Table 6: GRADE table: Can airway obstruction measured by spirometry (FEV₁/FVC ratio) help diagnose asthma in adults with episodic/chronic suggestive symptoms?

Sensitivity		0.51 to	0.69		Baseline	2	20%			50%		
Specificity		0.28 to	0.76		Prevalence	Typically seer	n in primary ca	re	Typicall	ly seen in specialist o	care	
	Nº of studi	es (№			Factors that n	nay decrease ce	rtainty of evide	ence		Effect per 1.000) patients tested	Test
Outcome	of patie	•	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Public		pre-test probability of 20%	pre-test probability of 50%	accuracy QoE
True positives	4 studies ^{1,} 1451 patier		diagnostic accuracy study	serious	not serious	serious ^b	not serious	none		102 to 138	255 to 345	⊕⊕○○ Low
False negatives										62 to 98	155 to 245	
True negatives	4 studies ^{1,} 1451 patier		diagnostic accuracy study	serious	not serious	serious ^b	not serious	none		224 to 608	140 to 380	⊕⊕○○ Low
False positives										192 to 576	120 to 360	

Explanations

- a. Limitations in the selection of patients with suspected disease. Spectrum bias potentially leads to inflated estimation of the diagnostic performance.
- b. Pooled data could not be obtained and is represented as a range. Probably due to a threshold effect accuracy values represent best balance between sensitivity and specificity at a cut-off around FEV1/FVC ratio of 77%. Specificity and absolute TN and FP effects per 1000 patients tested are highly variable.
- c. Imprecision of data is mainly due to heterogeneity of data and representation of ranges instead of pooled data.

Serious: The more serious the limitation are, the more likely is that the quality of evidence will be downgraded

- 1. Nekoee H., Graulich E., Schleich F., Guissard F., Paulus V., Henket M., et al. (2020) Are type-2 biomarkers of any help in asthma diagnosis? ERJ Open Res 6:(2):00169–02020
- 2. Hunter CJ., Brightling CE., Woltmann G., Wardlaw AJ., Pavord ID. (2002) A Comparison of the Validity of Different Diagnostic Tests in Adults With Asthma. Chest 121:(4):1051–1057
- 3. Bougard N, Nekoee H, Schleich F, Guissard F, Paulus V, Donneau AF, Louis R. Assessment of diagnostic accuracy of lung function indices and FeNO for a positive methacholine challenge. Biochem Pharmacol. 2020 Sep;179:113981.
- 4. Stanbrook MB, Chapman KR, Kesten S. Gas trapping as a predictor of positive methacholine challenge in patients with normal spirometry results. Chest. 1995 Apr;107(4):992-5.

Table 7: GRADE table: Can Peak Expiratory Flow Variability testing help diagnose asthma in patients with episodic/chronic suggestive symptoms?

Sensitivity		0.05	to 0.93		Baseline	2	20%			50%		
Specificity		0.75	to 1.00		Prevalence	Typically seer	n in primary ca	are	Typical	ly seen in specialist c	are	
0	Nº of studies	s (Nº	Otrada da alima		Factors that m	nay decrease ce	rtainty of evide	ence		Effect per 1,000	patients tested	Test
Outcome	of patient	rs)	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision		ication ias	pre-test probability of 20%	pre-test probability of 50%	accuracy QoE
True positives	6 studies ^{1,2,3,} 1372 patient		diagnostic accuracy study	serious :	not serious _{b,c}	serious ^d	not serious	none		10 to 186	25 to 465	⊕⊕○○ LOW
False negatives										14 to 190	35 to 475	
True negatives	6 studies ^{1,2,3} , 1372 patient		diagnostic accuracy study	serious	not serious	serious d	not serious	none		600 to 800	375 to 500	⊕⊕○○ LOW
False positives										0 to 200	0 to 125	

Explanations

- a. Limitations in the selection of patients with suspected disease. Spectrum bias potentially leads to inflated estimation of the diagnostic performance.
- b. Confidence not limited due to indirectness although1 study included patients aged >7, 1 study included patients aged 13-23
- c. Confidence not limited due to indirectness although 1 study selected patients with symptoms of cough only and 1 study 46% of patients on ICS whilst being tested
- d. Pooled data could not be obtained and is represented as a range. Sensitivity, specificity and absolute effects per 1000 patients tested are highly variable.
- e. Imprecision of data is mainly due to heterogeneity of data and representation of ranges instead of pooled data.
- Serious: The more serious the limitation are, the more likely is that the quality of evidence will be downgraded

