

Mycobacterium tuberculosis-specific CD4 T-cell scoring discriminates tuberculosis infection from disease

Andrej Mantei^{1,10}, Tim Meyer^{1,10}, Mariana Schürmann², Christiane Beßler³, Harald Bias³, David Krieger⁴, Torsten Bauer⁴, Petra Bacher^{5,6}, Johannes Helmuth ¹⁰⁷, Hans-Dieter Volk^{1,8,9}, Dirk Schürmann^{2,11}, Alexander Scheffold ^{15,11} and Christian Meisel^{1,8,9,11}

¹Dept of Immunology, Labor Berlin – Charité Vivantes GmbH, Berlin, Germany. ²Dept of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany. ³Occupational Medicine Centre, Charité – Universitätsmedizin Berlin, Berlin, Germany. ⁴Dept of Pneumology, Lungenklinik Heckeshorn, Helios Klinikum Emil von Behring, Berlin, Germany. ⁵Institute of Immunology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany. ⁶Institute of Clinical Molecular Biology, Christian-Albrechts Universität zu Kiel, Kiel, Germany. ⁷Dept of Human Genetics, Labor Berlin – Charité Vivantes GmbH, Berlin, Germany. ⁸BIH Center for Regenerative Therapies (BCRT), Charité – Universitätsmedizin Berlin, Berlin, Germany. ⁹Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany. ¹⁰A. Mantei and T. Meyer contributed equally to this work. ¹¹D. Schürmann, A. