deviation. ^{§§}Moderate malnutrition was defined as a weigh-for-age or height-for-age Z-score \geq -3 but <-2 in children aged <5 years, and a height-for-age or body mass index-for-age Z-score \geq -3 but <-2 in children aged \geq 5 years; and severe malnutrition was defined as a weigh-for-age Z-score <-3 in children aged <5 years, and a height-for-age or body mass indexfor-age Z-score <-3 in children aged \geq 5 years. [¶]Details are described in Appendix 4. ^{***}p<0.001, ^{**}p<0.01, ^{*}p<0.05, [#]p<0.1.

Figure E3. Forest plots for summary estimates (geometric means [95% CIs]) of dose-normalized AUC₀₋₂₄ for rifampicin in all children and adolescents with tuberculosis (A), stratified by dosing intervals (B), World Health Organization Regions (C), and pharmacokinetic sampling schedules (D).

 AUC_{0-24} : area under the concentration-time curve from 0 to 24 hours post-dose; I²: the percentage of variation across studies that is due to heterogeneity, Q_M : the omnibus test of all model coefficients. AUC_{0-24} values were dose-normalized for isoniazid at 10 mg/kg, rifampicin at 15 mg/kg, pyrazinamide at 35 mg/kg, and ethambutol at 20 mg/kg.

Figure E4. Forest plots for summary estimates (geometric means [95% CIs]) of dose-normalized C_{max} for rifampicin in all children and adolescents with tuberculosis (A), stratified by dosing intervals (B), World Health Organization Regions (C), and pharmacokinetic sampling schedules (D).

 C_{max} : peak plasma concentration; I²: the percentage of variation across studies that is due to heterogeneity, Q_M : the omnibus test of all model coefficients. C_{max} values were dose-normalized for isoniazid at 10 mg/kg, rifampicin at 15 mg/kg, pyrazinamide at 35 mg/kg, and ethambutol at 20 mg/kg.

Figure E5. Forest plots for summary estimates (geometric means [95% CIs]) of dose-normalized AUC₀₋₂₄ for pyrazinamide in all children and adolescents with tuberculosis (A), stratified by dosing intervals (B), World Health Organization Regions (C), and pharmacokinetic sampling schedules (D).

 $AUC_{0.24}$: area under the concentration-time curve from 0 to 24 hours post-dose; I²: the percentage of variation across studies that is due to heterogeneity, Q_M : the omnibus test of all model coefficients. $AUC_{0.24}$ values were dose-normalized for isoniazid at 10 mg/kg, rifampicin at 15 mg/kg, pyrazinamide at 35 mg/kg, and ethambutol at 20 mg/kg.

Figure E6. Forest plots for summary estimates (geometric means [95% CIs]) of dose-normalized C_{max} for pyrazinamide in all children and adolescents with tuberculosis (A), stratified by dosing intervals (B), World Health Organization Regions (C), and pharmacokinetic sampling schedules (D).

 C_{max} : peak plasma concentration; I²: the percentage of variation across studies that is due to heterogeneity, Q_M : the omnibus test of all model coefficients. C_{max} values were dose-normalized for isoniazid at 10 mg/kg, rifampicin at 15 mg/kg, pyrazinamide at 35 mg/kg, and ethambutol at 20 mg/kg.

Figure E7. Forest plots for summary estimates (geometric means [95% CIs]) of dose-normalized AUC₀₋₂₄ for ethambutol in all children and adolescents with tuberculosis (A), stratified by dosing intervals (B), World Health Organization Regions (C), and pharmacokinetic sampling schedules (D).

 AUC_{0-24} : area under the concentration-time curve from 0 to 24 hours post-dose; I²: the percentage of variation across studies that is due to heterogeneity, Q_M : the omnibus test of all model coefficients. AUC_{0-24} values were dose-normalized for isoniazid at 10 mg/kg, rifampicin at 15 mg/kg, pyrazinamide at 35 mg/kg, and ethambutol at 20 mg/kg.

Figure E8. Forest plots for summary estimates (geometric means [95% CIs]) of dose-normalized C_{max} for ethambutol in all children and adolescents with tuberculosis (A), stratified by dosing intervals (B), World Health Organization Regions (C), and pharmacokinetic sampling schedules (D).

 C_{max} : peak plasma concentration; I²: the percentage of variation across studies that is due to heterogeneity, Q_M : the omnibus test of all model coefficients. C_{max} values were dose-normalized for isoniazid at 10 mg/kg, rifampicin at 15 mg/kg, pyrazinamide at 35 mg/kg, and ethambutol at 20 mg/kg.

Patient characteristics	Fixed-effects coefficient	Random effects for each model [§]							Cond.
i attent characteristics	(95% CD)	$\frac{\pi}{\sigma^2}$	Taa	711	001	ICC	N§§	_ 003.	R^2
	(5570 CI)	U	studies	•11 studies*doses	P ⁰¹	ice	studios		R
Age, years [¶]	$0.09 (0.04 - 0.14)^{***}$	0.50	0.17	0.04	-0.75	0.26	27	1252	0.403
Age									
<2 years	-0.29 (-0.430.15)***	0.50	0.17	0.03	-0.76	0.26	27	1252	0.402
2-4 years	-0.12 (-0.25-0.01)#								
5-9 years	-0.08 (-0.19-0.04)								
10-14 years	Ref.								
15-18 years	0.01 (-0.33-0.35)								
Sex									
Female	Ref.	0.50	0.17	0.04	-0.73	0.26	27	1252	0.397
Male	-0.07 (-0.15-0.01)#								
Weight-for-age Z-score (WFAZ) ¹	0.08 (0.03-0.12)**	0.48	0.19	0.04	-0.83	0.27	26	979	0.404
Underweight									
No	Ref.	0.48	0.18	0.04	-0.86	0.27	26	979	0.393
Yes, moderate (-3≤WFAZ<-2)	-0.07 (-0.18-0.05)								
Yes, severe (WFAZ<-3)	-0.10 (-0.22-0.02)	0.52	0.1.4	0.04	0.02	0.00		1110	0.270
Height-for-age Z-score (HFAZ)	0.08 (0.03-0.12)	0.52	0.14	0.04	-0.83	0.22	22	1112	0.378
Stunted	D.C.	0.50	0.14	0.04	0.05	0.00	22	1110	0.272
No $V_{2,2}$ we denote $(2 \le UE \land 7 \le 2)$	Ref.	0.52	0.14	0.04	-0.85	0.22	22	1112	0.3/3
Yes, moderate $(-3 \le HFAZ < -2)$	-0.08(-0.19-0.03)								
Yes, severe (HFAZ<-5)	-0.13(-0.24-0.02)	0.50	0.14	0.05	0.02	0.21	22	802	0.270
Weight-Ior-height Z-score (WFHZ)	0.06 (0.01-0.11)	0.50	0.14	0.05	-0.93	0.21	22	802	0.379
No	Pof	0.50	0.14	0.05	0.04	0.22	22	802	0 277
No Ves. moderate (3 <weh7<2)< td=""><td>0.12(0.28-0.04)</td><td>0.50</td><td>0.14</td><td>0.05</td><td>-0.94</td><td>0.22</td><td>22</td><td>802</td><td>0.377</td></weh7<2)<>	0.12(0.28-0.04)	0.50	0.14	0.05	-0.94	0.22	22	802	0.377
Ves severe (WEHZ $<$ -3)	-0.12(-0.28-0.04) -0.06(-0.24-0.13)								
BMI-for-age Z-score (BFAZ) [¶]	0.04(-0.01-0.09)	0.53	0.14	0.04	-0.85	0.21	22	1111	0.369
Low BMI	0.04 (0.01 0.09)	0.55	0.14	0.04	0.05	0.21	22	1111	0.507
No	Ref	0.53	0.14	0.04	-0.85	0.21	22	1111	0.367
Yes, moderate (-3 <bfaz<-2)< td=""><td>-0.04(-0.17-0.09)</td><td>0100</td><td>011 1</td><td>0101</td><td>0.00</td><td>0.21</td><td></td><td></td><td>0.007</td></bfaz<-2)<>	-0.04(-0.17-0.09)	0100	011 1	0101	0.00	0.21			0.007
Yes, severe (BFAZ ≤ 3)	-0.05 (-0.19-0.10)								
Malnourished [†]									
No	Ref.	0.52	0.14	0.04	-0.85	0.22	24	1118	0.368
Yes, moderate	-0.07 (-0.17-0.04)								
Yes, severe	-0.13 (-0.240.03)*								
Type of tuberculosis									
Pulmonary	Ref.	0.47	0.18	0.05	-0.72	0.28	23	1089	0.410
Extrapulmonary	0.05 (-0.07-0.16)								
Pulmonary + extrapulmonary	-0.09 (-0.26-0.07)								
HIV status									
Negative	Ref.	0.53	0.14	0.04	-0.73	0.22	23	1129	0.377
Positive	-0.17 (-0.300.04)**								
Drug administration							-		
Taken whole orally	Ref.	0.42	0.03	0.02	0.29	0.15	5	313	0.373
Crushed/dispersed/via NGT	0.08 (-0.08-0.24)	0.42	0.02			0.07	10		0.010
Creatinine clearance, mL/min	0.03 (-0.05-0.11)	0.43	0.03	-	-	0.07	10	322	0.213
Serum albumin, g/dL ¹	-0.08 (-0.160.01)	0.50	0.36	-	-	0.42	11	598	0.486
Hypoalbuminemia	D.C.	0.40	0.00	0.11	0.05	0.00	11	500	0.200
No, ≥ 3.5 g/dL	Ref.	0.48	0.26	0.11	-0.95	0.28	11	598	0.396
Yes, <3.5 g/dL	0.09 (-0.06-0.24)								
Acetylator status, NA12 genotype	0 (0 (0 50 0 90)***	0.21	0.04	0.02	0.44	0.17	10	5((0.551
Slow	0.69(0.59-0.80)	0.31	0.04	0.03	-0.44	0.17	10	300	0.551
Panid	$0.20(0.42-0.15)^{***}$								
A cetulator status, t., phenotype [¥]	-0.29 (-0.420.13)								
Slow	$0.68(0.60-0.76)^{***}$	0.35	0.12	0.03	-0.67	0.27	27	1203	0.570
Intermediate	Ref	0.55	0.12	0.03	-0.07	0.27	<i>21</i>	1205	0.570
Rapid	-0.39 (-0.510.28)***								

Table E7. Linear mixed-effects models of dose-adjusted AUC₀₋₂₄ in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics.

Data are presented as fixed-effects coefficients (beta coefficients) and 95% confidence intervals (CI), unless stated otherwise: [§]mean or ^{§§}number. AUC₀₋₂₄: area under the plasma concentration-time curve from 0 to 24 hours after dosing; BMI: body mass index; HIV: human immunodeficiency virus; NGT: nasogastric tube, σ^2 : residual variance, τ_{00} : random intercept variance, τ_{11} : random slope variance, ρ_{01} : random slope-intercept correlation, ICC: intraclass correlation coefficient, N: number of included studies, conditional R²: the proportion of variance explained by both the fixed and random effects. Obs.: observations; Cond.: conditional. [§]All continuous variables were mean-centred by subtracting the mean from each data point, then standardized by dividing each point by the standard deviation. [†]Moderate malnutrition was defined as WFAZ or HFAZ ≥-3 but <-2 in children aged <5 years; and HFAZ or BFAZ >-3 but <-2 in children aged ≥5 years; and severe malnutrition was defined as WFAZ or HFAZ <-3 in children aged <5 years, and HFAZ or BFAZ <-3 unchildren aged ≥5 years; ^{††} Model for creatinine clearance was adjusted for drug dose and age. [§]Details are described in Appendix 4. ^{***}p<0.01, ^{**}p<0.01, ^{**}p<0.01, [#]p<0.1.

Patient characteristics	Fixed-effects coefficient	Rando	m effects fo	Obs §§	Cond				
i attent characteristics	(95% CI)	σ^2	τ00	τ ₁₁	ρ01	ICC	N§		\mathbf{R}^2
Age vears	0.07(0.03-0.11)***	0.38	studies	studies*doses	studies	0.34	studies 27	1292	0.466
Age	0.07 (0.05 0.11)	0.50	0.10	0.00	-0.40	0.54	27	1272	0.400
<2 vears	-0.27 (-0.400.15)***	0.38	0.16	0.06	-0.39	0.34	27	1292	0.470
2-4 years	$-0.09(-0.21-0.02)^{\#}$								
5-9 years	-0.05 (-0.15-0.05)								
10-14 years	Ref.								
15-18 years	-0.08 (-0.38-0.21)								
Sex									
Female	Ref.	0.39	0.16	0.06	-0.42	0.33	27	1292	0.455
Male	-0.06 (-0.13-0.01)								
Weight-for-age Z-score (WFAZ) [¶]	0.08 (0.04–0.12)**	0.36	0.18	0.07	-0.43	0.38	26	1008	0.497
Underweight									
No	Ref.	0.36	0.18	0.07	-0.46	0.37	26	1008	0.846
Yes, moderate (-3≤WFAZ<-2)	-0.06 (-0.16-0.04)								
Yes, severe (WFAZ<-3)	-0.10 (-0.20-0.00)#								
Height-for-age Z-score (HFAZ) [¶]	0.06 (0.02–0.10)**	0.41	0.15	0.04	-0.67	0.29	22	1151	0.424
Stunted									
No	Ref.	0.41	0.15	0.04	-0.69	0.28	22	1151	0.420
Yes, moderate (-3≤HFAZ<-2)	-0.07 (-0.17-0.02)								
Yes, severe (HFAZ<-3)	-0.10 (-0.200.001)*								
Weight-for-height Z-score (WFHZ) ¹	0.07 (0.03–0.12)**	0.38	0.18	0.06	-0.95	0.31	22	823	0.459
Wasted									
No	Ref.	0.38	0.18	0.06	-0.95	0.31	22	823	0.455
Yes, moderate $(-3 \le WFHZ \le -2)$	-0.16 (-0.300.02)*								
Yes, severe (WFHZ<-3)	-0.11 (-0.28-0.05)								
BMI-for-age Z-score (BFAZ) ¹	0.05 (0.01–0.09)*	0.42	0.16	0.03	-0.82	0.27	22	1150	0.415
Low BMI	D.C.	0.40	0.16	0.04	0.70	0.00	22	1150	0.410
No	Ref.	0.42	0.16	0.04	-0.78	0.28	22	1150	0.412
Yes, moderate $(-3 \le BFAZ \le 2)$	-0.03(-0.14-0.09)								
$\frac{Y \text{ es, severe (BFAZ <-3)}}{M + 1}$	-0.06 (-0.19-0.07)								
Mainourished	Dof	0.42	0.16	0.04	0.75	0.20	24	1150	0.416
NO Vas madameta	0.04(0.12, 0.06)	0.42	0.10	0.04	-0.75	0.28	24	1138	0.410
Yes, moderate	-0.04(-0.15-0.06) 0.11(0.21-0.02)*								
Turna of tuborgulagia	-0.11 (-0.210.02)								
Pulmonary	Ref	0.38	0.18	0.08	-0.36	0.37	23	1129	0.467
Extrapulmonary	0.02(-0.09-0.12)	0.50	0.10	0.00	-0.50	0.57	25	112)	0.407
Pulmonary + extrapulmonary	-0.04(-0.18-0.11)								
HIV status	0.01(0.10 0.11)								
Negative	Ref	0.41	0.15	0.06	-0.40	0.31	23	1166	0.454
Positive	-0.17 (-0.28-0.06)**	0.11	0.12	0.00	0.10	0.51	20	1100	0.151
Drug administration									
Taken whole orally	Ref.	0.28	0.00	0.02	0.63	0.13	5	315	0.415
Crushed/dispersed/via NGT	0.10 (-0.03-0.23)								
Creatinine clearance, mL/min ^{1,††}	0.10 (0.02-0.18)*	0.35	0.18	-	-	0.34	10	330	0.406
Serum albumin, g/dL [¶]	-0.06 (-0.13-0.00)#	0.38	0.32	-	-	0.45	11	615	0.523
Hypoalbuminemia	x <i>x</i>								
No, $\geq 3.5 \text{ g/dL}$	Ref.	0.36	0.23	0.13	-0.66	0.41	11	615	0.476
Yes, <3.5 g/dL	0.05 (-0.08-0.18)								
Acetylator status, NAT2 genotype [¥]									
Slow	0.31 (0.22-0.39)***	0.22	0.02	0.03	-0.44	0.19	10	570	0.528
Intermediate	Ref.								
Rapid	-0.11 (-0.22-0.01)#								
Acetylator status, $t_{1/2}$ phenotype [*]									
Slow	0.21 (0.14-0.29)***	0.31	0.12	0.06	-0.31	0.34	27	1203	0.505
Intermediate	Ref.								
Rapid	-0.14 (-0.240.03)*								

Table E8. Linear mixed-effects models of dose-adjusted C_{max} in log-transformed values for isoniazid in children and adolescents with tuberculosis, by patient characteristics.

Data are presented as fixed-effects coefficients (beta coefficients) and 95% confidence intervals (CI), unless stated otherwise: [§]mean or ^{§§}number. C_{max} : maximum plasma concentration; BMI: body mass index; HIV: human immunodeficiency virus; NGT: nasogastric tube, σ^2 : residual variance, τ_{00} : random intercept variance, τ_{11} : random slope variance, τ_{01} : random slope-intercept correlation, ICC: intraclass correlation coefficient, N: number of included studies, conditional R²: the proportion of variance explained by both the fixed and random effects. Obs.: observations; Cond.: conditional. [§]All continuous variables were mean-centred by subtracting the mean from each data point, then standardized by dividing each point by the standard deviation. [†]Moderate malnutrition was defined as WFAZ or HFAZ \geq -3 but <-2 in children aged <5 years, and HFAZ or BFAZ \geq -3 but <-2 in children aged \geq 5 years; and severe malnutrition was defined as WFAZ or HFAZ <-3 in children aged <5 years, and HFAZ or BFAZ <-3 in children aged \geq 5 years. ^{††} Model for creatinine clearance was adjusted for drug dose and age. [§]Details are described in Appendix 4. ^{***}p<0.001, ^{**}p<0.05, [#]p<0.1.

Patient characteristics	Fixed-effects	Rando	m effects		Obs.§§	Cond.			
	coefficient (95% CI)	σ^2	τ ₀₀	τ ₁₁ studies*doses	P01 studies	ICC	N ^{§§} studies		\mathbf{R}^2
Age, years [¶]	0.18 (0.13-0.24)***	0.47	0.13	0.13	-0.12	0.37	22	1041	0.631
Age									
<2 vears	-0.48 (-0.630.33)***	0.47	0.14	0.12	-0.18	0.37	22	1041	0.624
2-4 years	-0.35 (-0.490.21)***								
5-9 years	-0.13 (-0.26-0.00)								
10-14 years	Ref.								
15-18 years	0.22 (-0.16-0.60)								
Sex									
Female	Ref.	0.49	0.16	0.11	-0.17	0.37	22	1041	0.582
Male	-0.05 (-0.14-0.04)								
Weight-for-age Z-score (WFAZ) [¶]	0.04 (-0.02-0.09)	0.52	0.15	n/a	n/a	0.23	22	843	0.402
Underweight									
No	Ref.	0.52	0.15	n/a	n/a	0.23	22	843	0.397
Yes, moderate (-3 <wfaz<-2)< td=""><td>-0.02(-0.15-0.11)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></wfaz<-2)<>	-0.02(-0.15-0.11)								
Yes, severe (WFAZ<-3)	0.01 (-0.14-0.16)								
Height-for-age Z-score (HFAZ) [¶]	0.08 (0.04-0.13)**	0.49	0.15	0.13	-0.18	0.38	22	1035	0.599
Stunted									
No	Ref.	0.49	0.15	0.12	-0.16	0.37	22	1035	0.594
Yes, moderate (-3≤HFAZ<-2)	-0.11 (-0.22-0.00)#								
Yes, severe (HFAZ<-3)	-0.13 (-0.250.01)*								
Weight-for-height Z-score (WFHZ) [¶]	0.01 (-0.07-0.05)	0.48	0.15	0.21	0.26	0.49	22	753	0.721
Wasted									
No	Ref.	0.48	0.16	0.21	0.27	0.49	22	753	0.717
Yes, moderate (-3≤WFHZ<-2)	0.10 (-0.06-0.27)								
Yes, severe (WFHZ<-3)	0.15 (-0.06-0.37)								
BMI-for-age Z-score (BFAZ) [¶]	-0.05 (-0.100.001)*	0.49	0.15	0.12	-0.16	0.37	22	1034	0.583
Low BMI									
No	Ref.	0.49	0.15	0.13	-0.07	0.39	22	1034	0.591
Yes, moderate (-3≤BFAZ<-2)	0.27 (0.14–0.41)***								
Yes, severe (BFAZ <-3)	0.14 (-0.02-0.30)#								
Malnourished [†]									
No	Ref.	0.49	0.15	0.12	-0.19	0.37	22	1035	0.585
Yes, moderate	-0.003 (-0.11-0.11)								
Yes, severe	-0.07 (-0.18-0.05)								
Type of tuberculosis									
Pulmonary	Ref.	0.48	0.16	0.11	-0.13	0.39	18	903	0.590
Extrapulmonary	0.11 (-0.03-0.25)								
Pulmonary + extrapulmonary	-0.04 (-0.21-0.14)								
HIV status									
Negative	Ref.	0.50	0.13	0.14	-0.26	0.37	21	990	0.604
Positive	-0.23 (-0.370.09)**								
Drug administration							_		
Taken whole orally	Ref.	0.45	0.18	n/a	n/a	0.29	7	370	0.520
Crushed/dispersed/via NGT	-0.02 (-0.18-0.13)								
Creatinine clearance, mL/min ^{1,1}	0.05 (-0.04-0.13)	0.32	0.17	n/a	n/a	0.35	12	415	0.555
Serum albumin, g/dL ¹	-0.05 (-0.13-0.02)	0.50	0.21	n/a	n/a	0.29	12	611	0.457
Hypoalbuminemia	D 0	0.50		,	,			<i></i>	0.4-0
No, $\geq 3.5 \text{ g/dL}$	Ref.	0.50	0.20	n/a	n/a	0.29	12	611	0.458
Yes, <3.5 g/dL	$0.17(-0.001-0.33)^{\#}$								
<i>SLCO1B1</i> rs4149032	D (0.27	0.02	,	,	0.00	•	100	0.1/2
CC	Ket.	0.37	0.03	n/a	n/a	0.08	2	190	0.163
	-0.11(-0.33-0.11)								
11	-0.34 (-0.610.08)								

Table E9. Linear mixed-effects models of dose-adjusted AUC₀₋₂₄ in log-transformed values for rifampicin in children and adolescents with tuberculosis, by patient characteristics.

Data are presented as fixed-effects coefficients (beta coefficients) and 95% confidence intervals (CI), unless stated otherwise: [§]mean or ^{§§}number. AUC₀₋₂₄: area under the plasma concentration-time curve from 0 to 24 hours after dosing; BMI: body mass index; HIV: human immunodeficiency virus; NGT: nasogastric tube, σ^2 : residual variance, τ_{00} : random intercept variance, τ_{11} : random slope variance, ρ_{01} : random slope-intercept correlation, ICC: intraclass correlation coefficient, N: number of included studies, conditional R²: the proportion of variance explained by both the fixed and random effects. Obs.: observations; Cond.: conditional. [¶]All continuous variables were mean-centred by subtracting the mean from each data point, then standardized by dividing each point by the standard deviation. [†]Moderate malnutrition was defined as WFAZ or HFAZ ≥-3 but <-2 in children aged ≥5 years; and severe malnutrition was defined as WFAZ or HFAZ <-3 in children aged <5 years, and HFAZ or BFAZ <-3 in children aged ≥5 years. ^{††} Model for creatinine clearance was adjusted for drug dose and age. ^{***}p<0.001, ^{**}p<0.01, ^{**}p<0.05, [#]p<0.1.

Patient characteristics	Fixed-effects	Rando	m effects f	Obs.§§	Cond.				
	coefficient (95% CI)	σ^2	τ ₀₀ studies	τ ₁₁ studies*doses	P01 studies	ICC	N ^{§§} studies	_	R ²
Age, years [¶]	0.13 (0.08–0.18)***	0.50	0.13	0.12	0.16	0.35	22	1105	0.550
Age	· · · · · ·								
<2 years	-0.40 (-0.550.25)***	0.49	0.13	0.10	0.03	0.33	22	1105	0.532
2-4 years	-0.16 (-0.300.02)*								
5-9 years	-0.07 (-0.19-0.06)								
10-14 years	Ref.								
15-18 years	0.10 (-0.27-0.46)								
Sex									
Female	Ref.	0.51	0.12	0.11	0.19	0.34	22	1105	0.518
Male	-0.00 (-0.08-0.09)								
Weight-for-age Z-score (WFAZ) [¶]	0.08 (0.03-0.14)**	0.54	0.11	0.12	0.26	0.34	22	893	0.551
Underweight									
No	Ref.	0.55	0.11	0.12	0.25	0.33	22	893	0.549
Yes, moderate (-3≤WFAZ<-2)	0.03 (-0.10-0.16)								
Yes, severe (WFAZ<-3)	-0.17 (-0.320.02)*								
Height-for-age Z-score (HFAZ) [¶]	0.09 (0.05–0.14)***	0.50	0.11	0.12	0.18	0.34	22	1098	0.538
Stunted									
No	Ref.	0.51	0.12	0.12	0.21	0.34	22	1098	0.537
Yes, moderate (-3≤HFAZ<-2)	-0.15 (-0.260.04)**								
Yes, severe (HFAZ<-3)	-0.16 (-0.270.04)**								
Weight-for-height Z-score (WFHZ) [¶]	0.02 (-0.03-0.08)	0.56	0.12	0.16	0.27	0.39	22	793	0.602
Wasted									
No	Ref.	0.56	0.12	0.16	0.27	0.39	22	793	0.600
Yes, moderate (-3≤WFHZ<-2)	-0.06 (-0.23-0.11)								
Yes, severe (WFHZ<-3)	0.05 (-0.18-0.28)								
BMI-for-age Z-score (BFAZ) [¶]	0.00 (-0.05-0.05)	0.51	0.12	0.11	0.18	0.34	22	1097	0.517
Low BMI									
No	Ref.	0.51	0.12	0.12	0.24	0.34	22	1097	0.524
Yes, moderate (-3≤BFAZ<-2)	$0.14 (0.01 - 0.27)^*$								
Yes, severe (BFAZ <-3)	-0.07 (-0.22-0.09)								
Malnourished [†]									
No	Ref.	0.51	0.11	0.12	0.17	0.34	22	1098	0.531
Yes, moderate	-0.06 (-0.16-0.05)								
Yes, severe	-0.17 (-0.280.06)**								
Type of tuberculosis									
Pulmonary	Ref.	0.48	0.14	0.10	0.19	0.37	18	961	0.526
Extrapulmonary	0.06 (-0.08-0.20)								
Pulmonary + extrapulmonary	-0.03 (-0.20-0.14)								
HIV status	D 0			0.10	0.10			10.10	
Negative	Ref.	0.51	0.10	0.13	0.19	0.35	21	1049	0.543
Positive	-0.26 (-0.400.12)								
Drug administration	D (0.44	0.04	,	,	0.00	-	277	0.000
Taken whole orally	Ref.	0.44	0.04	n/a	n/a	0.08	1	377	0.380
Crushed/dispersed/via NG1	-0.04 (-0.12-0.19)	0.22	0.16		1	0.24	10	122	0.402
Creatinine clearance, mL/min ¹⁶¹¹	0.09 (0.01-0.17)	0.32	0.16	n/a	n/a	0.34	12	432	0.493
Serum albumin, g/dL ¹	0.02 (-0.05-0.09)	0.44	0.14	n/a	n/a	0.25	12	634	0.417
Hypoalbuminemia	D 0	<u> </u>		,	,			(2)	o
No, $\geq 3.5 \text{ g/dL}$	Ref.	0.44	0.15	n/a	n/a	0.25	12	634	0.414
$\frac{\gamma \text{ es}, <3.5 \text{ g/dL}}{\frac{91}{2}}$	0.03 (-0.12-0.19)								
SLCOIBI rs4149032	Def	0.21	0.04			0.16	2	100	0.229
	KeI.	0.31	0.06	n/a	n/a	0.16	2	190	0.228
	-0.10(-0.50-0.11)								
11	-0.30 (-0.340.05)								

Table E10. Linear mixed-effects models of dose-adjusted C_{max} in log-transformed values for rifampicin in children and adolescents with tuberculosis, by patient characteristics.

Data are presented as fixed-effects coefficients (beta coefficients) and 95% confidence intervals (CI), unless stated otherwise: $\[1ex]$ mean or $\[1ex]$ mumber. C_{max}: maximum plasma concentration; BMI: body mass index; HIV: human immunodeficiency virus; NGT: nasogastric tube, σ^2 : residual variance, τ_{00} : random intercept variance, τ_{11} : random slope variance, ρ_{01} : random slope-intercept correlation, ICC: intraclass correlation coefficient, N: number of included studies, conditional R²: the proportion of variance explained by both the fixed and random effects. Obs.: observations; Cond.: conditional. ¹All continuous variables were mean-centred by subtracting the mean from each data point, then standardized by dividing each point by the standard deviation. [†]Moderate malnutrition was defined as WFAZ or HFAZ \geq -3 but <-2 in children aged <5 years, and HFAZ or BFAZ \geq -3 but <-2 in children aged \leq 5 years; and severe malnutrition was defined as WFAZ or HFAZ <-3 in children aged <5 years, and HFAZ or BFAZ <-3 in children aged \geq 5 years. ^{††} Model for creatinine clearance was adjusted for drug dose and age. ^{***}p<0.001, ^{**}p<0.05, [#]p<0.1.

Patient characteristics	Fixed-effects	Rando	m effects f		Obs.§§	Cond.			
	coefficient (95% CI)	σ^2	$ au_{00}$	τ_{11}	ρ ₀₁	ICC	N ^{§§}	_	R ²
			studies	studies*doses	studies		studies		
Age, years [¶]	0.11 (0.07–0.14)***	0.22	0.04	0.01	-0.23	0.19	23	962	0.290
Age									
<2 years	-0.28 (-0.380.17)***	0.22	0.04	0.01	-0.26	0.19	23	962	0.289
2-4 years	-0.24 (-0.340.14)***								
5-9 years	-0.13 (-0.220.04)**								
10-14 years	Ref.								
15-18 years	-0.003 (-0.28-0.27)								
Sex									
Female	Ref.	0.22	0.06	0.02	-0.63	0.24	23	962	0.304
Male	-0.10 (-0.160.04)**								
Weight-for-age Z-score (WFAZ)	$0.05 (0.02 - 0.09)^{**}$	0.23	0.06	0.01	-0.61	0.24	23	781	0.306
Underweight									
No	Ref.	0.23	0.05	0.01	-0.54	0.22	23	781	0.293
Yes, moderate (-3≤WFAZ<-2)	0.03 (-0.06-0.12)								
Yes, severe (WFAZ<-3)	-0.10 (-0.190.01)*								
Height-for-age Z-score (HFAZ)	0.06 (0.02–0.10)**	0.21	0.06	0.02	-0.60	0.25	21	921	0.315
Stunted									
No	Ref.	0.21	0.06	0.02	-0.63	0.26	21	921	0.323
Yes, moderate (-3≤HFAZ<-2)	-0.09 (-0.170.02)*								
Yes, severe (HFAZ<-3)	-0.16 (-0.240.07)***								
Weight-for-height Z-score (WFHZ)	0.02 (-0.03-0.07)	0.22	0.05	0.01	-0.18	0.20	21	665	0.274
Wasted									
No	Ref.	0.22	0.05	0.01	-0.29	0.19	21	665	0.270
Yes, moderate (-3≤WFHZ<-2)	-0.11 (-0.22–0.01)#								
Yes, severe (WFHZ<-3)	-0.05 (-0.18-0.08)								
BMI-for-age Z-score (BFAZ) [¶]	-0.04 (-0.10-0.03)	0.22	0.06	0.02	-0.60	0.25	21	921	0.302
Low BMI									
No	Ref.	0.22	0.06	0.02	-0.66	0.25	21	921	0.304
Yes, moderate (-3≤BFAZ<-2)	-0.02 (-0.11-0.08)								
Yes, severe (BFAZ <-3)	0.00 (-0.10-0.10)								
Malnourished [†]									
No	Ref.	0.22	0.06	0.02	-0.65	0.25	22	929	0.304
Yes, moderate	-0.04 (-0.12–0.04)								
Yes, severe	-0.13 (-0.210.05)**								
Type of tuberculosis									
Pulmonary	Ref.	0.22	0.07	0.01	-0.79	0.25	18	834	0.272
Extrapulmonary	0.06 (-0.03-0.15)								
Pulmonary + extrapulmonary	0.05 (-0.10-0.19)								
HIV status									
Negative	Ref.	0.23	0.07	0.02	-0.60	0.28	20	882	0.346
Positive	-0.21 (-0.300.11)****								
Drug administration									
Taken whole orally	Ref.	0.16	0.03	0.01	0.95	0.22	4	255	0.325
Crushed/dispersed/via NGT	-0.02 (-0.13-0.09)								
Creatinine clearance, mL/min ^{¶,††}	0.01 (-0.05-0.07)	0.22	0.03	-	-	0.13	12	323	0.204
Serum albumin, g/dL [¶]	-0.02 (-0.07-0.03)	0.23	0.07	-	-	0.23	11	577	0.277
Hypoalbuminemia									
No, ≥3.5 g/dL	Ref.	0.22	0.10	0.04	-0.80	0.34	11	577	0.360
Yes, <3.5 g/dL	-0.03 (-0.13-0.08)								

Table E11. Linear mixed-effects models of dose-adjusted AUC₀₋₂₄ in log-transformed values for pyrazinamide in children and adolescents with tuberculosis, by patient characteristics.