- 1. Goldstein, . Comparisons of Peak Diurnal Expiratory Flow Variation, Postbronchodilator FEV1 Responses, and Methacholine Inhalation Challenges in the Evaluation of Suspected Asthma. Chest: 2001.
- 2. Ulrik, . Recognition of Asthma in Adolescents and Young Adults: Which Objective Measure is Best?. Journal of Asthma; 2005.

- 3. Thiadens, . Value of measuring diurnal peak flow variability in the recognition of asthma: a study in general practice. ERJ; 1998.
- 4. Nair, . Use of peak flow variability and methacholine responsiveness in predicting changes from pre-test diagnosis of asthma. ERJ; 1999.
- 5. Otter, . Testing bronchial hyper-responsiveness: provocation or peak expiratory flow variability?. British Journal of General Practice,: 1997.
- 6. Hunter CJ, Brightling CE, Woltmann G, Wardlaw AJ, Pavord ID.. A comparison of the validity of different diagnostic tests in adults with asthma. Chest; 2002.

Table 8a: GRADE table: Can FeNO (25 ppb) help diagnose asthma in adults with episodic/chronic suggestive symptoms?

Sensitivity	0.53 (95% CI: 0.33	3 to 0.72)		Baseline	2	0%		50%		
Specificity	0.72 (95% CI: 0.61	I to 0.81)		Prevalence	Typically seen	in primary car	e Typical	ly seen in specialist	care	
				Factors that m	nay decrease ce	rtainty of evide	ence	Effect per 1.000	0 patients tested	
Outcome	№ of studies (№ of patients)	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 20%	pre-test probability of 50%	Test accuracy QoE
True positives	6 studies ^{1,2,3,4,5,6} 1535 patients	diagnostic accuracy study	not serious ^a	not serious	serious ^b	not serious	none	106 (66 to 144)	265 (165 to 360)	⊕⊕⊕○ MODERATE
False negatives								94 (56 to 134)	235 (140 to 335)	
True negatives	6 studies ^{1,2,3,4,5,6} 1535 patients	diagnostic accuracy study	not serious ^a	not serious	serious ^b	not serious	none	576 (488 to 648)	360 (305 to 405)	⊕⊕⊕○ MODERATE
False positives								224 (152 to 312)	140 (95 to 195)	

Explanations

- a. Following the Quadas2 assessment of risk of bias, despite patient selection was not totally homogenous in the included studies, the study design, index test, reference standard and flow and timing were similar in all the included studies.
- b. Sensitivity, specificity and absolute effects per 1000 patients tested are highly variable across different studies using same cut-off (25 ppb).
- c. Imprecision of data is mainly due to heterogeneity

Serious: The more serious the limitation are, the more likely is that the quality of evidence will be downgraded

- 1. Arora R, Thornblade CE, Dauby PA, Flanagan JW, Bush AC, Hagan LL. Exhaled nitric oxide levels in military recruits with new onset asthma. Allergy Asthma Proc. 2006 Nov-Dec;27(6):493-8. doi: 10.2500/aap.2006.27.2904. PMID: 17176784.
- 2. Nekoee H, Graulich E, Schleich F, et al. Are type-2 biomarkers of any help in asthma diagnosis? ERJ Open Res 2020; 6: 00169-2020
- 3. Heffler E, Guida G, Marsico P, Bergia R, Bommarito L, Ferrero N, Nebiolo F, De Stefani A, Usai A, Bucca C, Rolla G. Exhaled nitric oxide as a diagnostic test for asthma in rhinitic patients with asthmatic symptoms. Respir Med. 2006 Nov;100(11):1981-7. doi: 10.1016/j.rmed.2006.02.019. Epub 2006 Apr 3. PMID: 16584881.
- 4. Katsoulis K, Ganavias L, Michailopoulos P, Bikas C, Dinapogias E, Kontakiotis T, Kostikas K, Loukides S. Exhaled nitric oxide as screening tool in subjects with suspected asthma without reversibility. Int Arch Allergy Immunol. 2013;162(1):58-64. doi: 10.1159/000350221. Epub 2013 Jun 26. PMID: 23816757.
- 5. Malinovschi A, Backer V, Harving H, Porsbjerg C. The value of exhaled nitric oxide to identify asthma in smoking patients with asthma-like symptoms. Respir Med. 2012 Jun;106(6):794-801. doi: 10.1016/j.rmed.2012.02.009. Epub 2012 Mar 8. PMID: 22405608.
- 6. Schneider A, Schwarzbach J, Faderl B, Welker L, Karsch-Völk M, Jörres RA. FENO measurement and sputum analysis for diagnosing asthma in clinical practice. Respir Med. 2013 Feb;107(2):209-16. doi: 10.1016/j.rmed.2012.10.003. Epub 2012 Oct 27. PMID: 23107283.

