

Estimating the minimal important difference in FEV₁ for patients with allergic bronchopulmonary aspergillosis

To the Editor:

Copyright ©The authors 2022. For reproduction rights and permissions contact permissions@ersnet.org

Received: 17 June 2022 Accepted: 26 July 2022 Allergic bronchopulmonary aspergillosis (ABPA) is an allergic lung disorder caused by immunological reactions targeted against *Aspergillus fumigatus* colonising the airways of asthma and cystic fibrosis patients [1]. If undiagnosed or inappropriately treated, the inflammatory process can progress perpetually, culminating in end-stage respiratory disease. Oral glucocorticoids are the treatment of choice in ABPA; antifungal triazoles are good alternatives [2]. Treatment response in ABPA is assessed using a composite of clinical symptoms, serum total IgE, chest radiograph and spirometry [3]. Notably, the minimal important difference (MID) for forced expiratory volume in the first second (FEV₁) in ABPA remains unknown. The MID is the smallest change that the patients perceive as beneficial. In the current study, we aimed to estimate the MID for FEV₁ in patients with ABPA complicating asthma.

We performed a retrospective analysis of data collected (January 2012 to July 2017) during three randomised controlled trials [4–6], and included subjects randomised in the oral prednisolone arm. The institute ethics committee approved the study protocol. We obtained written informed consent from all the study subjects.

We included subjects with treatment-naïve acute-stage ABPA complicating asthma according to the following criteria. The subjects had both the following: 1) immediate cutaneous hyperreactivity on *Aspergillus* skin test or *A. fumigatus*-specific IgE levels >0.35 kUA·L⁻¹; and 2) elevated serum total IgE levels >1000 IU·mL⁻¹; and two of the following: 1) presence of precipitating antibodies (or IgG >27 mgA·L⁻¹) against *A. fumigatus* in serum; 2) peripheral blood eosinophil count >1000 μ L⁻¹; 3) chest radiographic abnormalities consistent with ABPA; and 4) bronchiectasis on computed tomography of the chest. We excluded subjects with any of the following: 1) intake of systemic glucocorticoids or triazoles for >3 weeks in the preceding 6 months; 2) concomitant use of medications, including voriconazole, inhaled amphotericin B, omalizumab, or other biological agents; 3) uncontrolled diabetes mellitus, chronic renal failure, chronic liver failure, and immunosuppressive drugs; and 4) pregnancy.

We retrieved the following information from our records: 1) baseline demographic data, including age, sex, and others; 2) baseline immunological investigations and imaging data; and 3) spirometry and serum total IgE measurements at baseline and 6 weeks after treatment. We calculated the difference between post-treatment (6 weeks) and baseline FEV_1 values (absolute values and percentage change). The percentage change was calculated as ((FEV₁ at 6 weeks – FEV₁ at baseline)/FEV₁ at baseline)×100.

All the subjects received oral prednisolone sequentially at a dose of 0.5 mg·kg⁻¹·day⁻¹, 0.25 mg·kg⁻¹·day⁻¹ and 0.125 mg·kg⁻¹·day⁻¹ for 4 weeks each. The drug was tapered by 5 mg every 2 weeks and discontinued after 4 months. At 6 weeks, we monitored the patient with a physical examination review, chest radiograph, serum total IgE and spirometry. We defined response to treatment as an improvement in cough and dyspnoea (>75% of baseline), partial (\geq 50%) or total clearance of chest radiographic lesions (if present before treatment), and decline in serum total IgE values by >25% after 6 weeks of treatment. Inhaled corticosteroids, long- and short-acting β_2 -agonists, and montelukast were used for asthma control at the treating physician's discretion.

Shareable abstract (@ERSpublications)

This study found a minimal important difference of 158 mL (or 17%) for the FEV₁ in patients with acute-stage allergic bronchopulmonary aspergillosis complicating asthma treated with prednisolone https://bit.ly/3JvfBml

Cite this article as: Agarwal R, Sehgal IS, Muthu V, *et al.* Estimating the minimal important difference in FEV₁ for patients with allergic bronchopulmonary aspergillosis. *Eur Respir J* 2022; 60: 2201242 [DOI: 10.1183/13993003.01242-2022].

The study's primary outcome was to estimate the MID of FEV_1 for assessing treatment response (at 6 weeks) in subjects with acute-stage ABPA.

We performed statistical analysis using the commercial statistical package SPSS (IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY, USA; IBM Corp.). The differences between repeated measurements at baseline and 6 weeks were assessed using Wilcoxon rank-sum test. We used both distribution and anchor-based methods to determine the MID for FEV₁. We used the change in serum total IgE at 6 weeks as an external anchor. Further, three categories (no change, minimal and more than minimal) were created based on the change in serum total IgE (<26%, 26–50%, >50%) [7]. We used the external anchor only if the Pearson correlation coefficient between the FEV₁ difference and the external anchor was >0.3 [8, 9]. The MID for anchor-based methods was calculated by subtracting the median value of the FEV₁ (baseline minus 6 weeks) in the "no change" from the "minimal change" category [10]. If an external anchor did not meet the *a priori* criterion for validity, we used distribution-based methods for estimating the MID. For distribution-based methods, we used: 1) standard deviation method: standard deviation of the difference of test–retest FEV₁ scores/2; and 2) standard error method: standard deviation of the difference of test–retest FEV₁ scores/ $\sqrt{2}$.