Data are presented as fixed-effects coefficients (beta coefficients) and 95% confidence intervals (CI), unless stated otherwise: [§]mean or ^{§§}number. AUC₀₋₂₄: area under the plasma concentration-time curve from 0 to 24 hours after dosing; BMI: body mass index; HIV: human immunodeficiency virus; NGT: nasogastric tube, σ^2 : residual variance, τ_{00} : random intercept variance, τ_{11} : random slope variance, ρ_{01} : random slope-intercept correlation, ICC: intraclass correlation coefficient, N: number of included studies, conditional R²: the proportion of variance explained by both the fixed and random effects. Obs.: observations; Cond.: conditional. [¶]All continuous variables were mean-centred by subtracting the mean from each data point, then standardized by dividing each point by the standard deviation. [†]Moderate malnutrition was defined as WFAZ or HFAZ ≥-3 but <-2 in children aged ≥5 years; and severe malnutrition was defined as WFAZ or HFAZ <-3 in children aged ≥5 years. ^{††} Model for creatinine clearance was adjusted for drug dose and age. ^{***}p<0.001, ^{**}p<0.01, ^{**}p<0.05, [#]p<0.1.

Patient characteristics	Fixed-effects	Rando		Obs. ^{§§}	Cond.				
	coefficient (95% CI)	$\frac{\sigma^2}{\sigma^2}$	τ ₀₀	τ ₁₁	ρ ₀₁	ICC	N [§]		\mathbf{R}^2
Age. vears [¶]	0.07 (0.03-0.10)***	0.20	0.03	0.01	-0.21	0.17	23	1021	0.269
Age									0.207
<2 vears	-0.19 (-0.280.09)***	0.20	0.03	0.01	-0.18	0.17	23	1021	0.270
2-4 years	-0.16 (-0.250.06)***								
5-9 years	-0.10 (-0.180.02)*								
10-14 years	Ref.								
15-18 years	-0.01 (-0.26-0.23)								
Sex									
Female	Ref.	0.20	0.04	0.01	-0.43	0.20	23	1021	0.279
Male	-0.07 (-0.120.01)*								
Weight-for-age Z-score (WFAZ) [¶]	0.05 (0.02–0.09)**	0.21	0.04	0.01	-0.25	0.19	23	827	0.282
Underweight									
No	Ref.	0.21	0.04	0.01	-0.21	0.18	23	827	0.274
Yes, moderate (-3≤WFAZ<-2)	0.03 (-0.06-0.11)								
Yes, severe (WFAZ<-3)	-0.14 (-0.220.05)**								
Height-for-age Z-score (HFAZ) [¶]	0.05 (0.01-0.09)**	0.19	0.04	0.01	-0.26	0.19	21	974	0.274
Stunted									
No	Ref.	0.19	0.04	0.01	-0.34	0.20	21	974	0.285
Yes, moderate (-3≤HFAZ<-2)	-0.07 (-0.14-0.001)#								
Yes, severe (HFAZ<-3)	-0.14 (-0.210.06)***								
Weight-for-height Z-score (WFHZ) [¶]	-0.04 (-0.08-0.003)#	0.20	0.04	0.01	0.34	0.21	21	694	0.329
Wasted									
No	Ref.	0.20	0.05	0.01	0.08	0.23	21	694	0.328
Yes, moderate (-3≤WFHZ<-2)	-0.13 (-0.230.02)*								
Yes, severe (WFHZ<-3)	-0.05 (-0.17-0.08)								
BMI-for-age Z-score (BFAZ) [¶]	0.00 (-0.05-0.05)	0.19	0.04	0.01	-0.39	0.21	21	974	0.279
Low BMI									
No	Ref.	0.19	0.04	0.01	-0.40	0.21	21	974	0.276
Yes, moderate (-3≤BFAZ<-2)	0.002 (-0.08-0.09)								
Yes, severe (BFAZ <-3)	-0.07 (-0.16-0.03)								
Malnourished [†]									
No	Ref.	0.20	0.04	0.01	-0.45	0.20	22	987	0.286
Yes, moderate	-0.02 (-0.09-0.05)								
Yes, severe	-0.13 (-0.200.06)***								
Type of tuberculosis									
Pulmonary	Ref.	0.19	0.04	0.01	-0.58	0.19	18	882	0.231
Extrapulmonary	0.05 (-0.03-0.14)								
Pulmonary + extrapulmonary	0.03 (-0.10-0.17)								
HIV status									
Negative	Ref.	0.17	0.04	0.01	-0.25	0.25	20	939	0.340
Positive	-0.14 (-0.220.06)**								
Drug administration									
Taken whole orally	Ref.	0.09	0.02	0.01	0.14	0.23	4	258	0.363
Crushed/dispersed/via NGT	0.05 (-0.04-0.13)								
Creatinine clearance, mL/min [¶]	0.02 (-0.03-0.08)	0.18	0.04	-	-	0.17	12	337	0.214
Serum albumin, g/dL ^{¶,††}	-0.02 (-0.06-0.02)	0.13	0.05	-	-	0.25	11	596	0.316
Hypoalbuminemia									
No, ≥3.5 g/dL	Ref.	0.13	0.05	0.01	-0.59	0.29	11	596	0.344
Yes, <3.5 g/dL	-0.003 (-0.08-0.08)								

Table E12. Linear mixed-effects models of dose-adjusted C_{max} in log-transformed values for pyrazinamide in children and adolescents with tuberculosis, by patient characteristics.

Data are presented as fixed-effects coefficients (beta coefficients) and 95% confidence intervals (CI), unless stated otherwise: [§]mean or ^{§§}number. C_{max} : maximum plasma concentration; BMI: body mass index; HIV: human immunodeficiency virus; NGT: nasogastric tube, σ^2 : residual variance, τ_{00} : random intercept variance, τ_{11} : random slope variance, ρ_{01} : random slope-intercept correlation, ICC: intraclass correlation coefficient, N: number of included studies, conditional R²: the proportion of variance explained by both the fixed and random effects. Obs.: observations; Cond.: conditional. [§]All continuous variables were mean-centred by subtracting the mean from each data point, then standardized by dividing each point by the standard deviation. [†]Moderate malnutrition was defined as WFAZ or HFAZ \geq -3 but <-2 in children aged <5 years, and HFAZ or BFAZ \geq -3 but <-2 in children aged \leq 5 years; and severe malnutrition was defined as WFAZ or HFAZ <-3 in children aged <5 years, and HFAZ or BFAZ <-3 in children aged \geq 5 years. ^{††} Model for creatinine clearance was adjusted for drug dose and age. ^{***} p<0.001, ^{**} p<0.05, [#] p<0.1.

Patient characteristics	Fixed-effects	Rando	m effects for	lel	Obs. ^{§§}	Cond.	
	coefficient (95% CI)	σ^2	$\tau_{00 \text{ studies}}$	ICC	N [§] studies	-	R ²
Age, years [¶]	0.20 (0.13-0.27)***	0.45	0.15	0.25	11	410	0.315
Age							
<2 years	-0.52 (-0.740.30)***	0.45	0.14	0.24	11	410	0.305
2-4 years	-0.33 (-0.540.13)**						
5-9 years	-0.18 (-0.37-0.01)#						
10-14 years	Ref.						
15-18 years	0.35 (-0.24-0.94)						
Sex							
Female	Ref.	0.49	0.11	0.18	11	410	0.200
Male	-0.03 (-0.16-0.11)						
Weight-for-age Z-score (WFAZ) [¶]	$0.08 (0.003 - 0.16)^*$	0.45	0.03	0.07	11	321	0.121
Underweight							
No	Ref.	0.45	0.04	0.08	11	321	0.125
Yes, moderate (-3≤WFAZ<-2)	-0.07 (-0.25-0.12)						
Yes, severe (WFAZ<-3)	-0.13 (-0.33-0.06)						
Height-for-age Z-score (HFAZ) [¶]	$0.09 (-0.01 - 0.19)^{\#}$	0.47	0.16	0.25	10	390	0.278
Stunted							
No	Ref.	0.47	0.12	0.21	10	390	0.238
Yes, moderate (-3≤HFAZ<-2)	-0.11 (-0.29-0.07)						
Yes, severe (HFAZ<-3)	-0.19 (-0.370.02)*						
Weight-for-height Z-score (WFHZ) [¶]	0.06 (-0.04-0.17)	0.40	0.09	0.18	10	267	0.215
Wasted							
No	Ref.	0.40	0.09	0.18	10	267	0.214
Yes, moderate (-3≤WFHZ<-2)	-0.004 (-0.25-0.24)						
Yes, severe (WFHZ<-3)	-0.10 (-0.39-0.18)						
BMI-for-age Z-score (BFAZ) [¶]	-0.01 (-0.15-0.14)	0.47	0.14	0.23	10	390	0.249
Low BMI							
No	Ref.	0.48	0.13	0.21	10	390	0.229
Yes, moderate (-3≤BFAZ<-2)	-0.03 (-0.22-0.16)						
Yes, severe (BFAZ <-3)	0.04 (-0.22-0.30)						
Malnourished [†]							
No	Ref.	0.48	0.11	0.19	11	392	0.221
Yes, moderate	-0.10 (-0.27-0.08)						
Yes, severe	-0.19 (-0.360.01)*						
Type of tuberculosis							
Pulmonary	Ref.	0.48	0.11	0.19	10	392	0.223
Extrapulmonary	0.24 (0.04–0.44)*						
Pulmonary + extrapulmonary	0.22 (-0.07-0.50)						
HIV status							
Negative	Ref.	0.48	0.03	0.07	11	391	0.143
Positive	-0.39 (-0.560.23)****						
Drug administration							V
Taken whole orally	Ref.	0.25	0.00	-	2	101	0.059 [*]
Crushed/dispersed/via NGT	-0.15 (-0.35-0.05)						
Creatinine clearance, mL/min ^{¶,††}	0.03 (-0.130.07)	0.31	0.04	0.12	7	166	0.291
Serum albumin, g/dL [¶]	-0.09 (-0.18-0.01)#	0.45	0.28	0.38	4	221	0.409
Hypoalbuminemia							
No, ≥3.5 g/dL	Ref.	0.45	0.26	0.36	4	221	0.386
Yes, <3.5 g/dL	0.11 (-0.12-0.33)						

Table E13. Linear mixed-effects models of dose-adjusted AUC₀₋₂₄ in log-transformed values for ethambutol in children and adolescents with tuberculosis, by patient characteristics.

Data are presented as fixed-effects coefficients (beta coefficients) and 95% confidence intervals (CI), unless stated otherwise: $\[1ex]{mean or}\]$ mumber. AUC₀₋₂₄: area under the plasma concentration-time curve from 0 to 24 hours after dosing; BMI: body mass index; HIV: human immunodeficiency virus; NGT: nasogastric tube, σ^2 : residual variance, τ_{00} : random intercept variance, ICC: intraclass correlation coefficient, N: number of included studies, conditional R²: the proportion of variance explained by both the fixed and random effects. Obs.: observations; Cond.: conditional. $\[1ex]$ All continuous variables were mean-centred by subtracting the mean from each data point, then standardized by dividing each point by the standard deviation. $\[1ex]$ Moderate malnutrition was defined as WFAZ or HFAZ \ge -3 but <-2 in children aged \le 5 years; and severe malnutrition was defined as WFAZ or HFAZ <-3 in children aged \le 5 years; and severe malnutrition was defined as WFAZ or HFAZ <-3 in children aged \le 5 years; $\[1ex]{}$ Model for creatinine clearance was adjusted for drug dose and age. $\[1ex]{}$ Marginal R². ***p<0.001, **p<0.01, **p<0.05, #p<0.1.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Patient characteristics Fixed-effects Random effects for each model			Obs.§§	Cond.			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		coefficient (95% CI)	σ^2	$\tau_{00 \text{ studies}}$	ICC	N [§] studies	-	\mathbb{R}^2
$ \begin{array}{c} \hline \text{Age} & & & & & & & & & & & & & & & & & & &$	Age, years [¶]	0.22 (0.15-0.29)***	0.54	0.08	0.13	11	483	0.204
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Age	· · · · · · · · · · · · · · · · · · ·						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<2 years	-0.62 (-0.840.40)***	0.53	0.09	0.14	11	467	0.229
5-9 years -0.10 (-0.29-0.08) 10-14 years Ref. 15-18 years 0.18 (-0.44-0.79) Sex Female Ref. Female Ref. 0.58 0.06 0.09 11 483 0.104 Male -0.04 (-0.18-0.10) 0.58 0.06 0.09 11 371 0.125 Underweigh No Ref. 0.59 0.06 0.10 11 371 0.122 Yes, moderate (-3_SWFAZ<-2)	2-4 years	-0.29 (-0.500.09)**						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5-9 years	-0.10 (-0.29-0.08)						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10-14 years	Ref.						
Sex Female Ref. 0.58 0.06 0.09 11 483 0.104 Maile -0.04 (-0.18-0.10) 0.58 0.06 0.09 11 371 0.125 Underweight No Ref. 0.59 0.06 0.10 11 371 0.122 Yes, moderate (-3≤WFAZ<2)	15-18 years	0.18 (-0.44-0.79)						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sex							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Female	Ref.	0.58	0.06	0.09	11	483	0.104
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Male	-0.04 (-0.18-0.10)						
	Weight-for-age Z-score (WFAZ) [¶]	$0.09 (0.01 - 0.18)^*$	0.58	0.06	0.09	11	371	0.125
No Ref. 0.59 0.06 0.10 11 371 0.122 Yes, moderate (-3 \leq WFAZ<-3)	Underweight							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	No	Ref.	0.59	0.06	0.10	11	371	0.122
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Yes, moderate (-3≤WFAZ<-2)	0.01 (-0.18-0.21)						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Yes, severe (WFAZ<-3)	-0.11 (-0.32-0.10)						
	Height-for-age Z-score (HFAZ) [¶]	0.09 (-0.005-0.18)#	0.57	0.07	0.11	10	459	0.129
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Stunted							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	No	Ref.	0.58	0.06	0.09	10	459	0.112
Yes, severe (HFAZ<3) -0.20 (-0.380.03)' Weight-for-height Z-score (WFHZ) ⁵ 0.08 (-0.03-0.18) 0.54 0.09 0.15 10 304 0.172 Wasted Ref. 0.54 0.09 0.14 10 304 0.161 Yes, moderate (-3≤WFHZ<-2) -0.20 (-0.50-0.10) 0.54 0.09 0.14 10 304 0.161 BMI-for-age Z-score (BFAZ) ⁵ -0.20 (-0.50-0.10) 0.58 0.07 0.11 10 459 0.123 Low BMI No Ref. 0.57 0.06 0.09 10 459 0.113 Yes, moderate (-3≤BFAZ<-2) -0.22 (-0.400.03)^* Yes, moderate (-3≤BFAZ<-3) -0.10 (-0.34-0.15) Malnourished ¹ No Ref. 0.58 0.05 0.09 11 461 0.109 Yes, severe -0.20 (-0.380.03)^* Ves, severe -0.20 (-0.380.03)^* Ves, severe -0.20 (-0.380.03)^* Ves Pulmonary Ref. 0.57 0.07 0.11 10 459 0.113 Extrapulmonary Ref. 0.58 0.04 0.06 11	Yes, moderate (-3≤HFAZ<-2)	-0.07 (-0.26-0.11)						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Yes, severe (HFAZ<-3)	-0.20 (-0.380.03)*						
Wasted No Ref. 0.54 0.09 0.14 10 304 0.161 Yes, moderate (-3≤WFHZ<-2)	Weight-for-height Z-score (WFHZ)	0.08 (-0.03-0.18)	0.54	0.09	0.15	10	304	0.172
No Ref. 0.54 0.09 0.14 10 304 0.161 Yes, moderate (-3≤WFHZ<-2)	Wasted							
Yes, moderate (-3≤WFHZ<-2) -0.16 (-0.420.09) Yes, severe (WFHZ<-3) -0.20 (-0.500.10) BMI-for-rage Z-score (BFAZ) [§] -0.03 (-0.140.09) 0.58 0.07 0.11 10 459 0.123 Low BMI No Ref. 0.57 0.06 0.09 10 459 0.113 Yes, moderate (-3≤BFAZ<-2) -0.22 (-0.400.03) [*] Yes, moderate (-3≤BFAZ<-3) -0.10 (-0.340.15) Malnourished [†] No Ref. 0.58 0.05 0.09 11 461 0.109 Yes, moderate -0.10 (-0.280.07) Yes, severe -0.20 (-0.380.03) [*]	No	Ref.	0.54	0.09	0.14	10	304	0.161
Yes, severe (WFHZ<-3) -0.20 (-0.50-0.10) BMI-for-age Z-score (BFAZ)* -0.03 (-0.14-0.09) 0.58 0.07 0.11 10 459 0.123 Low BMI No Ref. 0.57 0.06 0.09 10 459 0.113 Yes, severe (BFAZ <-2)	Yes, moderate $(-3 \leq WFHZ \leq -2)$	-0.16 (-0.42-0.09)						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Yes, severe (WFHZ<-3)	-0.20 (-0.50-0.10)						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BMI-for-age Z-score (BFAZ) [¶]	-0.03 (-0.14–0.09)	0.58	0.07	0.11	10	459	0.123
No Ref. 0.57 0.06 0.09 10 459 0.113 Yes, moderate (-3≤BFAZ<-2)	Low BMI							
Yes, moderate $(-3 \le BFAZ <-2)$ -0.22 $(-0.400.03)^{*}$ Yes, severe $(BFAZ <-3)$ -0.10 $(-0.34-0.15)$ Malnourished [†] No Ref. 0.58 0.05 0.09 11 461 0.109 Yes, moderate -0.10 $(-0.28-0.07)$ Yes, severe -0.20 $(-0.380.03)^{*}$ 7 7 7 7 Yes, severe -0.20 $(-0.380.03)^{*}$ 7 0.07 0.11 10 459 0.113 Extrapulmonary Ref. 0.57 0.07 0.11 10 459 0.113 Extrapulmonary + extrapulmonary 0.29 $(-0.02-0.60)^{\#}$ 11 455 0.101 Positive -0.33 $(-0.510.15)^{***}$ 0.58 0.04 0.06 11 455 0.101 Positive -0.33 $(-0.510.15)^{***}$ 0.31 0.00 - 2 101 0.052 [¥] Drug administration Taken whole orally Ref. 0.31 0.00 - 2 101 0.052 [¥] Creatinine clearance, mL/min ^{§,††} 0.04 $(-0.06-0.15)$ 0.38 0.03 0.06 7 174 0.234	No	Ref.	0.57	0.06	0.09	10	459	0.113
Yes, severe (BFAZ <-3) -0.10 (-0.34-0.15) Malnourished [†] No Ref. 0.58 0.05 0.09 11 461 0.109 Yes, moderate -0.10 (-0.28-0.07) Yes, severe -0.20 (-0.380.03)* Vestage 0.57 0.07 0.11 10 459 0.113 Type of tuberculosis Pulmonary Ref. 0.57 0.07 0.11 10 459 0.113 Extrapulmonary 0.28 (0.07-0.49)* Pulmonary + extrapulmonary 0.29 (-0.02-0.60)# Vestage No Vestage Vestage <thvestage< th=""> Vestage <th< td=""><td>Yes, moderate (-3≤BFAZ<-2)</td><td>-0.22 (-0.400.03)*</td><td></td><td></td><td></td><td></td><td></td><td></td></th<></thvestage<>	Yes, moderate (-3≤BFAZ<-2)	-0.22 (-0.400.03)*						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Yes, severe (BFAZ <-3)	-0.10 (-0.34-0.15)						
No Ref. 0.58 0.05 0.09 11 461 0.109 Yes, moderate -0.10 (-0.28-0.07)	Malnourished	D.C	0.50	0.05	0.00	11	4.61	0.100
Yes, moderate -0.10 (-0.28-0.07) Yes, severe -0.20 (-0.380.03)* Type of tuberculosis Pulmonary Pulmonary Ref. 0.57 0.07 0.11 10 459 0.113 Extrapulmonary 0.28 (0.07-0.49)* 0.29 (-0.02-0.60)#	No	Ref.	0.58	0.05	0.09	11	461	0.109
Yes, severe -0.20 (-0.380.03) Type of tuberculosis Pulmonary Ref. 0.57 0.07 0.11 10 459 0.113 Extrapulmonary 0.28 (0.07-0.49)* Pulmonary + extrapulmonary 0.29 (-0.02-0.60)# 11 455 0.101 HIV status Ref. 0.58 0.04 0.06 11 455 0.101 Positive -0.33 (-0.510.15)*** 0.58 0.04 0.06 11 455 0.101 Positive -0.33 (-0.510.15)*** 0.31 0.00 - 2 101 0.052 [¥] Crushed/dispersed/via NGT -0.19 (-0.41-0.04) - - 2 101 0.052 [¥] Creatinine clearance, mL/min ^{¶,††} 0.04 (-0.06-0.15) 0.38 0.03 0.06 7 174 0.234 Serum albumin, g/dL [§] -0.10 (-0.200.004)* 0.57 0.16 0.22 4 249 0.252 Hypoalbuminemia No, ≥ 3.5 g/dL Ref. 0.58 0.16 0.21 4 249 0.240	Y es, moderate	-0.10(-0.28-0.07)						
Type of tuberculosis Ref. 0.57 0.07 0.11 10 459 0.113 Extrapulmonary $0.28 (0.07-0.49)^*$ $0.29 (-0.02-0.60)^{\#}$ 0.113 10 459 0.113 HIV status Negative Ref. 0.58 0.04 0.06 11 455 0.101 Positive $-0.33 (-0.510.15)^{***}$ 0.00 -1 455 0.101 Drug administration Taken whole orally Ref. 0.31 0.00 $ 2$ 101 $0.052^{\$}$ Crushed/dispersed/via NGT $-0.19 (-0.41-0.04)$ $-0.19 (-0.41-0.04)$ $-0.10 (-0.20-0.004)^*$ 0.57 0.16 0.22 4 249 0.234 Serum albumin, g/dL [§] $-0.10 (-0.20-0.004)^*$ 0.57 0.16 0.21 4 249 0.240 Woo, $\geq 3.5 g/dL$ Ref. 0.58 0.16 0.21 4 249 0.240	Tes, severe	-0.20 (-0.380.03)						
Pulmonary Ref. 0.37 0.07 0.11 10 439 0.113 Extrapulmonary $0.28 (0.07-0.49)^*$ $0.29 (-0.02-0.60)^{\#}$ $0.29 (-0.02-0.60)^{\#}$ 0.11 10 439 0.113 HIV status Negative Ref. 0.58 0.04 0.06 11 455 0.101 Positive $-0.33 (-0.510.15)^{***}$ 0.00 $ 2$ 101 $0.052^{\$}$ Drug administration Ref. 0.31 0.00 $ 2$ 101 $0.052^{\$}$ Crushed/dispersed/via NGT $-0.19 (-0.41-0.04)$ $-0.19 (-0.41-0.04)$ $-0.10 (-0.20-0.004)^*$ 0.57 0.16 0.22 4 249 0.234 Serum albumin, g/dL [§] $-0.10 (-0.20-0.004)^*$ 0.57 0.16 0.21 4 249 0.240 Wos, $\geq 3.5 g/dL$ Ref. 0.58 0.16 0.21 4 249 0.240	Type of tuberculosis	Def	0.57	0.07	0.11	10	450	0.112
Extrapulmonary $0.26 (0.07-0.49)$ Pulmonary + extrapulmonary $0.29 (-0.02-0.60)^{\#}$ HIV status Ref. 0.58 0.04 0.06 11 455 0.101 Positive $-0.33 (-0.510.15)^{***}$ 0.00 -2 101 $0.052^{\#}$ Drug administration Ref. 0.31 0.00 $ 2$ 101 $0.052^{\#}$ Crushed/dispersed/via NGT $-0.19 (-0.41-0.04)$ 0.38 0.03 0.06 7 174 0.234 Serum albumin, g/dL [§] $-0.10 (-0.20-0.004)^{*}$ 0.57 0.16 0.22 4 249 0.252 Hypoalbuminemia Ref. 0.58 0.16 0.21 4 249 0.240	Futmonary	KeI. $(0.07, 0.40)^*$	0.57	0.07	0.11	10	459	0.113
Functionary + extrapolationary $0.29 (-0.02-0.00)$ HIV status Ref. 0.58 0.04 0.06 11 455 0.101 Positive $-0.33 (-0.510.15)^{***}$ 0.00 -2 101 $0.052^{\text{¥}}$ Drug administration Ref. 0.31 0.00 $ 2$ 101 $0.052^{\text{¥}}$ Crushed/dispersed/via NGT $-0.19 (-0.41-0.04)$ 0.38 0.03 0.06 7 174 0.234 Serum albumin, g/dL [§] $-0.10 (-0.200.004)^{*}$ 0.57 0.16 0.22 4 249 0.252 Hypoalbuminemia Ref. 0.58 0.16 0.21 4 249 0.240	Extrapulmonary	0.28(0.07-0.49)						
In V status Ref. 0.58 0.04 0.06 11 455 0.101 Positive -0.33 (-0.510.15)*** 0.58 0.04 0.06 11 455 0.101 Drug administration Ref. 0.31 0.00 - 2 101 0.052 [¥] Crushed/dispersed/via NGT -0.19 (-0.41-0.04) 0.38 0.03 0.06 7 174 0.234 Creatinine clearance, mL/min ^{%,††} 0.04 (-0.06-0.15) 0.38 0.03 0.06 7 174 0.234 Serum albumin, g/dL [§] -0.10 (-0.200.004) [*] 0.57 0.16 0.22 4 249 0.252 Hypoalbuminemia Ref. 0.58 0.16 0.21 4 249 0.240 Vor, ≥ 3.5 g/dL Ref. 0.58 0.16 0.21 4 249 0.240	HIV status	0.29 (-0.02-0.00)						
Negative Ref. 0.33 0.04 0.00 11 433 0.101 Positive $-0.33 (-0.510.15)^{***}$ 0.00 -11 433 0.101 Drug administration Taken whole orally Ref. 0.31 0.00 $ 2$ 101 $0.052^{\text{¥}}$ Crushed/dispersed/via NGT $-0.19 (-0.41-0.04)$ $-0.19 (-0.41-0.04)$ $-0.19 (-0.41-0.04)$ $-0.10 (-0.20-0.004)^{\text{*}}$ 0.57 0.16 0.22 4 249 0.252 Hypoalbuminemia No, $\geq 3.5 \text{ g/dL}$ Ref. 0.58 0.16 0.21 4 249 0.240	Negative	Dof	0.58	0.04	0.06	11	155	0.101
Positive -0.53 (-0.51 - 0.13) Drug administration Ref. 0.31 0.00 - 2 101 $0.052^{\text{¥}}$ Crushed/dispersed/via NGT -0.19 (-0.41 - 0.04) - 2 101 $0.052^{\text{¥}}$ Creatinine clearance, mL/min ^{§,††} 0.04 (-0.06 - 0.15) 0.38 0.03 0.06 7 174 0.234 Serum albumin, g/dL [§] -0.10 (-0.20 - 0.004)* 0.57 0.16 0.22 4 249 0.252 Hypoalbuminemia No, ≥ 3.5 g/dL Ref. 0.58 0.16 0.21 4 249 0.240	Desitive	$0.22 (0.51 - 0.15)^{***}$	0.58	0.04	0.00	11	455	0.101
Drug administration Ref. 0.31 0.00 - 2 101 $0.052^{\text{$\frac{1}{3}$}}$ Crushed/dispersed/via NGT -0.19 (-0.41-0.04) 0.31 0.00 - 2 101 $0.052^{\text{$\frac{1}{3}$}}$ Creatinine clearance, mL/min ^{\$\frac{1}{3}\$} 0.04 (-0.06-0.15) 0.38 0.03 0.06 7 174 0.234 Serum albumin, g/dL ^{\$\frac{1}{3}\$} -0.10 (-0.200.004)^{*} 0.57 0.16 0.22 4 249 0.252 Hypoalbuminemia Ref. 0.58 0.16 0.21 4 249 0.240 Var c 15 c/41 0.10 (-0.07 0.44) 0.58 0.16 0.21 4 249 0.240	Drug administration	-0.55 (-0.510.15)						
Tack whole or any Ref. 0.51 0.00 $ 2$ 101 0.032° Crushed/dispersed/via NGT $-0.19 (-0.41-0.04)$ 0.38 0.03 0.06 7 174 0.234 Creatinine clearance, mL/min ^{%,††} $0.04 (-0.06-0.15)$ 0.38 0.03 0.06 7 174 0.234 Serum albumin, g/dL [§] $-0.10 (-0.20-0.004)^*$ 0.57 0.16 0.22 4 249 0.252 Hypoalbuminemia Ref. 0.58 0.16 0.21 4 249 0.240	Taken whole orally	Ref	0.21	0.00		2	101	0.052¥
Creatinine clearance, mL/min ^{§,††} 0.04 (-0.06-0.15) 0.38 0.03 0.06 7 174 0.234 Serum albumin, g/dL [§] -0.10 (-0.200.004)* 0.57 0.16 0.22 4 249 0.252 Hypoalbuminemia No, ≥ 3.5 g/dL Ref. 0.58 0.16 0.21 4 249 0.240	Crushed/dispersed/via NGT	0.10(0.41-0.04)	0.51	0.00	-	2	101	0.032
Creating clearance, int/initial 0.04 (-0.06-0.15) 0.38 0.05 0.06 7 174 0.234 Serum albumin, g/dL [§] -0.10 (-0.200.004)* 0.57 0.16 0.22 4 249 0.252 Hypoalbuminemia No, ≥ 3.5 g/dL Ref. 0.58 0.16 0.21 4 249 0.240	Creatining alagraphic mL/min ^{1†}	-0.19(-0.41, 0.04)	0.29	0.02	0.06	7	174	0.224
Seturi atomini, g/d.: -0.10 (-0.20 ^{0.004}) 0.57 0.10 0.22 4 249 0.232 Hypoalbuminemia No, ≥ 3.5 g/dL Ref. 0.58 0.16 0.21 4 249 0.240 Vor. ≤ 2.5 g/dL 0.10 (-0.07, 0.44) 0.58 0.16 0.21 4 249 0.240	Sorum albumin, g/dI ¶	0.04(-0.00-0.13)	0.58	0.03	0.00	/	2/0	0.234
No, $\geq 3.5 \text{ g/dL}$ Ref. 0.58 0.16 0.21 4 249 0.240	Uupoolbuminemia	-0.10 (-0.200.004)	0.37	0.10	0.22	4	249	0.232
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	No >3.5 g/dI	Ref	0.58	0.16	0.21	4	240	0.240
191-000/-044	$V_{es} < 3.5 \text{ g/dL}$	0.19(-0.07-0.44)	0.50	0.10	0.21	т	277	0.2-10

Table E14. Linear mixed-effects models of dose-adjusted C_{max} in log-transformed values for ethambutol in children and adolescents with tuberculosis, by patient characteristics.

Data are presented as fixed-effects coefficients (beta coefficients) and 95% confidence intervals (CI), unless stated otherwise: ${}^{\$}$ mean or ${}^{\$\$}$ number. C_{max}: maximum plasma concentration; BMI: body mass index; HIV: human immunodeficiency virus; NGT: nasogastric tube, σ^2 : residual variance, τ_{00} : random intercept variance, ICC: intraclass correlation coefficient, N: number of included studies, conditional R²: the proportion of variance explained by both the fixed and random effects. Obs.: observations; Cond.: conditional. ${}^{\$}$ All continuous variables were mean-centred by subtracting the mean from each data point, then standardized by dividing each point by the standard deviation. † Moderate malnutrition was defined as WFAZ or HFAZ \geq -3 but <-2 in children aged <5 years, and HFAZ or BFAZ \geq -3 but <-2 in children aged \geq 5 years; and severe malnutrition was defined as WFAZ or HFAZ <-3 in children aged <5 years, and HFAZ or BFAZ <-3 in children aged \geq 5 years. † Model for creatinine clearance was adjusted for drug dose and age. ${}^{\$}$ Marginal R². ** p<0.001, * p<0.05, ${}^{\#}$ p<0.1.

	Fixed-effects coefficient (95% CI)			
	Isoniazid	Rifampicin	Pyrazinamide	Ethambutol
(Intercept)	2.50 (2.30-2.70)***	3.40 (3.16-3.63)***	5.77 (5.64–5.90)***	2.26 (1.94-2.59)***
Dose, mg/kg [¶]	0.39 (0.29–0.48)***	0.35 (0.27-0.43)***	0.18 (0.11-0.24)***	0.16 (0.06-0.26)***
Age				
<2 years	-0.22 (-0.330.11)***	-0.16 (-0.290.03)*	-0.05 (-0.14-0.04)	0.23 (-0.04-0.50)#
2-4 years	Ref.	Ref.	Ref.	Ref.
Sex				
Female	Ref.	Ref.	Ref.	Ref.
Male	0.02 (-0.08-0.13)	-0.004 (-0.13-0.12)	-0.10 (-0.190.02)*	0.01 (-0.17-0.20)
Malnourished ^{§§}		. , ,		
No	Ref.	Ref.	Ref.	Ref.
Yes, moderate	-0.16 (-0.300.03)*	-0.07 (-0.22-0.08)	-0.05 (-0.16-0.06)	-0.10 (-0.34-0.14)
Yes, severe	-0.11 (-0.24-0.01)#	-0.07 (-0.23-0.10)	-0.05 (-0.15-0.06)	-0.06 (-0.28-0.16)
Unknown	0.13 (-0.22-0.48)	-0.08 (-1.11-1.95)	0.13 (-0.24–0.49)	-0.02 (-0.66-0.62)
HIV status		· · · · · ·		
Negative	Ref.	Ref.	Ref.	Ref.
Positive	-0.18 (-0.320.04)*	-0.22 (-0.400.03)*	-0.26 (-0.380.14)***	-0.44 (-0.660.23)***
Unknown	0.05 (-0.26-0.35)	-0.22 (-0.61-0.17)	0.02 (-0.22-0.26)	-0.11 (-0.47-0.24)
Acetylator status, t _{1/2} phenotype [¶]				
Slow	$0.67 (0.55 - 0.78)^{***}$	n/a	n/a	n/a
Intermediate	Ref.	n/a	n/a	n/a
Rapid	-0.46 (-0.620.30)***	n/a	n/a	n/a
Unknown	$0.30(0.00-0.61)^*$	n/a	n/a	n/a
Random effects				
σ^2	0.36 (0.60)§	0.48 (0.69) [§]	0.19 (0.44) [§]	0.37 (0.61)§
τ_{00} studies	$0.10(0.31)^{\$}$	$0.19(0.43)^{\$}$	$0.03(0.19)^{\$}$	$0.01(0.05)^{\$}$
τ11 studies*doses	$0.01(0.12)^{\$}$	n/a	$0.01 (0.08)^{\$}$	n/a
ρ01 studies	-0.64	n/a	0.38	n/a
ICC	0.21	0.28	0.19	0.01
N studies	24	21	20	11
Observations	577	524	450	184
Conditional R ²	0.57	0.46	0.35	0.19

Table E15. Multivariate linear mixed-effects analyses of factors associated with log-transformed AUC₀₋₂₄ values for first-line antituberculosis drugs in children under 5 years of age with tuberculosis.

Data are presented as fixed-effects coefficients (beta coefficients) and 95% confidence intervals (CI), unless stated otherwise: [§]mean and standard deviation. AUC₀₋₂₄: area under the plasma concentration-time curve from 0 to 24 hours after dosing; HIV: human immunodeficiency virus; σ^2 : residual variance, τ_{00} : random intercept variance, τ_{11} : random slope variance, ρ_{01} : random slope-intercept correlation, ICC: intraclass correlation coefficient, N: number of included studies, conditional R²: the proportion of variance explained by both the fixed and random effects. [¶]Drug dose was mean-centred by subtracting the mean from each data point, then standardized by dividing each point by the standard deviation. ^{§§}Moderate malnutrition was defined as a weight-for-age or height-for-age Z-score \geq -3 but <-2; and severe malnutrition was defined as a weight-for-age described in Appendix 4. ***p<0.001, **p<0.01, **p<0.05, #p<0.1.

	Fixed-effects coefficient (95% CI)			
	Isoniazid	Rifampicin	Pyrazinamide	Ethambutol
(Intercept)	1.38 (1.15–1.61)***	1.95 (1.71-2.19)***	3.53 (3.42-3.63)***	0.32 (0.002-0.63)*
Dose, mg/kg [¶]	0.38 (0.27-0.50)***	0.30 (0.22–0.38)***	0.20 (0.13-0.27)***	0.14 (0.04–0.24)**
Age				
<2 years	-0.22 (-0.330.11)***	-0.27 (-0.400.14)***	-0.03 (-0.10-0.05)	-0.36 (-0.560.15)**
2-4 years	Ref.	Ref.	Ref.	Ref.
Sex				
Female	Ref.	Ref.	Ref.	Ref.
Male	0.03 (-0.07-0.13)	0.06 (-0.06-0.19)	-0.04 (-0.11-0.03)	0.07 (-0.14-0.28)
Malnourished ^{§§}				
No	Ref.	Ref.	Ref.	Ref.
Yes, moderate	-0.13 (-0.26-0.01)#	-0.13 (-0.28-0.03)	-0.05 (-0.14-0.04)	0.005 (-0.27-0.28)
Yes, severe	-0.09 (-0.22-0.03)	-0.11 (-0.28-0.06)	-0.07 (-0.16-0.02)	-0.04 (-0.28-0.20)
Unknown	-0.01 (-0.39-0.37)	-0.15 (-1.22-0.92)	-0.05 (-0.35-0.24)	-0.36 (-1.07-0.35)
HIV status			. , ,	· · · · ·
Negative	Ref.	Ref.	Ref.	Ref.
Positive	-0.20 (-0.340.06)**	-0.25 (-0.440.06)**	-0.18 (-0.270.08)***	-0.43 (-0.690.17)***
Unknown	0.19 (-0.12-0.50)	0.04 (-0.34-0.43)	0.08 (-0.12-0.27)	0.10 (-0.36-0.56)
Acetylator status, t _{1/2} phenotype [¶]				
Slow	0.23 (0.12-0.35)***	n/a	n/a	n/a
Intermediate	Ref.	n/a	n/a	n/a
Rapid	-0.19 (-0.360.03)*	n/a	n/a	n/a
Unknown	-0.36 (-0.620.10)**	n/a	n/a	n/a
Random effects				
σ^2	0.35 (0.59)§	0.52 (0.72) [§]	0.14 (0.37) [§]	0.50 (0.71)§
τ ₀₀ studies	0.16 (0.40)§	0.20 (0.45)§	$0.02(0.14)^{\$}$	0.11 (0.33)§
τ ₁₁ studies*doses	0.03 (0.18)§	n/a	$0.01 (0.10)^{\$}$	n/a
ρ01 studies	-0.47	n/a	0.47	n/a
ICC	0.33	0.28	0.20	0.18
N studies	24	21	20	11
Observations	589	549	470	208
Conditional R ²	0.52	0.43	0.41	0.29

Table E16. Multivariate linear mixed-effects analyses of factors associated with log-transformed C_{max} values for first-line antituberculosis drugs in children under 5 years of age with tuberculosis

Data are presented as fixed-effects coefficients (beta coefficients) and 95% confidence intervals (CI), unless stated otherwise: [§]mean and standard deviation. C_{max} : peak plasma concentration; HIV: human immunodeficiency virus; σ^2 : residual variance, τ_{00} : random intercept variance, τ_{11} : random slope variance, ρ_{01} : random slope-intercept correlation, ICC: intraclass correlation coefficient, N: number of included studies, conditional R²: the proportion of variance explained by both the fixed and random effects. [¶]Drug dose was mean-centred by subtracting the mean from each data point, then standardized by dividing each point by the standard deviation. ^{§§}Moderate malnutrition was defined as a weight-for-age or height-for-age Z-score \geq -3 but <-2; and severe malnutrition was defined as a weight-for-age or height-for-age Z-score \leq -3. [¶]Details are described in Appendix 4. ^{***}p<0.001, ^{**}p<0.05, [#]p<0.1.

	Fixed-effects coefficient (95% CI)			
	Isoniazid	Rifampicin	Pyrazinamide	Ethambutol
(Intercept)	2.45 (1.64-3.25)***	2.80 (1.86-3.75)***	4.99 (4.40-5.57)***	1.78 (0.36-3.21)*
Dose, mg/kg [¶]	0.42 (0.29-0.55)***	$0.32(0.22-0.42)^{***}$	$0.12(-0.02-0.27)^{\#}$	0.33 (0.16-0.50)***
Age	0.19 (-0.49-0.86)	-0.42 (-1.31-0.47)	-0.74 (-1.240.24)**	-0.17 (-1.27-0.93)
Sex				
Female	Ref.	Ref.	Ref.	Ref.
Male	0.19 (0.05-0.34)*	-0.06 (-0.13-0.24)	-0.11 (-0.23-0.00)#	0.11 (-0.16-0.37)
Malnourished ^{§§}				
No	Ref.	Ref.	Ref.	Ref.
Yes, moderate	-0.14 (-0.33-0.05)	-0.02 (-0.21-0.24)	-0.04 (-0.18-0.10)	-0.11 (-0.44-0.22)
Yes, severe	-0.19 (-0.360.02)*	-0.12 (-0.36-0.11)	0.00 (-0.14-0.14)	-0.11 (-0.41-0.20)
Unknown	-0.12 (-0.76-0.51)	n/a	-0.25 (-0.91-0.41)	-0.34 (-0.620.06)**
HIV status				
Negative	Ref.	Ref.	Ref.	Ref.
Positive	-0.24 (-0.430.05)*	-0.16 (-0.43-0.10)	-0.24 (-0.390.09)**	-0.34 (-0.620.06)*
Unknown	0.10 (-0.30-0.50)	0.03 (-0.47-0.53)	0.11 (-0.20-0.41)	-0.20 (-0.76-0.36)
Acetylator status, $t_{1/2}$ phenotype [¶]				
Slow	0.66 (0.49–0.82)***	n/a	n/a	n/a
Intermediate	Ref.	n/a	n/a	n/a
Rapid	-0.53 (-0.770.30)***	n/a	n/a	n/a
Unknown	-0.14 (-0.62-0.33)	n/a	n/a	n/a
Random effects	· · · · · ·			
σ^2	0.35 (0.59) [§]	0.54 (0.73) [§]	0.17 (0.41)§	0.30 (0.54) [§]
τ ₀₀ studies	0.11 (0.34) [§]	$0.08(0.28)^{\$}$	0.14 (0.38)§	0.04 (0.20)§
τ11 studies*doses	$0.02 (0.14)^{\$}$	n/a	0.05 (0.22)§	n/a
ρ01 studies	-0.49	n/a	-0.32	n/a
ICC	0.26	0.13	0.54	0.12
N studies	23	20	20	8
Observations	289	263	244	90
Conditional R ²	0.62	0.33	0.59	0.30

Table E17. Multivariate linear mixed-effects analyses of factors associated with log-transformed AUC₀₋₂₄ values for first-line antituberculosis drugs in children under 2 years of age with tuberculosis.

Data are presented as fixed-effects coefficients (beta coefficients) and 95% confidence intervals (CI), unless stated otherwise: [§]mean and standard deviation. AUC₀₋₂₄: area under the plasma concentration-time curve from 0 to 24 hours after dosing; HIV: human immunodeficiency virus; σ^2 : residual variance, τ_{00} : random intercept variance, τ_{11} : random slope variance, ρ_{01} : random slope-intercept correlation, ICC: intraclass correlation coefficient, N: number of included studies, conditional R²: the proportion of variance explained by both the fixed and random effects. [¶]Drug dose was mean-centred by subtracting the mean from each data point, then standardized by dividing each point by the standard deviation. ^{§§}Moderate malnutrition was defined as a weight-for-age or height-for-age Z-score \geq -3 but <-2; and severe malnutrition was defined as a weight-for-age or height-for-age or height-for-age Z-score \geq -3. [¶]Details are described in Appendix 4. ^{***}p<0.001, ^{**}p<0.01, ^{**}p<0.05, [#]p<0.1.

	Fixed-effects coefficient (95% CI)			
	Isoniazid	Rifampicin	Pyrazinamide	Ethambutol
(Intercept)	1.27 (0.45-2.09)**	1.79 (0.78-2.80)**	3.38 (2.87–3.88)***	0.32 (-1.36-2.00)
Dose, mg/kg [¶]	0.44 (0.30-0.57)***	0.28 (0.16-0.39)***	0.21 (0.11-0.31)***	$0.15(0.02-0.28)^{*}$
Age	0.06 (-0.62-0.74)	0.06 (-0.87-1.00)	-0.13 (-0.59-0.32)	0.29 (-1.00-1.58)
Sex				
Female	Ref.	Ref.	Ref.	Ref.
Male	0.15 (0.002-0.29)*	0.11 (-0.09-0.30)	-0.00 (-0.10-0.10)	0.16 (-0.16-0.47)
Malnourished ^{§§}				
No	Ref.	Ref.	Ref.	Ref.
Yes, moderate	-0.08 (-0.27-0.11)	-0.18 (-0.42-0.06)	-0.09 (-0.21-0.04)	-0.07 (-0.45-0.31)
Yes, severe	-0.15 (-0.32-0.02)#	-0.26 (-0.510.01)*	-0.10 (-0.22-0.03)	-0.08 (-0.44-0.27)
Unknown	0.32 (-0.30-0.95)	n/a	-0.30 (-0.75-0.16)	-1.00 (-2.43-0.42)
HIV status				
Negative	Ref.	Ref.	Ref.	Ref.
Positive	-0.21 (-0.410.02)*	-0.21 (-0.49-0.07)	-0.13 (-0.270.001)*	-0.40 (-0.750.05)*
Unknown	0.12 (-0.27-0.51)	0.32 (-0.22-0.86)#	0.19 (-0.07-0.46)	0.39 (-0.22-1.00)
Acetylator status, t _{1/2} phenotype ^{¶¶}				
Slow	0.37 (0.19-0.56)***	n/a	n/a	n/a
Intermediate	Ref.	n/a	n/a	n/a
Rapid	0.01 (-0.23-0.24)	n/a	n/a	n/a
Unknown	-0.30 (-0.560.04)*	n/a	n/a	n/a
Random effects				
σ^2	0.36 (0.60) [§]	0.62 (0.79) [§]	0.14 (0.38) [§]	0.45 (0.67) [§]
τ_{00} studies	0.10 (0.31) [§]	$0.27 (0.52)^{\$}$	$0.04 (0.21)^{\$}$	$0.16 (0.41)^{\$}$
τ_{11} studies*doses	0.03 (0.16)§	n/a	0.02 (0.14)§	n/a
ρ01 studies	-0.34	n/a	0.34	n/a
ICC	0.25	0.30	0.35	0.26
N studies	23	21	20	10
Observations	294	278	254	102
Conditional R ²	0.55	0.41	0.51	0.37

Table E18. Multivariate linear mixed-effects analyses of factors associated with log-transformed C_{max} values for first-line antituberculosis drugs in children under 2 years of age with tuberculosis.

Data are presented as fixed-effects coefficients (beta coefficients) and 95% confidence intervals (CI), unless stated otherwise: [§]mean and standard deviation. C_{max} : peak plasma concentration; HIV: human immunodeficiency virus; σ^2 : residual variance, τ_{00} : random intercept variance, τ_{11} : random slope variance, ρ_{01} : random slope-intercept correlation, ICC: intraclass correlation coefficient, N: number of included studies, conditional R²: the proportion of variance explained by both the fixed and random effects. [¶]Drug dose was mean-centred by subtracting the mean from each data point, then standardized by dividing each point by the standard deviation. ^{§§}Moderate malnutrition was defined as a weight-for-age or height-for-age Z-score \geq -3 but <-2; and severe malnutrition was defined as a weight-for-age or height-for-age Z-score \leq -3. [¶]Details are described in Appendix 4. ***p<0.001, **p<0.05, #p<0.1.

	Fixed-effects coefficient (95% CI)			
	Isoniazid	Rifampicin	Pyrazinamide	Ethambutol
(Intercept)	2.56 (2.36–2.77)***	3.83 (3.62-4.03)***	6.08 (5.93-6.22)***	2.48 (2.20-2.77)***
Dose, mg/kg [¶]	0.43 (0.34–0.53)***	0.65 (0.44-0.86)***	0.16 (0.09-0.24)***	0.23 (0.11-0.34)***
Age				
<2 years	-0.31 (-0.430.18)***	-0.49 (-0.650.33)***	-0.34 (-0.450.23)***	-0.53 (-0.750.32)***
2-4 years	-0.10 (-0.21-0.02)	-0.36 (-0.510.21)***	-0.26 (-0.370.16)***	-0.37 (-0.580.17)***
5-9 years	-0.06 (-0.16-0.05)	-0.13 (-0.27-0.01)#	-0.16 (-0.260.07)**	-0.16 (-0.35-0.02)#
10-14 years	Ref.	Ref.	Ref.	Ref.
15-18 years	0.08 (-0.26-0.42)	0.27 (-0.16-0.71)	-0.04 (-0.37-0.29)	0.31 (-0.26-0.87)
Sex				
Female	Ref.	Ref.	Ref.	Ref.
Male	-0.03 (-0.11-0.04)	-0.05 (-0.14-0.04)#	-0.06 (-0.130.002)*	-0.06 (-0.19-0.08)
Malnourished ^{§§}				
No	Ref.	Ref.	Ref.	Ref.
Yes, moderate	-0.12 (-0.210.02)*	-0.01 (-0.10-0.12)	-0.03 (-0.11-0.05)	-0.09 (-0.26-0.07)
Yes, severe	-0.16 (-0.250.06)**	-0.03 (-0.15-0.09)	-0.08 (-0.160.003)*	-0.09 (-0.26-0.08)
Unknown	0.08 (-0.21-0.37)	-0.11 (-0.74-0.51)	-0.10 (-0.45-0.25)	0.13 (-0.63-0.89)
HIV status				
Negative	Ref.	Ref.	Ref.	Ref.
Positive	-0.15 (-0.260.04)**	-0.25 (-0.390.10)**	-0.22 (-0.310.12)***	0.40 (-0.570.22)***
Unknown	-0.11 (-0.38-0.17)	-0.38 (-0.72-0.04)*	0.02 (-0.21-0.25)	-0.08 (-0.51-0.35)
Acetylator status, $t_{1/2}$ phenotype [¶]				
Slow	0.70 (0.62–0.78)***	n/a	n/a	n/a
Intermediate	Ref.	n/a	n/a	n/a
Rapid	-0.38 (-0.500.26)***	n/a	n/a	n/a
Unknown	0.47 (0.27–0.66)***	n/a	n/a	n/a
Random effects				
σ^2	0.36 (0.60)§	0.48 (0.69)§	0.21 (0.45)§	0.43 (0.65) [§]
τ_{00} studies	0.14 (0.38)§	0.09 (0.30) [§]	0.05 (0.23)§	$0.09(0.30)^{\$}$
τ11 studies*doses	$0.03 (0.17)^{\$}$	0.12 (0.35)§	0.01 (0.11)§	n/a
ρ01 studies	-0.75	-0.33	-0.17	n/a
ICC	0.28	0.33	0.24	0.17
N studies	23	20	18	10
Observations	1163	1002	869	393
Conditional R ²	0.59	0.62	0.37	0.31

Table E19. Multivariate linear mixed-effects analyses of factors associated with log-transformed AUC₀₋₂₄ values for first-line antituberculosis drugs in children and adolescents with tuberculosis who had pharmacokinetic sampling at steady state or approaching steady state.

Data are presented as fixed-effects coefficients (beta coefficients) and 95% confidence intervals (CI), unless stated otherwise: [§]mean and standard deviation. AUC₀₋₂₄: area under the plasma concentration-time curve from 0 to 24 hours after dosing; HIV: human immunodeficiency virus; σ^2 : residual variance, τ_{00} : random intercept variance, τ_{11} : random slope variance, ρ_{01} : random slope-intercept correlation, ICC: intraclass correlation coefficient, N: number of included studies, conditional R²: the proportion of variance explained by both the fixed and random effects. [¶]Drug dose was mean-centred by subtracting the mean from each data point, then standardized by dividing each point by the standard deviation. ^{§§}Moderate malnutrition was defined as a weigh-for-age or height-for-age Z-score \geq -3 but <-2 in children aged <5 years, and a height-for-age Z-score <-3 in children aged <5 years, and a height-for-age Z-score <-3 in children aged <5 years, and a height-for-age Z-score <-3 in children aged <5 years, and a height-for-age are body mass index-for-age <-3 in children aged <5 years. [¶]Details are described in Appendix 4. ***p<0.001, **p<0.05, #p<0.1.

	Fixed-effects coefficient (95% CI)			
	Isoniazid	Rifampicin	Pyrazinamide	Ethambutol
(Intercept)	1.46 (1.26–1.67)***	2.21 (2.00-2.42)***	3.75 (3.62-3.88)***	0.76 (0.50-1.02)***
Dose, mg/kg [¶]	0.42 (0.29–0.54)***	0.52 (0.32-0.73)***	0.16 (0.10-0.22)***	0.17 (0.07-0.27)**
Age				
<2 years	-0.30 (-0.430.17)***	-0.44 (-0.590.28)***	-0.20 (-0.310.10)***	-0.67 (-0.89–-0.44)***
2-4 years	-0.09 (-0.20-0.03)	-0.19 (-0.340.05)**	-0.16 (-0.260.06)**	-0.33 (-0.540.12)**
5-9 years	-0.04 (-0.15-0.06)	-0.10 (-0.23-0.04)	-0.13 (-0.210.04)**	-0.09 (-0.28-0.09)
10-14 years	Ref.	Ref.	Ref.	Ref.
15-18 years	-0.02 (-0.35-0.31)	0.08 (-0.34-0.50)	-0.06 (-0.36-0.25)	0.11 (-0.50-0.71)
Sex				
Female	Ref.	Ref.	Ref.	Ref.
Male	-0.05 (-0.12-0.02)	-0.02 (-0.07-0.10)	-0.06 (-0.12-0.002)#	-0.05 (-0.18-0.09)
Malnourished ^{§§}				
No	Ref.	Ref.	Ref.	Ref.
Yes, moderate	-0.07 (-0.16-0.02)	-0.04 (-0.15-0.07)	-0.02 (-0.09-0.06)	-0.10 (-0.27-0.07)
Yes, severe	$-0.09(-0.18-0.01)^{\#}$	-0.13 (-0.240.01)*	-0.10 (-0.180.02)*	-0.11 (-0.28-0.06)
Unknown	0.04 (-0.27-0.34)	-0.16 (-0.73-0.42)	-0.07 (-0.39-0.25)	-0.29 (-0.89-0.31)
HIV status				
Negative	Ref.	Ref.	Ref.	Ref.
Positive	-0.17 (-0.280.06)**	-0.24 (-0.380.10)**	-0.11 (-0.200.02)*	-0.39 (-0.570.20)***
Unknown	0.02 (-0.26-0.29)	-0.22 (-0.55-0.11)	-0.13 (-0.35-0.08)	0.04 (-0.34-0.42)
Acetylator status, $t_{1/2}$ phenotype [¶]				
Slow	0.24 (0.15-0.32)***	n/a	n/a	n/a
Intermediate	Ref.	n/a	n/a	n/a
Rapid	-0.12 (-0.24-0.001)#	n/a	n/a	n/a
Unknown	-0.35 (-0.510.20)***	n/a	n/a	n/a
Random effects	\$ 2			
σ^2	0.37 (0.61)§	$0.50(0.71)^{\$}$	0.20 (0.44)§	0.52 (0.72)§
τ_{00} studies	0.15 (0.38)§	$0.11(0.34)^{\$}$	0.03 (0.18)§	$0.06(0.25)^{\$}$
τ11 studies*doses	$0.05(0.23)^{\$}$	$0.11(0.33)^{\$}$	$0.01(0.09)^{\$}$	n/a
P01 studies	-0.33	-0.01	-0.10	n/a
ICC	0.33	0.33	0.18	0.11
N studies	23	20	18	10
Observations	1203	1065	924	465
Conditional R ²	0.52	0.56	0.30	0.26

Table E20. Multivariate linear mixed-effects analyses of factors associated with log-transformed C_{max} values for first-line antituberculosis drugs in children and adolescents with tuberculosis who had pharmacokinetic sampling at steady state or approaching steady state.

Data are presented as fixed-effects coefficients (beta coefficients) and 95% confidence intervals (CI), unless stated otherwise: [§]mean and standard deviation. C_{max} : peak plasma concentration; HIV: human immunodeficiency virus; σ^2 : residual variance, τ_{00} : random intercept variance, τ_{11} : random slope variance, ρ_{01} : random slope-intercept correlation, ICC: intraclass correlation coefficient, N: number of included studies, conditional R²: the proportion of variance explained by both the fixed and random effects. [¶]Drug dose was mean-centred by subtracting the mean from each data point, then standardized by dividing each point by the standard deviation. ^{§§}Moderate malnutrition was defined as a weigh-for-age or height-for-age Z-score \geq -3 but <-2 in children aged <5 years, and a height-for-age Z-score <-3 in children aged <5 years, and a height-for-age Z-score <-3 in children aged <5 years, and a height-for-age or body mass index-for-age Z-score <-3 in children aged \geq 5 years. [¶]Details are described in Appendix 4. ^{***}p<0.001, ^{**}p<0.01, ^{**}p<0.01, [#]p<0.1.

	Fixed-effects coefficient (95% CI)			
	Isoniazid	Rifampicin	Pyrazinamide	Ethambutol
(Intercept)	2.50 (2.28-2.72)***	3.83 (3.61-4.05)***	6.11 (5.95-6.28)***	2.48 (2.20-2.77)***
Dose, mg/kg [¶]	0.44 (0.33-0.55)***	0.62 (0.40-0.84)***	0.18 (0.08-0.27)***	0.23 (0.11-0.34)***
Age				
<2 years	-0.27 (-0.400.13)***	-0.51 (-0.680.34)***	-0.32 (-0.440.21)***	-0.53 (-0.750.32)***
2-4 years	-0.05 (-0.18-0.08)	-0.34 (-0.510.18)***	-0.25 (-0.360.13)***	-0.37 (-0.580.17)***
5-9 years	-0.05 (-0.17-0.07)	-0.18 (-0.340.02)*	-0.19 (-0.290.08)***	-0.16 (-0.35-0.02)#
10-14 years	Ref.	Ref.	Ref.	Ref.
15-18 years	0.03 (-0.36-0.42)	0.24 (-0.27-0.74)	-0.09 (-0.44-0.25)	0.31 (-0.26-0.87)
Sex				· · · · ·
Female	Ref.	Ref.	Ref.	Ref.
Male	-0.04 (-0.12-0.04)	-0.04 (-0.13-0.06)	-0.07 (-0.140.01)*	-0.06 (-0.19-0.08)
Malnourished ^{§§}				
No	Ref.	Ref.	Ref.	Ref.
Yes, moderate	-0.14 (-0.240.04)**	-0.04 (-0.08-0.15)	-0.06 (-0.14-0.02)	-0.09 (-0.26-0.07)
Yes, severe	-0.17 (-0.270.07)**	-0.01 (-0.14-0.12)	-0.08 (-0.16-0.002)#	-0.09 (-0.26-0.08)
Unknown	0.08 (-0.22-0.38)	-0.09 (-0.70-0.52)	-0.10 (-0.43-0.23)	0.13 (-0.63-0.89)
HIV status			. ,	
Negative	Ref.	Ref.	Ref.	Ref.
Positive	-0.16 (-0.270.05)**	-0.24 (-0.380.10)**	-0.22 (-0.310.13)***	-0.40 (-0.570.22)***
Unknown	-0.12 (-0.39-0.16)	-0.37 (-0.710.04)*	0.02 (-0.20-0.23)	-0.08 (-0.51-0.35)
Acetylator status, $t_{1/2}$ phenotype [¶]				
Slow	0.73 (0.64–0.83)***	n/a	n/a	n/a
Intermediate	Ref.	n/a	n/a	n/a
Rapid	-0.38 (-0.510.24)***	n/a	n/a	n/a
Unknown	0.46 (0.25–0.66)***	n/a	n/a	n/a
Random effects	\$ E			
σ^2	0.37 (0.60) [§]	0.46 (0.68) [§]	0.18 (0.43)§	0.43 (0.65) [§]
τ_{00} studies	$0.14(0.38)^{\$}$	$0.10(0.31)^{\$}$	0.06 (0.25)§	0.09 (0.09) [§]
τ11 studies*doses	$0.03(0.18)^{\$}$	0.11 (0.33) §	$0.02(0.15)^{\$}$	n/a
P01 studies	-0.64	-0.16	-0.22	n/a
ICC	0.30	0.36	0.32	0.17
N studies	21	19	17	10
Observations	971	834	727	393
Conditional R ²	0.61	0.65	0.45	0.31

Table E21. Multivariate linear mixed-effects analyses of factors associated with log-transformed AUC₀₋₂₄ values for first-line antituberculosis drugs, in children and adolescents with tuberculosis who had pharmacokinetic sampling at steady state or approaching steady state, and who received daily dosing.

Data are presented as fixed-effects coefficients (beta coefficients) and 95% confidence intervals (CI), unless stated otherwise: [§]mean and standard deviation. AUC₀₋₂₄: area under the plasma concentration-time curve from 0 to 24 hours after dosing; HIV: human immunodeficiency virus; σ^2 : residual variance, τ_{00} : random intercept variance, τ_{11} : random slope variance, ρ_{01} : random slope-intercept correlation, ICC: intraclass correlation coefficient, N: number of included studies, conditional R²: the proportion of variance explained by both the fixed and random effects. [¶]Drug dose was mean-centred by subtracting the mean from each data point, then standardized by dividing each point by the standard deviation. ^{§§}Moderate malnutrition was defined as a weigh-for-age or height-for-age Z-score \geq -3 but <-2 in children aged <5 years, and a height-for-age Z-score <-3 in children aged <5 years, and a height-for-age or body mass index-for-age Z-score <-3 in children aged \leq 5 years, and a height-for-age or body mass index-for-age <-3 in children aged \leq 5 years, and a height-for-age or body mass index-for-age <-3 in children aged \leq 5 years, and a height-for-age or body mass index-for-age <-3 in children aged \leq 5 years, and a height-for-age or body mass index-for-age <-3 in children aged \geq 5 years. [¶]Details are described in Appendix 4. ***p<0.001, **p<0.05, #p<0.1.

	Fixed-effects coefficient (95% CI)			
	Isoniazid	Rifampicin	Pyrazinamide	Ethambutol
(Intercept)	1.43 (1.20–1.66)***	2.23 (2.01-2.44)***	3.77 (3.63-3.92)***	0.74 (0.47-1.01)***
Dose, mg/kg [¶]	0.43 (0.28–0.58)***	0.51 (0.29-0.73)***	0.17 (0.09-0.25)***	0.16 (0.06-0.26)**
Age				
<2 years	-0.26 (-0.400.12)***	-0.42 (-0.580.25)***	-0.21 (-0.320.09)***	-0.66 (-0.880.44)***
2-4 years	-0.04 (-0.17-0.09)	-0.17 (-0.330.004)*	-0.16 (-0.270.04)**	-0.33 (-0.540.12)**
5-9 years	-0.03 (-0.15-0.09)	-0.12 (-0.28-0.03)	-0.17 (-0.270.07)**	-0.10 (-0.29-0.08)
10-14 years	Ref.	Ref.	Ref.	Ref.
15-18 years	-0.10 (-0.49-0.28)	0.03 (-0.45-0.52)	-0.11 (-0.44-0.21)	0.14 (-0.46-0.75)
Sex		· · · ·		. , ,
Female	Ref.	Ref.	Ref.	Ref.
Male	-0.05 (-0.13-0.03)	0.01 (-0.09-0.10)	-0.07 (-0.130.001)*	-0.04 (-0.18-0.09)
Malnourished ^{§§}		· · · ·		
No	Ref.	Ref.	Ref.	Ref.
Yes, moderate	-0.09 (-0.19-0.01)#	0.002 (-0.12-0.12)	-0.03 (-0.11-0.05)	-0.10 (-0.27-0.07)
Yes, severe	-0.09 (-0.19-0.01)#	-0.12 (-0.25-0.01)	-0.10 (-0.190.02)*	-0.11 (-0.28-0.06)
Unknown	0.03 (-0.28-0.34)	-0.13 (-0.71-0.44)	-0.06 (-0.38-0.27)	-0.27 (-0.87-0.33)
HIV status				
Negative	Ref.	Ref.	Ref.	Ref.
Positive	-0.17 (-0.280.06)**	-0.24 (-0.380.10)**	-0.11 (-0.210.02)*	-0.38 (-0.570.19)***
Unknown	0.01 (-0.27-0.28)	-0.23 (-0.55-0.10)	-0.13 (-0.34-0.09)	0.06 (-0.33-0.44)
Acetylator status, $t_{1/2}$ phenotype [¶]				· · · · ·
Slow	0.26 (0.17-0.35)***	n/a	n/a	n/a
Intermediate	Ref	n/a	n/a	n/a
Rapid	-0.08 (-0.22-0.05)	n/a	n/a	n/a
Unknown	-0.36 (-0.530.20)***	n/a	n/a	n/a
Random effects	\$ 2			
σ^2	0.37 (0.61) [§]	0.49 (0.70) [§]	0.20 (0.45)§	$0.52 (0.72)^{\$}$
τ_{00} studies	0.15 (0.39)§	$0.10(0.32)^{\$}$	0.04 (0.20)§	0.07 (0.26)§
τ11 studies*doses	$0.08(0.28)^{\$}$	$0.10(0.32)^{\$}$	$0.01(0.10)^{\$}$	n/a
P01 studies	-0.22	0.17	0.00	n/a
ICC	0.37	0.35	0.21	0.12
N studies	21	19	17	10
Observations	1009	890	779	463
Conditional R ²	0.55	0.58	0.33	0.26

Table E22. Multivariate linear mixed-effects analyses of factors associated with log-transformed C_{max} values for first-line antituberculosis drugs, in children and adolescents with tuberculosis who had pharmacokinetic sampling at steady state or approaching steady state, and who received daily dosing.

Data are presented as fixed-effects coefficients (beta coefficients) and 95% confidence intervals (CI), unless stated otherwise: [§]mean and standard deviation. C_{max} : peak plasma concentration; HIV: human immunodeficiency virus; σ^2 : residual variance, τ_{00} : random intercept variance, τ_{11} : random slope variance, ρ_{01} : random slope-intercept correlation, ICC: intraclass correlation coefficient, N: number of included studies, conditional R²: the proportion of variance explained by both the fixed and random effects. [¶]Drug dose was mean-centred by subtracting the mean from each data point, then standardized by dividing each point by the standard deviation. ^{§§}Moderate malnutrition was defined as a weigh-for-age or height-for-age Z-score \geq -3 but <-2 in children aged <5 years, and a height-for-age Z-score <-3 in children aged <5 years, and a height-for-age Z-score <-3 in children aged <5 years, and a height-for-age or body mass index-for-age Z-score <-3 in children aged \geq 5 years. [¶]Details are described in Appendix 4. ^{****}p<0.001, ^{***}p<0.01, ^{***}p<0.01, ^{***}p<0.01,

Fixed-effects coefficient (95% CI)				
	Isoniazid	Rifampicin	Pyrazinamide	Ethambutol
(Intercept)	2.55 (2.37-2.74)***	3.86 (3.66-4.06)***	6.04 (5.90-6.17)***	2.44 (2.05-2.83)***
Dose, mg/kg [¶]	0.42 (0.34–0.51)***	0.65 (0.44-0.85)***	0.17 (0.10-0.23)***	0.15 (0.06-0.24)**
Age				
<2 years	-0.28 (-0.400.16)***	-0.48 (-0.640.33)***	-0.28 (-0.380.17)***	-0.56 (-0.780.34)***
2-4 years	-0.07 (-0.18-0.04)	-0.35 (-0.500.21)***	-0.24 (-0.340.14)***	-0.36 (-0.570.16)**
5-9 years	-0.04 (-0.14-0.06)	-0.12 (-0.26-0.01)#	-0.12 (-0.210.03)**	-0.19 (-0.380.01)*
10-14 years	Ref.	Ref.	Ref.	Ref.
15-18 years	0.05 (-0.24-0.33)	0.22 (-0.16-0.60)	-0.004 (-0.27-0.26)	0.24 (-0.34-0.83)
Sex				
Female	Ref.	Ref.	Ref.	Ref.
Male	-0.03 (-0.10-0.04)	-0.05 (-0.13-0.04)	-0.08 (-0.140.02)**	0.03 (-0.16-0.10)
Malnourished ^{§§}			. ,	
No	Ref.	Ref.	Ref.	Ref.
Yes, moderate	-0.10 (-0.190.01)*	0.02 (-0.09-0.12)	-0.03 (-0.10-0.05)	-0.09 (-0.25-0.08)
Yes, severe	-0.15 (-0.240.06)**	-0.02 (-0.13-0.10)	-0.08 (-0.160.004)*	-0.09 (-0.26-0.08)
Unknown	0.13 (-0.13-0.39)	-0.05 (-0.61-0.51)	-0.002 (-0.23-0.23)	-0.12 (-0.61-0.37)
HIV status				
Negative	Ref.	Ref.	Ref.	Ref.
Positive	-0.15 (-0.250.04)**	-0.25 (-0.390.11)***	-0.19 (-0.290.10)***	-0.39 (-0.560.22)***
Unknown	-0.06 (-0.30-0.18)	-0.33 (-0.640.01)*	0.01 (-0.18-0.20)	-0.10 (-0.51-0.31)
Acetylator status, t _{1/2} phenotype [¶]				
Slow	0.70 (0.62–0.77)***	n/a	n/a	n/a
Intermediate	Ref	n/a	n/a	n/a
Rapid	-0.39 (-0.500.28)***	n/a	n/a	n/a
Unknown	0.44 (0.25–0.63)***	n/a	n/a	n/a
Random effects				
σ^2	0.35 (0.59) [§]	0.47 (0.68) [§]	0.21 (0.46) [§]	0.44 (0.66) [§]
τ_{00} WHO regions:studies	0.12 (0.35) [§]	0.11 (0.32) [§]	0.04 (0.21) [§]	0.04 (0.20) [§]
τ ₀₀ WHO regions	0.00 (0.04) [§]	n/a	n/a	0.07 (0.26) [§]
τ11 WHO regions:studies*doses	0.03 (0.16) [§]	0.12 (0.35) [§]	0.01 (0.10)§	n/a
ρ_{01} WHO regions: studies	-0.74	-0.25	-0.15	n/a
ICC	0.27	0.35	0.21	0.19
N WHO regions	3	3	3	3
N studies	27	22	23	11
Observations	1252	1041	962	410
Conditional R ²	0.58	0.63	0.34	0.32

Table E23. Multivariate linear mixed-effects analyses of factors associated with log-transformed AUC₀₋₂₄ values for first-line antituberculosis drugs in children and adolescents with tuberculosis, considering WHO region as a third-level clustering variable.

Data are presented as fixed-effects coefficients (beta coefficients) and 95% confidence intervals (CI), unless stated otherwise: [§]mean and standard deviation. AUC₀₋₂₄: area under the plasma concentration-time curve from 0 to 24 hours after dosing; HIV: human immunodeficiency virus; σ^2 : residual variance, τ_{00} : random intercept variance, τ_{11} : random slope variance, ρ_{01} : random slope-intercept correlation, ICC: intraclass correlation coefficient, N: number of included studies, conditional R²: the proportion of variance explained by both the fixed and random effects. ¹Drug dose was mean-centred by subtracting the mean from each data point, then standardized by dividing each point by the standard deviation. ^{§§}Moderate malnutrition was defined as a weigh-for-age or height-for-age Z-score \geq -3 but <-2 in children aged <5 years, and a height-for-age Z-score <-3 in children aged <5 years, and a height-for-age or body mass index-for-age Z-score \leq -3 in children aged \leq 5 years, and a height-for-age Z-score <-3 in children aged \leq 5 years, and a height-for-age Z-score <-3 in children aged \leq 5 years, and a height-for-age Z-score <-3 in children aged \geq 5 years. [¶]Details are described in Appendix 4. ^{***}p<0.001, ^{**}p<0.05, [#]p<0.1.

	Fixed-effects coefficient (95% CI)			
	Isoniazid	Rifampicin	Pyrazinamide	Ethambutol
(Intercept)	1.42 (1.11–1.72)***	2.21 (2.01-2.41)***	3.73 (3.58-3.88)***	0.75 (0.49-1.00)***
Dose, mg/kg [¶]	0.41 (0.30-0.52)***	0.52 (0.33-0.72)***	0.16 (0.11-0.22)***	0.13 (0.05-0.22)**
Age				
<2 years	-0.28 (-0.400.16)***	-0.42 (-0.570.27)***	-0.18 (-0.280.08)***	-0.68 (-0.900.46)***
2-4 years	-0.08 (-0.18-0.03)	-0.18 (-0.320.04)*	-0.15 (-0.240.06)**	-0.32 (-0.530.11)**
5-9 years	-0.03 (-0.13-0.06)	-0.09 (-0.22-0.04)	-0.10 (-0.180.02)*	-0.12 (-0.31-0.06)
10-14 years	Ref.	Ref.	Ref.	Ref.
15-18 years	-0.01 (-0.30-0.27)	0.06 (-0.31-0.42)	-0.01 (-0.26-0.23)	0.10 (-0.51-0.70)
Sex				
Female	Ref.	Ref.	Ref.	Ref.
Male	-0.04 (-0.11-0.03)	-0.02 (-0.07-0.10)	-0.05 (-0.11-0.001)#	-0.03 (-0.17-0.10)
Malnourished ^{§§}				
No	Ref.	Ref.	Ref.	Ref.
Yes, moderate	-0.06 (-0.14-0.03)	-0.03 (-0.14-0.07)	-0.02 (-0.09-0.05)	-0.10 (-0.27-0.07)
Yes, severe	-0.09 (-0.180.003)*	-0.12 (-0.240.01)*	-0.10 (-0.180.03)**	-0.12 (-0.29-0.06)
Unknown	0.12 (-0.14-0.38)	-0.14 (-0.67-0.39)	0.05 (-0.16-0.26)	-0.33 (-0.78-0.12)
HIV status				
Negative	Ref.	Ref.	Ref.	Ref.
Positive	-0.18 (-0.280.07)**	-0.25 (-0.390.11)***	-0.11 (-0.200.02)*	-0.35 (-0.530.17)***
Unknown	0.06 (-0.18-0.29)	-0.19 (-0.49-0.11)	-0.06 (-0.23-0.11)	0.04 (-0.34-0.43)
Acetylator status, t _{1/2} phenotype [¶]				
Slow	0.23 (0.16-0.31)***	n/a	n/a	n/a
Intermediate	Ref	n/a	n/a	n/a
Rapid	-0.13 (-0.250.02)*	n/a	n/a	n/a
Unknown	-0.38 (-0.530.22)***	n/a	n/a	n/a
Random effects				
σ^2	0.35 (0.59) [§]	0.49 (0.70) [§]	0.19 (0.44) [§]	0.53 (0.73)
τ00 WHO regions:studies	0.10 (0.31) [§]	0.11 (0.33) [§]	0.03 (0.17) [§]	0.06 (0.24)
τ_{00} WHO regions	0.04 (0.20) [§]	n/a	0.01 (0.08) [§]	n/a
τ_{11} WHO regions:studies*doses	0.04 (0.21)§	0.10 (0.32)§	0.01 (0.09)§	n/a
ρ_{01} WHO regions: studies	-0.33	0.02	-0.04	n/a
ICC	0.33	0.32	0.19	0.10
N WHO regions	3	3	3	3
N studies	27	22	23	11
Observations	1292	1105	1021	483
Conditional R ²	0.52	0.55	0.31	0.23

Table E24. Multivariate linear mixed-effects analyses of factors associated with log-transformed C_{max} values for first-line antituberculosis drugs in children and adolescents with tuberculosis, considering WHO region as a third-level clustering variable.

Data are presented as fixed-effects coefficients (beta coefficients) and 95% confidence intervals (CI), unless stated otherwise: [§]mean and standard deviation. AUC₀₋₂₄: area under the plasma concentration-time curve from 0 to 24 hours after dosing; HIV: human immunodeficiency virus; σ^2 : residual variance, τ_{00} : random intercept variance, τ_{11} : random slope variance, ρ_{01} : random slope-intercept correlation, ICC: intraclass correlation coefficient, N: number of included studies, conditional R²: the proportion of variance explained by both the fixed and random effects. ¹Drug dose was mean-centred by subtracting the mean from each data point, then standardized by dividing each point by the standard deviation. ^{§§}Moderate malnutrition was defined as a weigh-for-age or height-for-age Z-score \geq -3 but <-2 in children aged <5 years, and a height-for-age Z-score <-3 in children aged <5 years, and a height-for-age or body mass index-for-age Z-score \leq -3 in children aged \leq 5 years, and a height-for-age Z-score <-3 in children aged \leq 5 years, and a height-for-age Z-score <-3 in children aged \leq 5 years, and a height-for-age Z-score <-3 in children aged \geq 5 years. [¶]Details are described in Appendix 4. ^{***}p<0.001, ^{**}p<0.05, [#]p<0.1.

	Fixed-effects coefficient (95% CI)				
	Isoniazid	Rifampicin	Pyrazinamide		
(Intercept)	2.98 (2.58-3.38)***	3.54 (3.09-3.98)***	5.81 (5.51-6.11)***		
Dose category [†]					
Paediatric dosing	Ref.	Ref.	Ref.		
Adult dosing	-1.01 (-1.270.76)***	-0.35 (-0.630.07)*	-0.14 (-0.34-0.06)		
Age	-0.08 (-0.30-0.13)	0.15 (-0.09-0.39)	0.13 (-0.02-0.28)#		
Sex					
Female	Ref.	Ref.	Ref.		
Male	-0.12 (-0.32-0.07)	-0.17 (-0.40-0.05)	-0.06 (-0.20-0.08)		
Malnourished ^{§§}					
No	Ref.	Ref.	Ref.		
Yes, moderate	-0.14 (-0.39-0.11)	0.14 (-0.13-0.41)	0.05 (-0.11-0.21)		
Yes, severe	-0.42 (-0.750.09)*	-0.12 (-0.49-0.24)	0.07 (-0.14-0.29)		
Unknown	-0.07 (-0.66-0.51)	n/a	-0.57 (-1.100.05)*		
HIV status					
Negative	Ref.	Ref.	Ref.		
Positive	-0.27 (-0.65-0.10)	-0.44 (-0.820.06)*	-0.17 (-0.43-0.09)		
Unknown	0.34 (-0.46-1.13)	0.12 (-0.81-1.04)	0.02 (-0.41-0.45)		
Acetylator status, t _{1/2} phenotype [¶]					
Slow	$0.82 (0.59 - 1.05)^{***}$	n/a	n/a		
Intermediate	Ref.	n/a	n/a		
Rapid	-0.45 (-0.850.06)*	n/a	n/a		
Unknown	$0.52 (0.08 - 0.97)^*$	n/a	n/a		
Random effects					
σ^2	0.45 (0.67) [§]	0.47 (0.68) [§]	0.16 (0.40)§		
τ_{00} studies	0.12 (0.34) [§]	0.08 (0.29)§	0.06 (0.23) [§]		
ICC	0.21	0.15	0.25		
N studies	24	17	20		
Observations	213	160	160		
Conditional R ²	0.57	0.28	0.34		

Table E25. Multivariate linear mixed-effects analyses on the effect of paediatric/adult dosing category on log-transformed AUC₀₋₂₄ values for isoniazid, rifampicin and pyrazinamide in tuberculosis patients weighing \geq 25 kg, adjusted for at least age, sex, nutritional status, and HIV status.[¥]

Data are presented as fixed-effects coefficients (beta coefficients) and 95% confidence intervals (CI), unless stated otherwise: [§]mean and standard deviation. AUC₀₋₂₄: area under the plasma concentration-time curve from 0 to 24 hours after dosing; HIV: human immunodeficiency virus; σ^2 : residual variance, τ_{00} : random intercept variance, τ_{11} : random slope variance, ρ_{01} : random slope-intercept correlation, ICC: intraclass correlation coefficient, N: number of included studies, conditional R²: the proportion of variance explained by both the fixed and random effects. [§]Current paediatric and adult dosing for ethambutol overlap significantly (15-25 mg/kg *vs* 15-20 mg/kg, respectively), and therefore the data for ethambutol were not analysed. [†]Drug doses were categorized as adult dosing (i.e., isoniazid <7 mg/kg, rifampicin <10 mg/kg, and pyrazinamide <30 mg/kg) and paediatric dosing (i.e., isoniazid 7-15 mg/kg, rifampicin 10-20 mg/kg, and pyrazinamide 30-40 mg/kg). [¶]Drug dose was mean-centred by subtracting the mean from each data point, then standardized by dividing each point by the standard deviation. ^{§§}Moderate malnutrition was defined as a height-for-age or body mass index-for-age Z-score ≥-3 but <-2, and severe malnutrition was defined as a height-for-age Z-score <-3. [¶]Further details are described in Appendix 4. ^{***}p<0.001, ^{**}p<0.01, ^{**}p<0.05, [#]p<0.1.

	Fixed-effects coefficient (95% CI)			
	Isoniazid	Rifampicin	Pyrazinamide	
(Intercept)	1.80 (1.41-2.19)***	2.02 (1.66-2.39)***	3.49 (3.16-3.81)***	
Dose category [†]				
Paediatric dosing	Ref.	Ref.	Ref.	
Adult dosing	-0.97 (-1.220.73)***	-0.30 (-0.530.06)*	-0.21 (-0.42-0.01)#	
Age	-0.01 (-0.23-0.20)	0.01 (-0.19-0.21)	0.17 (0.01–0.34)*	
Sex				
Female	Ref.	Ref.	Ref.	
Male	-0.17 (-0.36-0.02)#	-0.001 (-0.19-0.19)	-0.06 (-0.21-0.09)	
Malnourished ^{§§}				
No	Ref.	Ref.	Ref.	
Yes, moderate	-0.11 (-0.35-0.13)	0.09 (-0.15-0.33)	0.03 (-0.15-0.21)	
Yes, severe	-0.35 (-0.670.03)*	-0.26 (-0.57-0.04)#	-0.08 (-0.32-0.16)	
Unknown	-0.01 (-0.57-0.55)	n/a	-0.24 (-0.81-0.32)	
HIV status				
Negative	Ref.	Ref.	Ref.	
Positive	-0.28 (-0.64-0.09)	-0.43 (-0.740.13)*	-0.06 (-0.35-0.23)	
Unknown	0.66 (-0.04-1.36)	0.14 (-0.64-0.93)	0.08 (-0.39-0.54)	
Acetylator status, t _{1/2} phenotype [¶]				
Slow	0.22 (-0.001-0.45)#	n/a	n/a	
Intermediate	Ref.	n/a	n/a	
Rapid	-0.25 (-0.64-0.14)	n/a	n/a	
Unknown	-0.70 (-1.060.34)***	n/a	n/a	
Random effects				
σ^2	0.44 (0.66) [§]	0.39 (0.62) [§]	0.21 (0.46) [§]	
$\tau_{00 \text{ studies}}$	0.11 (0.34) [§]	0.03 (0.16) [§]	0.06 (0.24) [§]	
ICC	0.21	0.07	0.21	
N studies	24	17	20	
Observations	223	173	173	
Conditional R ²	0.53	201	0.27	

Table E26. Multivariate linear mixed-effects analyses on the effect of paediatric/adult dosing category on log-transformed C_{max} values for isoniazid, rifampicin and pyrazinamide in tuberculosis patients weighing \geq 25 kg, adjusted for at least age, sex, nutritional status, and HIV status.[¥]

Data are presented as fixed-effects coefficients (beta coefficients) and 95% confidence intervals (CI), unless stated otherwise: [§]mean and standard deviation. C_{max} : peak plasma concentration; HIV: human immunodeficiency virus; σ^2 : residual variance, τ_{00} : random intercept variance, τ_{11} : random slope variance, ρ_{01} : random slope-intercept correlation, ICC: intraclass correlation coefficient, N: number of included studies, conditional R²: the proportion of variance explained by both the fixed and random effects. [§]Current paediatric and adult dosing for ethambutol overlap significantly (15-25 mg/kg *vs* 15-20 mg/kg, respectively), and therefore the data for ethambutol were not analysed. [†]Drug doses were categorized as adult dosing (i.e., isoniazid <7 mg/kg, rifampicin <10 mg/kg, and pyrazinamide <30 mg/kg) and paediatric dosing (i.e., isoniazid 7-15 mg/kg, rifampicin 10-20 mg/kg, and pyrazinamide 30-40 mg/kg). [§]Drug dose was mean-centred by subtracting the mean from each data point, then standardized by dividing each point by the standard deviation. ^{§§}Moderate malnutrition was defined as WFAZ or HFAZ <-3. ^{§¶}Further details are described in Appendix 4. ^{***}p<0.001, ^{**}p<0.01, ^{**}p<0.05, [#]p<0.1.