Table 8b: GRADE table: Can FeNO (40 ppb) help diagnose asthma in adults with episodic/chronic suggestive symptoms?

Sensitivity	0.61 (95% CI: 0.37	7 to 0.81)		Baseline Prevalence		0%		50%		
Specificity	0.82 (95% CI: 0.75	5 to 0.87)		revalence	Typically seen	in primary car	те Тур	pically seen in specialist	care	
				Factors that m	nay decrease ce	rtainty of evide	ence	Effect per 1.00	0 patients tested	
Outcome	№ of studies (№ of patients)	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publicati bias	pre-test probability of 20%	pre-test probability of 50%	Test accuracy QoE
True positives	6 studies ^{1,2,3,4,5,6} 1638 patients	diagnostic accuracy study	not serious ^a	not serious	serious ^b	not serious	none	122 (74 to 162)	305 (185 to 405)	⊕⊕⊕○ MODERATE
False negatives								78 (38 to 126)	195 (95 to 315)	
True negatives	6 studies ^{1,2,3,4,5,6} 1638 patients	diagnostic accuracy study	not serious ^a	not serious	serious ^b	not serious	none	656 (600 to 696)	410 (375 to 435)	⊕⊕⊕○ MODERATE
False positives								144 (104 to 200)	90 (65 to 125)	

Explanations

- a. Following the Quadas2 assessment of risk of bias, despite patient selection was not totally homogenous in the included studies, the study design, index test, reference standard and flow and timing were similar in all the included studies.
- b. Sensitivity, specificity and absolute effects per 1000 patients tested are highly variable across different studies using same cut-off (25 ppb).
- c. Imprecision of data is mainly due to heterogeneity

Serious: The more serious the limitation are, the more likely is that the quality of evidence will be downgraded

- 1. Arora R, Thornblade CE, Dauby PA, Flanagan JW, Bush AC, Hagan LL. Exhaled nitric oxide levels in military recruits with new onset asthma. Allergy Asthma Proc. 2006 Nov-Dec;27(6):493-8. doi: 10.2500/aap.2006.27.2904. PMID: 17176784.
- 2. Heffler E, Guida G, Marsico P, Bergia R, Bommarito L, Ferrero N, Nebiolo F, De Stefani A, Usai A, Bucca C, Rolla G. Exhaled nitric oxide as a diagnostic test for asthma in rhinitic patients with asthmatic symptoms. Respir Med. 2006 Nov;100(11):1981-7. doi: 10.1016/j.rmed.2006.02.019. Epub 2006 Apr 3. PMID: 16584881.

- 3. Fukuhara A, Saito J, Sato S, Sato Y, Nikaido T, Saito K, Fukuhara-Nakagawa N, Inokoshi Y, Ishii T, Tanino Y, Ishida T, Munakata M. Validation study of asthma screening criteria based on subjective symptoms and fractional exhaled nitric oxide. Ann Allergy Asthma Immunol. 2011 Dec;107(6):480-6. doi: 10.1016/j.anai.2011.09.002. Epub 2011 Oct 1. PMID: 22123376.
- 4. Kowal K, Bodzenta-Lukaszyk A, Zukowski S. Exhaled nitric oxide in evaluation of young adults with chronic cough. J Asthma. 2009 Sep;46(7):692-8. doi: 10.1080/02770900903056187. PMID: 19728207.
- 5. Pedrosa M, Cancelliere N, Barranco P, López-Carrasco V, Quirce S. Usefulness of exhaled nitric oxide for diagnosing asthma. J Asthma. 2010 Sep;47(7):817-21. doi: 10.3109/02770903.2010.491147. PMID: 20718633.
- 6. Nekoee H, Graulich E, Schleich F, et al. Are type-2 biomarkers of any help in asthma diagnosis? ERJ Open Res 2020; 6: 00169-2020

