

COMPERA 2.0: a refined four-stratum risk assessment model for pulmonary arterial hypertension

Marius M. Hoeper ^{1,2}, Christine Pausch³, Karen M. Olsson^{1,2}, Doerte Huscher⁴, David Pittrow ^{3,5}, Ekkehard Grünig⁶, Gerd Staehler⁷, Carmine Dario Vizza⁸, Henning Gall ^{2,9}, Oliver Distler¹⁰, Christian Opitz¹¹, J. Simon R. Gibbs¹², Marion Delcroix ¹³, H. Ardeschir Ghofrani ^{2,9,14}, Da-Hee Park¹, Ralf Ewert¹⁵, Harald Kaemmerer¹⁶, Hans-Joachim Kabitz¹⁷, Dirk Skowasch¹⁸, Juergen Behr^{19,20}, Katrin Milger ²⁰, Michael Halank²¹, Heinrike Wilkens²², Hans-Jürgen Seyfarth²³, Matthias Held²⁴, Daniel Dumitrescu²⁵, Iraklis Tsangaris²⁶, Anton Vonk-Noordegraaf ²⁷, Silvia Ulrich ²⁸, Hans Klose²⁹, Martin Claussen³⁰, Tobias J. Lange³¹ and Stephan Rosenkranz³²

¹Dept of Respiratory Medicine, Hannover Medical School, Hannover, Germany. ²German Center of Lung Research (DZL), Germany. ³GWT-TUD GmbH, Epidemiological Centre, Dresden, Germany. ⁴Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin, Berlin, Germany. ⁵Institute for Clinical Pharmacology, Medical Faculty, Technical University, Dresden, Germany. ⁶Center for Pulmonary Hypertension, Thoraxklinik at Heidelberg University Hospital, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany. ⁷Lungenklinik, Löwenstein, Germany. ⁸Dipartimento di Scienze Cliniche Internistiche, Anestiologiche e Cardiolohiche, Sapienza, University of Rome, Rome, Italy. ⁹Dept of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany. ¹⁰Dept of Rheumatology, University Hospital, Zurich, Switzerland. ¹¹Dept of Cardiology, DRK Kliniken Berlin Westend, Berlin, Germany. ¹²Dept of Cardiology, National Heart and Lung Institute, Imperial College London, London, UK. ¹³Clinical Dept of Respiratory Diseases, University Hospitals of Leuven and Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Dept of Chronic Diseases and Metabolism (CHROMETA), KU Leuven – University of Leuven, Leuven, Belgium. ¹⁴Dept of Medicine, Imperial College London, London, UK. ¹⁵Clinic of Internal Medicine, Dept of Respiratory Medicine, Universitätsmedizin Greifswald, Greifswald, Germany. ¹⁶Deutsches Herzzentrum München, Klinik für angeborene Herzfehler und Kinderkardiologie, TU München, Munich, Germany. ¹⁷Gemeinnützige Krankenhausbetriebsgesellschaft Konstanz mbH, Medizinische Klinik II, Konstanz, Germany. ¹⁸Universitätsklinikum Bonn, Medizinische Klinik und Poliklinik II, Innere Medizin – Kardiologie/Pneumologie, Bonn, Germany. ¹⁹Comprehensive Pneumology Center, Lungenforschung-sambulanz, Helmholtz Zentrum, München, Germany. ²⁰Dept of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany. ²¹Universitätsklinikum Carl Gustav Carus der Technischen Universität Dresden, Medizinische Klinik und Poliklinik I, Dresden, Germany.²²Klinik für Innere Medizin V, Pneumologie, Universitätsklinikum Universitätsklinikum des Saarlandes, Homburg, Germany.²³Universitätsklinikum Leipzig, Medizinische Klinik und Poliklinik II, Abteilung für Pneumologie, Leipzig, Germany. ²⁴Dept of Internal Medicine, Respiratory Medicine and Ventilatory Support, Medical Mission Hospital, Central Clinic Würzburg, Würzburg, Germany. ²⁵Clinic for General and Interventional Cardiology and Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany. ²⁶Attikon University Hospital, 2nd Critical Care Dept, National and Kapodistrian University of Athens, Athens, Greece. ²⁷Amsterdam UMC, Vrije Universiteit Amsterdam, Dept of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands. ²⁸Clinic of Pulmonology, University Hospital of Zurich, Zurich, Switzerland. ²⁹Dept of Respiratory Medicine, Eppendorf University Hospital, Hamburg, Germany. ³⁰LungenClinic Grosshansdorf, Fachabteilung Pneumologie, Großhansdorf, Germany. ³¹Dept of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany. ³²Clinic III for Internal Medicine (Cardiology) and Center for Molecular Medicine (CMMC), and the Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany.

Corresponding author: Marius M. Hoeper (hoeper.marius@mh-hannover.de)

Check for updates	Shareable abstract (@ERSpublications) COMPERA 2.0, a four-stratum risk assessment model based on refined cut-off levels for functional class, 6MWD and BNP/NT-proBNP was more sensitive to prognostically significant changes in risk than the original three-stratum model https://bit.ly/3mzPKjA Cite this article as: Hoeper MM, Pausch C, Olsson KM, <i>et al.</i> COMPERA 2.0: a refined four-stratum risk
	assessment model for pulmonary arterial hypertension. <i>Eur Respir J</i> 2022; 60: 2102311 [DOI: 10.1183/ 13993003.02311-2021]. This single-page version can be shared freely online.
	Abstract
Copyright ©The authors 2022.	Background Risk stratification plays an essential role in the management of patients with pulmonary
	arterial hypertension (PAH). The current European guidelines propose a three-stratum model to categorise
	risk as low, intermediate or high, based on the expected 1-year mortality. However, with this model, most

This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org

Received: 23 Aug 2021 Accepted: 29 Oct 2021

patients are categorised as intermediate risk. We investigated a modified approach based on four risk categories, with intermediate risk subdivided into intermediate-low and intermediate-high risk.

Methods We analysed data from the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA), a European pulmonary hypertension registry, and calculated risk at diagnosis and first follow-up based on World Health Organization functional class, 6-min walk distance (6MWD) and serum levels of brain natriuretic peptide (BNP) or N-terminal pro-BNP (NT-proBNP), using refined cut-off values. Survival was assessed using Kaplan–Meier analyses, log-rank testing and Cox proportional hazards models.

Results Data from 1655 patients with PAH were analysed. Using the three-stratum model, most patients were classified as intermediate risk (76.0% at baseline and 63.9% at first follow-up). The refined four-stratum risk model yielded a more nuanced separation and predicted long-term survival, especially at follow-up assessment. Changes in risk from baseline to follow-up were observed in 31.1% of the patients with the three-stratum model and in 49.2% with the four-stratum model. These changes, including those between the intermediate-low and intermediate-high strata, were associated with changes in long-term mortality risk.

Conclusions Modified risk stratification using a four-stratum model based on refined cut-off levels for functional class, 6MWD and BNP/NT-proBNP was more sensitive to prognostically relevant changes in risk than the original three-stratum model.