TABLE 1 Baseline characteristics of the study population (n=182) and estimation of the minimal important difference (MID) for the forced expiratory volume in the first second (FEV₁) using distribution-based methods

Parameter		Baseline	After treatment for 6 weeks	p-value
Clinical features				
Age, years		34 (25–45)		
Male/female, n		85/97		
Height, cm		161 (155–169)		
Weight, kg		53 (45–62)		
Duration of asthma, in years		9 (4–16)		
Haemoptysis		62 (34.1)		
Expectoration of mucus plugs		36 (19.8)		
Spirometry				
FEV ₁ , L		1.77 (1.26-1.33)	2.07 (1.56-2.60)	< 0.0001
FVC, L		2.58 (1.95–3.35)	2.78 (2.30–3.62)	< 0.0001
FEV ₁ /FVC		66.4 (57.1–76.6)	72.0 (62.8–79.6)	< 0.0001
Immunological tests				
Type 1 Aspergillus skin test		166 (91.2)		
Aspergillus precipitins		78 (42.9)		
A. fumigatus-specific IgE, $kUA \cdot L^{-1}$		30.8 (16.1-50.3)		
Total IgE, IU·mL ^{−1}		8812 (4534–13 892)	3834 (2335–6936)	< 0.0001
Total eosinophil count, cells∙µL ^{−1}		900 (330-1761)		
A. fumigatus-specific IgG, mgA·L ^{-1}		74.8 (46.9–140.5)		
Imaging				
Fleeting opacities on chest radiograph		89 (48.9)		
Bronchiectasis		175 (96.2)		
Number of lung segments affected by bronchiectasis		8 (5–12)		
Centrilobular nodules		58 (31.9)		
Presence of HAM		75 (41.2)		
Asthma treatment				
ICS dose (BDPE), µg		400 (250–500)		
Formoterol dose, µg		12 (12–24)		
Montelukast use		62 (34.1)		
Variable SD i	method	SE method		Average
FEV ₁ , mL	130	185		157.5
FEV ₁ , %	14.2	20.2		17.2

All values are presented as n (%) or median (interquartile range), unless otherwise stated. Standard deviation (SD) method: standard deviation of FEV₁ values at baseline minus 6 weeks/2. Standard error (SE) method: standard deviation of FEV₁ values at baseline minus 6 weeks/ $\sqrt{2}$. *A. fumigatus: Aspergillus fumigatus;* BDPE: beclomethasone dipropionate equivalent; FVC: forced vital capacity; HAM: high-attenuation mucus; ICS: inhaled corticosteroids; IgE: immunoglobulin E; IgG: immunoglobulin G.

We included 182 treatment-naïve ABPA subjects with a mean±sp age of 38 ± 15 years; 85 were men. The subjects had asthma for a median duration of 9 years. The baseline spirometry values, immunological investigations, imaging findings and therapy received for underlying asthma are summarised in table 1. A majority (96.2%) of the subjects had bronchiectasis with a median of eight bronchopulmonary segments affected. All the subjects received inhaled glucocorticoids at a median dose of $400 \,\mu\text{g}\cdot\text{day}^{-1}$ (beclomethasone dipropionate equivalent) and long-acting β 2-agonist, formoterol, at a median dose of $12 \,\mu\text{g}\cdot\text{day}^{-1}$ for asthma control.

All the subjects showed a response to therapy at 6 weeks. The Pearson correlation coefficient for the change in FEV₁ value *versus* the change in serum total IgE was 0.14. As the external anchor did not meet our pre-specified criteria for validity, we derived the MID for FEV₁ using the two distribution-based methods (table 1). The standard deviation of the test–retest FEV₁ values (baseline minus 6 weeks) was 0.261. The MID for FEV₁ by the standard deviation and the standard error method was 130 mL and 185 mL, respectively, with a mean of 157.5 mL. Similarly, the MID for FEV₁ (%) by the standard deviation and the standard error methods was 14.2% and 20.2%, with a mean of 17.2%.

The present study is the first to evaluate MID for FEV_1 in patients with ABPA. We suggest a MID of 158 mL (or 17%) for FEV_1 in assessing treatment response in acute-stage ABPA complicating asthma. While MID is most useful in patient-reported outcomes, the MID for FEV_1 is also likely useful in clinical trials. There are few published data on the MID for FEV_1 in adult asthmatic patients [11]. In a study of 281 adult patients with mild-to-moderate asthma, the authors reported the MID for FEV_1 as the mean change in FEV_1 in patients rating themselves as "a little better" on the global rating of change in asthma [12]. The MID for FEV_1 was 230 mL or a 10.4% change from baseline. Contrarily, the MID for FEV_1 in acute-stage ABPA would closely resemble the change in FEV_1 seen in asthmatic patients, as many patients with acute-stage ABPA have uncontrolled asthma.