Table 8c: GRADE table: Can FeNO (50 ppb) help diagnose asthma in adults with episodic/chronic suggestive symptoms?

Sensitivity		0.19 to	0.56		Baseline	:	20%			50%		
Specificity		0.77 to	0.95		Prevalence Typically seen in primary care		Typica	ally seen in specialis	t care			
	No ef et el	/NI-			Factors that m	ay decrease ce	rtainty of evide	ence		Effect per 1.000	0 patients tested	T1
Outcome	№ of studion		Study design	Risk of bias	Indirectness	Inconsistency	Imprecision		ication ias	pre-test probability of 20%	pre-test probability of 50%	Test accuracy QoE
True positives	3 studies 858 patient	s	diagnostic accuracy study	not serious ^a	not serious	not serious b	serious ^c	none		38 to 112	95 to 278	⊕⊕⊕○ MODERATE
False negatives										88 to 162	222 to 405	_
True negatives	3 studies 858 patient	S	diagnostic accuracy study	not serious ^a	not serious	not serious b	serious ^c	none		616 to 760	384 to 475	⊕⊕⊕○ MODERATE
False positives										40 to 184	25 to 116	

Explanations

- a. Following the Quadas2 assessment of risk of bias, despite the interpretation of the index test could have introduced some bias in 2/3 studies, the study design, reference standard and flow and timing were similar in all the included studies.
- b. Pooled data could not be obtained and is represented as a range. Sensitivity, specificity and absolute effects per 1000 patients tested are highly variable.
- c. Imprecision of data is mainly due to heterogeneity of data and representation of ranges instead of pooled data.
- Serious: The more serious the limitation are, the more likely is that the quality of evidence will be downgraded

- 1. Heffler E, Guida G, Marsico P, Bergia R, Bommarito L, Ferrero N, Nebiolo F, De Stefani A, Usai A, Bucca C, Rolla G. Exhaled nitric oxide as a diagnostic test for asthma in rhinitic patients with asthmatic symptoms. Respir Med. 2006 Nov;100(11):1981-7. doi: 10.1016/j.rmed.2006.02.019. Epub 2006 Apr 3. PMID: 16584881.
- 2. Malinovschi A, Backer V, Harving H, Porsbjerg C. The value of exhaled nitric oxide to identify asthma in smoking patients with asthma-like symptoms. Respir Med. 2012 Jun;106(6):794-801. doi: 10.1016/j.rmed.2012.02.009. Epub 2012 Mar 8. PMID: 22405608.

3. Nekoee H, Graulich E, Schleich F, et al. Are type-2 biomarkers of any help in asthma diagnosis? ERJ Open Res 2020; 6: 00169-2020

Table 9: GRADE table: Can measuring blood eosinophil count help diagnose asthma in adults with episodic/chronic suggestive symptoms?

Sensitivity		0.15 to	0.59		Baseline	2	20%		50%		
Specificity		0.39 to	1.00		Prevalence	Typically see	n in primary ca	re Typica	ally seen in specialist	care	
	Nº of stud	ies (No			Factors that n	nay decrease ce	rtainty of evide	ence	Effect per 1.000	O patients tested	Test
Outcome	of patie		Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 20%	pre-test probability of 50%	accuracy QoE
True positives	5 studies ¹ 1286 patie		diagnostic accuracy study	serious	not serious	serious ^b	not serious	none	30 to 118	75 to 295	⊕⊕○○ LOW
False negatives									82 to 170	205 to 425	
True negatives	5 studies ¹ 1286 patie		diagnostic accuracy study	serious	not serious	serious ^b	not serious	none	312 to 800	195 to 500	ФФОО LOW
False positives									0 to 488	0 to 305	

- a. Limitations in the selection of patients with suspected disease. Spectrum bias potentially leads to inflated estimation of the diagnostic performance.
- b. Pooled data could not be obtained and is represented as a range. Sensitivity, specificity and absolute effects per 1000 patients tested are highly variable. Probably due to a threshold effect accuracy values represent best balance between sensitivity and specificity typically at a cut-off between 4 and 6%.
- c. Imprecision of data is mainly due to heterogeneity of data and representation of ranges instead of pooled data.

Serious: The more serious the limitation are, the more likely is that the quality of evidence will be downgraded

- 1. Popović-Grle S., Mehulić M., Pavicić F., Babić I., Beg-Zec Z. (2002) Clinical validation of bronchial hyperresponsiveness, allergy tests and lung function in the diagnosis of asthma in persons with dyspnea. Coll Antropol 26 Suppl:119–27
- 2. Yurdakul AS., Dursun B., Canbakan S., Çakaloğlu A., Çapan N. (2005) The Assessment of Validity of Different Asthma Diagnostic Tools in Adults. J Asthma 42:(10):843–846 Hunter CJ., Brightling CE., Woltmann G., Wardlaw AJ., Pavord ID. (2002) A Comparison of the Validity of Different Diagnostic Tests in Adults With Asthma. Chest 121:(4):1051–1057

- 3. Tilemann L., Gindner L., Meyer F., Szecsenyi J., Schneider A. (2011) Differences in local and systemic inflammatory markers in patients with obstructive airways disease. Prim Care Respir J 20:(4):407–413
- 4. Nekoee H., Graulich E., Schleich F., Guissard F., Paulus V., Henket M., et al. (2020) Are type-2 biomarkers of any help in asthma diagnosis? ERJ Open Res 6:(2):00169–02020

Table 10: GRADE table: Can measuring total serum IgE be used to diagnose asthma in adults with episodic/chronic suggestive symptoms?

Sensitivity		0.33 to	0.51		Baseline		20%		50%		
Specificity		0.72 to	0.85		Prevalence	Typically see	en in primary c	are Typ	ically seen in specialis	t care	
					Factors that m	nay decrease ce	rtainty of evide	ence	Effect per 1.00	0 patients tested	
Outcome	№ of studi of patie	•	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 20%	pre-test probability of 50%	Test accuracy QoE
True positives	4 studies ^{1,} 1176 patier		diagnostic accuracy study	serious ^a	not serious	serious ^b	not serious	none	66 to 102	164 to 255	⊕⊕○○ Low
False negatives									98 to 134	245 to 336	
True negatives	4 studies ^{1,} 1176 patie		diagnostic accuracy study	serious ^a	not serious	not serious	not serious	none	576 to 680	360 to 425	⊕⊕⊕○ MODERATE
False positives									120 to 224	75 to 140	

- a. Limitations in the selection of patients with suspected disease. Spectrum bias potentially leads to inflated estimation of the diagnostic performance.
- b. Pooled data could not be obtained and is represented as a range. Sensitivity, specificity and absolute effects per 1000 patients tested are highly variable. Probably due to a threshold effect accuracy values represent best balance between sensitivity and specificity typically at a cut-off between 90-132 U/mL
- c. Imprecision of data is mainly due to heterogeneity of data and representation of ranges instead of pooled data.

Serious: The more serious the limitation are, the more likely is that the quality of evidence will be downgraded

- 1. Popović-Grle S., Mehulić M., Pavicić F., Babić I., Beg-Zec Z. (2002) Clinical validation of bronchial hyperresponsiveness, allergy tests and lung function in the diagnosis of asthma in persons with dyspnea. Coll Antropol 26 Suppl:119–27
- 2. Yurdakul AS., Dursun B., Canbakan S., Çakaloğlu A., Çapan N. (2005) The Assessment of Validity of Different Asthma Diagnostic Tools in Adults. J Asthma 42:(10):843–846

- 3. Tilemann L., Gindner L., Meyer F., Szecsenyi J., Schneider A. (2011) Differences in local and systemic inflammatory markers in patients with obstructive airways disease. Prim Care Respir J 20:(4):407–413
- 4. Nekoee H., Graulich E., Schleich F., Guissard F., Paulus V., Henket M., et al. (2020) Are type-2 biomarkers of any help in asthma diagnosis? ERJ Open Res 6:(2):00169–02020

Table 11: GRADE table: Can combining FeNO, blood eosinophils and IgE help diagnose asthma in adults with episodic/chronic suggestive symptoms?