	No. of	No. of	Summary estimates	Heterogeneity
	studies	observations	(95% CI)	I ² statistics
Isoniazid				
[§] T _{max} , h	24	1219	1.6 (1.4–1.8)	99.0%
t1/2, h	27	1203	2.2 (2.0-2.5)	97.9%
Ke, h ⁻¹	27	1203	0.31 (0.27-0.35)	97.9%
Rifampicin				
[§] T _{max} , h	22	1037	2.3 (2.0-2.5)	93.2%
t1/2, h	22	814	2.1 (1.9-2.3)	94.1%
Ke, h ⁻¹	22	814	0.33 (0.30-0.37)	94.0%
Pyrazinamide				
[§] T _{max} , h	22	1001	1.9 (1.6-2.2)	98.4%
t1/2, h	23	872	6.1 (5.7-6.6)	83.1%
Ke, h ⁻¹	23	872	0.11 (0.11-0.12)	83.0%
Ethambutol				
[§] T _{max} , h	11	483	2.6 (2.3-3.0)	90.8%
t1/2, h	10	321	3.4 (2.5-4.6)	98.8%
Ke, h ⁻¹	10	321	0.20 (0.15-0.27)	98.8%

Table E27. Summary estimates of T_{max} , $t_{1/2}$, and K_e for first-line antituberculosis drugs in children and adolescents with tuberculosis.

Data are presented as geometric mean, unless stated otherwise: mean. T_{max} : time to maximum concentration in plasma; $t_{1/2}$: elimination half-life; K_e : elimination rate constant.

References for supplementary appendix:

- 1 Sterne JA, Hernán MA, Reeves BC, *et al.* ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. *BMJ* 2016; 355: 1–7.
- 2 Soliman ABE, Pawluk SA, Wilby KJ, Rachid O. The use of a modified Delphi technique to develop a critical appraisal tool for clinical pharmacokinetic studies. *Int J Clin Pharm* 2022. DOI:10.1007/s11096-022-01390-y.
- 3 Schaaf HS, Parkin DP, Seifart HI, *et al.* Isoniazid pharmacokinetics in children treated for respiratory tuberculosis. *Arch Dis Child* 2005; 90: 614–8.
- McIlleron H, Willemse M, Werely CJJ, *et al.* Isoniazid plasma concentrations in a cohort of South African children with tuberculosis: implications for international pediatric dosing guidelines. *Clin Infect Dis* 2009; 48: 1547–53.
- 5 Thee S, Seddon JA, Donald PR, *et al.* Pharmacokinetics of isoniazid, rifampin, and pyrazinamide in children younger than two years of age with tuberculosis: Evidence for implementation of revised World Health Organization recommendations. *Antimicrob Agents Chemother* 2011; 55: 5560–7.
- 6 Verhagen LM, Lopez D, Hermans PWM, *et al.* Pharmacokinetics of anti-tuberculosis drugs in Venezuelan children younger than 16 years of age: Supportive evidence for the implementation of revised WHO dosing recommendations. *Trop Med Int Heal* 2012; 17: 1449–56.
- 7 Ibrahim M, Engidawork E, Yimer G, Bobosha K. Pharmacokinetics of isoniazid in Ethiopian children with tuberculosis in relation to the N-acetyltransferase 2 (NAT2) genotype. *Afr J Pharm Pharmacol* 2013; 7: 1124–30.
- 8 Denti P, Wasmann RE, van Rie A, *et al.* Optimizing dosing and fixed-dose combinations of rifampicin, isoniazid, and pyrazinamide in pediatric patients with tuberculosis: a prospective population pharmacokinetic study. *Clin Infect Dis* 2022; 75: 141-151.
- 9 Stephens M, Donnelly P. A Comparison of Bayesian Methods for Haplotype Reconstruction from Population Genotype Data. *Am J Hum Genet* 2003; 73: 1162–9.
- 10 Parkin DP, Vandenplas S, Botha FJH, *et al.* Trimodality of isoniazid elimination Phenotype and genotype in patients with tuberculosis. *Am J Respir Crit Care Med* 1997; 155: 1717–22.
- 11 Arylamine N-acetyltransferase Gene Nomenclature Committee. Consensus Human Arylamine N-acetyltransferase Gene Nomenclature. http://nat.mbg.duth.gr.
- Vatsis KP, Weber WW, Bell DA, *et al.* Nomenclature for N-acetyltransferases. *Pharmacogenetics* 1995;
 5: 1–17.
- 13 Antwi S, Yang H, Enimil A, *et al.* Pharmacokinetics of the first-line antituberculosis drugs in Ghanaian children with tuberculosis with or without HIV coinfection. *Antimicrob Agents Chemother* 2017; 61: e01701-16.
- 14 Van Aartsen D, Justine M, Mduma E, *et al.* Enteropathogen spectrum and effect on antimycobacterial pharmacokinetics among children with tuberculosis in rural Tanzania : a prospective cohort study. *Lancet Microbe* 2022; : S2666-5247(21)00308-6.
- 15 Hein DW, Doll MA. Accuracy of various human NAT2 SNP genotyping panels to infer rapid, intermediate and slow acetylator phenotypes. *Pharmacogenomics* 2012; 13: 31–41.
- 16 Seifart HI, Donald PR, de Villiers JN, Parkin DP, Jaarsveld PP. Isoniazid elimination kinetics in children with protein-energy malnutrition treated for tuberculous meningitis with a four-component antimicrobial regimen. *Ann Trop Paediatr* 1995; 15: 249–54.
- 17 Dayal R, Singh Y, Agarwal D, *et al.* Pharmacokinetic study of isoniazid and pyrazinamide in children : impact of age and nutritional status. *Arch Dis Child* 2018; 103: 1150–4.
- 18 Garcia-Prats AJ, Svensson EM, Winckler J, *et al.* Pharmacokinetics and safety of high-dose rifampicin in children with TB: the Opti-Rif trial. *J Antimicrob Chemother* 2021; 76: 3237–46.
- 19 Graham SM, Bell DJ, Nyirongo S, Hartkoorn R, Ward SA, Molyneux EM. Low levels of pyrazinamide

and ethambutol in children with tuberculosis and impact of age, nutritional status, and human immunodeficiency virus infection. *Antimicrob Agents Chemother* 2006; 50: 407–13.

- 20 Gupta P, Roy V, Sethi GR, Mishra TK. Pyrazinamide blood concentrations in children suffering from tuberculosis: A comparative study at two doses. *Br J Clin Pharmacol* 2008; 65: 423–7.
- 21 Martial LC, Kerkhoff J, Martinez N, *et al.* Evaluation of dried blood spot sampling for pharmacokinetic research and therapeutic drug monitoring of anti-tuberculosis drugs in children. *Int J Antimicrob Agents* 2018; 52: 109–13.
- 22 Mave V, Kinikar A, Kagal A, *et al.* Isoniazid concentrations in hair and plasma area-under-the-curve exposure among children with tuberculosis. *PLoS One* 2017; 12.
- 23 McIlleron H, Willemse M, Schaaf HS, Smith PJ, Donald PR. Pyrazinamide plasma concentrations in young children with tuberculosis. *Pediatr Infect Dis J* 2011; 30: 262–5.
- 24 Mlotha R, Waterhouse D, Dzinjalamala F, *et al.* Pharmacokinetics of anti-TB drugs in Malawian children: reconsidering the role of ethambutol. *J Antimicrob Chemother* 2015; 70: 1798–803.
- 25 Mukherjee A, Velpandian T, Singla M, Kanhiya K, Kabra SK, Lodha R. Pharmacokinetics of isoniazid, rifampicin, pyrazinamide and ethambutol in Indian children. *BMC Infect Dis* 2015; 15: 126.
- 26 Mukherjee A, Velpandian T, Singla M, Kanhiya K, Kabra SK, Lodha R. Pharmacokinetics of isoniazid, rifampicin, pyrazinamide and ethambutol in HIV-infected Indian children. *Int J Tuberc Lung Dis* 2016; 20: 666–72.
- 27 Ramachandran G, Hemanth Kumar AK, Bhavani PK, *et al.* Age, nutritional status and INH acetylator status affect pharmacokinetics of anti-tuberculosis drugs in children. *Int J Tuberc Lung Dis* 2013; 17: 800–6.
- 28 Ramachandran G, Kumar AKH, Bhavani PK, *et al.* Pharmacokinetics of first-line antituberculosis drugs in HIV-infected children with tuberculosis treated with intermittent regimens in India. *Antimicrob Agents Chemother* 2015; 59: 1162–7.
- 29 Rangari GM, Roy V, Sethi GR, Mishra TK, Khanna A. Blood levels of isoniazid in Indian children with tuberculosis. *Indian J Tuberc* 2015; 62: 80–5.
- 30 Ranjalkar J, Mathew SK, Philip V, *et al.* Isoniazid and rifampicin concentrations in children with tuberculosis with either a daily or intermittent regimen: implications for the revised RNTCP 2012 doses in India. *Int J Antimicrob Agents* 2018; 51: 663–9.
- 31 Roy V, Tekur U, Chopra K. Pharmacokinetics of isoniazid in pulmonary tuberculosis a comparative study at two dose levels. *Indian Pediatr* 1996; 33: 287–91.
- 32 Roy V, Tekur U, Chopra K. Pharmacokinetics of pyrazinamide in children suffering from pulmonary tuberculosis. *Int J Tuberc Lung Dis* 1999; 3: 133–7.
- 33 Roy V, Gupta D, Gupta P, Sethi GR, Mishra TK. Pharmacokinetics of isoniazid in moderately malnourished children with tuberculosis. *Int J Tuberc Lung Dis* 2010; 14: 374–6.
- 34 Roy V, Sahni P, Gupta P, Sethi GR, Khanna A. Blood levels of pyrazinamide in children at doses administered under the revised national tuberculosis control program. *Indian Pediatr* 2012; 49: 721–5.
- 35 Ruslami R, Gafar F, Yunivita V, *et al.* Pharmacokinetics and safety/tolerability of isoniazid, rifampicin and pyrazinamide in children and adolescents treated for tuberculous meningitis. *Arch Dis Child* 2022; 107: 70–7.
- 36 Schaaf HS, Willemse M, Cilliers K, *et al.* Rifampin pharmacokinetics in children, with and without human immunodeficiency virus infection, hospitalized for the management of severe forms of tuberculosis. *BMC Med* 2009; 7: 19.
- 37 Shah I, Jadhao N, Deshpande S, Gogtay N, Thatte U. Pharmacokinetics of isoniazid in Indian children with tuberculosis on daily treatment. *Int J Tuberc Lung Dis* 2019; 23: 52–7.
- 38 Shah I, Kumar Das S, Shetty NS, Kannan T, Ramachandran G, Kumar AH. Pharmacokinetics of isoniazid in children with tuberculosis-A comparative study at two doses. *Pediatr Pulmonol* 2020; 55: 660–5.

- 39 Zhu M, Starke JR, Burman WJ, *et al.* Population pharmacokinetic modeling of pyrazinamide in children and adults with tuberculosis. *Pharmacotherapy* 2002; 22: 686–95.
- 40 Zhu M, Burman WJ, Starke JR, *et al.* Pharmacokinetics of ethambutol in children and adults with tuberculosis. *Int J Tuberc Lung Dis* 2004; 8: 1360–7.
- 41 Tikiso T, Mcilleron H, Abdelwahab MT, *et al.* Population pharmacokinetics of ethambutol in African children: a pooled analysis. *J Antimicrob Chemother* 2022; : dkac127. doi: 10.1093/jac/dkac127.
- 42 Arya A, Roy V, Lomash A, Kapoor S, Khanna A, Rangari G. Rifampicin pharmacokinetics in children under the Revised National Tuberculosis Control Programme, India, 2009. *Int J Tuberc Lung Dis* 2015; 19: 440–5.
- 43 Chabala C, Turkova A, Hesseling AC, *et al.* Pharmacokinetics of first-line drugs in children with tuberculosis, using World Health Organization–recommended weight band doses and formulations. *Clin Infect Dis* 2022; 74: 1767–75.
- 44 Justine M, Yeconia A, Nicodemu I, *et al.* Pharmacokinetics of first-line drugs among children with tuberculosis in rural Tanzania. *J Pediatric Infect Dis Soc* 2020; 9: 14–20.
- 45 Mlotha R, Waterhouse D, Dzinjalamala F, *et al.* Pharmacokinetics of first-line antituberculosis drugs in Malawian children. Unpublished data (Blantyre, Malawi). 2015.
- 46 Pouplin T, Bang ND, Toi P Van, *et al.* Naïve-pooled pharmacokinetic analysis of pyrazinamide, isoniazid and rifampicin in plasma and cerebrospinal fluid of Vietnamese children with tuberculous meningitis. *BMC Infect Dis* 2016; 16: 114.
- 47 Schipani A, Pertinez H, Mlota R, *et al.* A simultaneous population pharmacokinetic analysis of rifampicin in Malawian adults and children. *Br J Clin Pharmacol* 2016; 81: 679–87.
- 48 Donald PR, Gent WL, Seifart HI, Lamprecht JH, Parkin DP. Cerebrospinal fluid isoniazid concentrations in children with tuberculous meningitis: the influence of dosage and acetylation status. *Pediatrics* 1992; 89: 247–50.
- 49 Rey E, Pons G, Cremier O, *et al.* Isoniazid dose adjustment in a pediatric population. *Ther Drug Monit* 1998; 20: 50–5.
- 50 Hiruy H, Rogers Z, Mbowane C, *et al.* Subtherapeutic concentrations of first-line anti-TB drugs in South African children treated according to current guidelines: The PHATISA study. *J Antimicrob Chemother* 2015; 70: 1115–23.
- 51 Arya DS, Ojha SK, Semwal OP, Nandave M. Pharmacokinetics of pyrazinamide in children with primary progressive disease of lungs. *Indian J Med Res* 2008; 128: 611–5.
- 52 Arya D, Ojha S. Pharmacokinetics of pyrazinamide in pediatric patients of tuberculosis meningitis. *World J Med Sci* 2009; 4: 128–34.
- 53 Seth V, Beotra A, Seth SD, *et al.* Serum concentrations of rifampicin and isoniazid in tuberculosis. *Indian Pediatr* 1993; 30: 1091–8.
- 54 Seth V, Seth SD, Beotra A, Semwal OP, D'monty V, Mukhopadhya S. Isoniazid and acetylisoniazid kinetics in serum and urine in pulmonary primary complex with intermittent regimen. *Indian Pediatr* 1994; 31: 279–85.
- 55 Donald PR, Seifart HI, Parkin DP, van Jaarsveld PP. Hydrazine production in children receiving isoniazid for the treatment of tuberculous meningitis. *Ann Pharmacother* 1994; 28: 1340–3.
- 56 Mahajan M, Rohatgi D, Talwar V, Patni SK, Mahajan P, Agarwal DS. Serum and cerebrospinal fluid concentrations of rifampicin at two dose levels in children with tuberculous meningitis. *J Commun Dis* 1997; 29: 269–74.
- 57 Minchev P, Svinarov D. Monitoring Tubocin (Rifampicin) treatment in children with tuberculosis. *Acta Medica Bulg* 2005; 32: 3–9.
- 58 Rey E, Gendrel D, Treluyer JM, *et al.* Isoniazid pharmacokinetics in children according to acetylator phenotype. *Fundam Clin Pharmacol* 2001; 15: 355–9.

- 59 Thee S, Detjen AA, Wahn U, Magdorf K. Isoniazid pharmacokinetic studies of the 1960s: considering a higher isoniazid dose in childhood tuberculosis. *Scand J Infect Dis* 2010; 42: 294–8.
- 60 Thee S, Detjen A, Wahn U, Magdorf K. Rifampicin serum levels in childhood tuberculosis. *Int J Tuberc Lung Dis* 2009; 13: 1106–11.
- 61 Thee S, Detjen A, Wahn U, Magdorf K. Pyrazinamide serum levels in childhood tuberculosis. *Int J Tuberc Lung Dis* 2008; 12: 1099–101.
- 62 Thee S, Detjen A, Quarcoo D, Wahn U, Magdorf K. Ethambutol in paediatric tuberculosis: aspects of ethambutol serum concentration, efficacy and toxicity in children. *Int J Tuberc Lung Dis* 2007; 11: 965–71.
- 63 Stewart LA, Clarke M, Rovers M, *et al.* Preferred reporting items for a systematic review and metaanalysis of individual participant data: The PRISMA-IPD statement. *JAMA* 2015; 313: 1657–65.