Our study has a few limitations. The current study was a retrospective analysis of data from a single centre. Due to the retrospective nature, we did not record the global rating of change in the patient's improvement that could have provided a simpler alternative to serum IgE as an external anchor. While the sample size was relatively large we could use only the distribution-based methods, as the external anchor did not satisfy our pre-defined reference for correlation. Although both anchor- and distribution-based methods have limitations, the former is preferred [15]. Alternatively, the MID could also be established using a Delphi consensus. Finally, the MID for FEV_1 derived from the current study applies only to acute-stage ABPA complicating adult asthma. The MID values cannot be extrapolated to relapsing or steroid-dependent stages of ABPA.

In conclusion, we found a MID of 158 mL (or 17%) for the FEV_1 in patients with acute-stage ABPA complicating asthma treated with prednisolone. A more extensive prospective study using a global rating of change in the patient's symptoms is required to confirm our results.

Ritesh Agarwal, Inderpaul Singh Sehgal , Valliappan Muthu, Sahajal Dhooria, Kuruswamy Thurai Prasad and Ashutosh Nath Aggarwal

Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.

Corresponding author: Ritesh Agarwal (agarwal.ritesh@outlook.in)

Conflict of interest: R. Agarwal has received grant support from Cipla, India, on research in ABPA. The remaining authors report no potential conflicts of interest.

References

- 1 Agarwal R, Muthu V, Sehgal IS, *et al.* Allergic bronchopulmonary aspergillosis. *Clin Chest Med* 2022; 43: 99–125.
- 2 Agarwal R, Chakrabarti A, Shah A, *et al.* Allergic bronchopulmonary aspergillosis: review of literature and proposal of new diagnostic and classification criteria. *Clin Exp Allergy* 2013; 43: 850–873.
- 3 Dhooria S, Sehgal IS, Muthu V, *et al.* Treatment of allergic bronchopulmonary aspergillosis: from evidence to practice. *Future Microbiol* 2020; 15: 365–376.

- 4 Agarwal R, Dhooria S, Singh Sehgal I, *et al.* A randomized trial of itraconazole *vs* prednisolone in acute-stage allergic bronchopulmonary aspergillosis complicating asthma. *Chest* 2018; 153: 656–664.
- 5 Agarwal R, Dhooria S, Sehgal IS, *et al.* A randomised trial of voriconazole and prednisolone monotherapy in acute-stage allergic bronchopulmonary aspergillosis complicating asthma. *Eur Respir J* 2018; 52: 1801159.
- 6 Agarwal R, Muthu V, Sehgal IS, *et al.* A randomised trial of prednisolone *versus* prednisolone and itraconazole in acute-stage allergic bronchopulmonary aspergillosis complicating asthma. *Eur Respir J* 2022; 59: 2101787.
- 7 Agarwal R, Sehgal IS, Muthu V, *et al.* Estimating the clinically important change for Saint George's Respiratory Questionnaire in allergic bronchopulmonary aspergillosis. *J Allergy Clin Immunol Pract* 2022; 10: 2456-2458.E1.
- 8 Nolan CM, Birring SS, Maddocks M, *et al.* King's Brief Interstitial Lung Disease questionnaire: responsiveness and minimum clinically important difference. *Eur Respir J* 2019; 54: 1900281.
- 9 Patel AS, Siegert RJ, Keir GJ, et al. The minimal important difference of the King's Brief Interstitial Lung Disease Questionnaire (K-BILD) and forced vital capacity in interstitial lung disease. *Respir Med* 2013; 107: 1438–1443.
- **10** Draak THP, de Greef BTA, Faber CG, *et al.* The minimum clinically important difference: which direction to take. *Eur J Neurol* 2019; 26: 850–855.
- **11** Bonini M, Di Paolo M, Bagnasco D, *et al.* Minimal clinically important difference for asthma endpoints: an expert consensus report. *Eur Respir Rev* 2020; 29: 190137.
- 12 Santanello NC, Zhang J, Seidenberg B, *et al.* What are minimal important changes for asthma measures in a clinical trial? *Eur Respir J* 1999; 14: 23–27.
- 13 Donohue JF. Minimal clinically important differences in COPD lung function. COPD 2005; 2: 111–124.
- 14 Cazzola M, MacNee W, Martinez FJ, *et al.* Outcomes for COPD pharmacological trials: from lung function to biomarkers. *Eur Respir J* 2008; 31: 416–469.
- **15** Copay AG, Subach BR, Glassman SD, *et al.* Understanding the minimum clinically important difference: a review of concepts and methods. *Spine J* 2007; 7: 541–546.