Sensitivity	0.46 (95% CI: 0.37	' to 0.52)		Baseline	2	0%			50%		
Specificity	0.74 (95% CI: 0.64	to 0.69)		Prevalence	Typically seen	in primary ca	re -	Typicall	y seen in specialist	care	
				Factors that m	ay decrease ce	rtainty of evide	ence		Effect per 1.000) patients tested	
Outcome	№ of studies (№ of patients)	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Public bia		pre-test probability of 20%	pre-test probability of 50%	Test accuracy QoE
True positives	1 studies ¹ 702 patients	diagnostic accuracy study	serious ^a	not serious	not serious	not serious	none		92 (74 to 104)	230 (185 to 260)	⊕⊕⊕○ MODERATE
False negatives									108 (96 to 126)	270 (240 to 315)	
True negatives	6 studies ^{1,2,3,4,5,6} 1638 patients	diagnostic accuracy study	serious ^a	not serious	not serious	not serious	none		592 (512 to 552)	370 (320 to 345)	⊕⊕⊕○ MODERATE
False positives									208 (248 to 288)	130 (155 to 180)	

a. Limitations in the selection of patients with suspected disease. Spectrum bias potentially leads to inflated estimation of the diagnostic performance. Serious: The more serious the limitation are, the more likely is that the quality of evidence will be downgraded

References

1. Nekoee H., Graulich E., Schleich F., Guissard F., Paulus V., Henket M., et al. (2020) Are type-2 biomarkers of any help in asthma diagnosis? ERJ Open Res 6:(2):00169–02020

Table 12: GRADE table: Can Bronchial Challenge Testing help diagnose asthma in patients with episodic/chronic symptoms suggestive of asthma?

Sensitivity	0.63 to 1.00				
Scholavicy	0.03 to 1.00	Prevalences	20%	50%	
Specificity	0.07 to 0.95				

	No of studies (No of		Fact	ors that may d	lecrease certair	nty of evidence	9	Effect per 100	patients tested	Test accuracy
Outcome	patients)	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of20%	pre-test probability of50%	CoE
True positives (patients with Asthma)	3 studies 891 patients	cohort & case-control type studies	serious ^{1,2,3,a,b}	not serious ^c	not serious ^d	not serious	none	13 to 20	32 to 50	⊕⊕⊕O Moderate
False negatives (patients incorrectly classified as not having Asthma)								0 to 7	0 to 18	
True negatives (patients without Asthma)	3 studies 891 patients	cohort & case-control type studies	serious ^{a,b}	not serious ^c	serious ^{d,e}	not serious ^e	none	6 to 76	4 to 48	ӨӨОО Low
False positives (patients incorrectly classified as having Asthma)								4 to 74	2 to 46	

Explanations

- a. 2prospective case control studies, 1 retrospective database study
- b. Louis et al retrospective a total of 1610 patients were screened to select 194 who had both BDR and Methacholine
- c. Ulrik et al study conducted in general population and not secondary care
- d. 1 study used 8mg/ml and 16mg/ml methacholine cut-off, 2 studies used 16mg/ml cut-off for methacholine/histamine challenge e. Specificity highly variable from 0.07-95

- 1. Porpodis, . Comparison of diagnostic validity of mannitol and methacholine challenges and relationship to clinical status and airway inflammation in steroid na ve asthmatic patients.. Journal of Asthma; 2017.
- 2.Louis, . Bronchodilation Test with Inhaled Salbutamol Versus Bronchial Methacholine Challenge to Make an Asthma Diagnosis: Do They Provide the Same Information?. JACI in Practice; 2019.
 3.Ulrik, . Recognition of Asthma in Adolescents and Young Adults: Which Objective Measure is Best?. Journal of Asthma; 2005.

Table 13: GRADE table: Can sGAW measurement help diagnose asthma in adults with episodic/chronic suggestive symptoms?

Sensitivity Specificity	0.50 to 0		Baseline Prevalence	Typically	20% / seen in primai	ry care	Typically see	50% n in speciali	st care	
Оростону	Nº of studies	Study	F	Factors that ma	ay decrease ce	rtainty of evi	dence		er 1.000 s tested	Test
Outcome	(№ of patients	design	Risk of bias	Indirectnes s	Inconsistenc y	Imprecisio n	Publicatio n bias	pre-test probabilit y of 20%	pre-test probabilit y of 50%	accurac y QoE
True positives	2 studies	diagnos c accurac	s ^a	serious ^b	not serious	not serious	none	100 to 102	250 to 255	000
False negative s	921 patients	study						98 to 100	245 to 250	LOW
True negative s	2 studies 1,2 921	diagnos c accurac study	s a	serious ^b	not serious	not serious	none	568 to 592	355 to 370	⊕⊕ ○
False positives	patients							208 to 232	130 to 145	LOW

Explanations

Serious: The more serious the limitation are, the more likely is that the quality of evidence will be downgraded

References

- 1. Bougard N, Nekoee H, Schleich F, Guissard F, Paulus V, Donneau AF, Louis R. Assessment of diagnostic accuracy of lung function indices and FeNO for a positive methacholine challenge. Biochem Pharmacol. 2020 Sep;179:113981.
- 2. Topalovic M, Derom E, Osadnik CR, Troosters T, Decramer M, Janssens W; Belgian Pulmonary Function Study Investigators. Airways resistance and specific conductance for the diagnosis of obstructive airways diseases. Respir Res. 2015 Jul 22;16(1):88.

Table 14: GRADE table: Can RV/TLC measurement help diagnose asthma in adults with episodic/chronic suggestive symptoms?

Sensitivity	0.28 to 0.71	Baseline	20%	50%
Specificity	0.68 to 0.88	Prevalence	Typically seen in primary care	Typically seen in specialist care

a. Limitations in the selection of patients with suspected disease. Spectrum bias potentially leads to inflated estimation of the diagnostic performance.

b.Topalovic 2015 included patients with obstructive disease including COPD and bronchiectasis. The diagnosis of asthma was unclear and the authors focused on non-obstructive asthma

Outcome	№ of studies (№ of patients	Study design	Factors that may decrease certainty of evidence					Effect per 1.000 patients tested		Test
			Risk of bias	Indirectnes s	Inconsistenc y	Imprecisio n	Publicatio n bias	pre-test probabilit y of 20%	pre-test probabilit y of 50%	accurac y QoE
True positives	2 studies	diagnosti c accuracy	seriou s ^a	not serious	serious ^b	not serious ^c	none	56 to 142	140 to 355	ФФО
False negative s	770 patients	study						58 to 144	145 to 360	LOW
True negative s	2 studies 1,2 770	diagnosti c accuracy study	seriou s ^a	not serious	serious ^b	not serious ^c	none	544 to 704	340 to 440	⊕⊕ ○
False positives	patients							96 to 256	60 to 160	LOW

- a. Limitations in the selection of patients with suspected disease. Spectrum bias potentially leads to inflated estimation of the diagnostic performance.
- b. Pooled data could not be obtained and is represented as a range. Probably due to a threshold effect accuracy values represent best balance between sensitivity and specificity at a cut-off around RV/TLC ratio of 102 to >125%. Absolute effects per 1000 patients tested are highly variable.
- c. Imprecision of data is mainly due to heterogeneity of data and representation of ranges instead of pooled data. Serious: The more serious the limitation are, the more likely is that the quality of evidence will be downgraded

- 1. Bougard N, Nekoee H, Schleich F, Guissard F, Paulus V, Donneau AF, Louis R. Assessment of diagnostic accuracy of lung function indices and FeNO for a positive methacholine challenge. Biochem Pharmacol. 2020 Sep;179:113981.
- 2. Stanbrook MB, Chapman KR, Kesten S. Gas trapping as a predictor of positive methacholine challenge in patients with normal spirometry results. Chest. 1995 Apr;107(4):992-5.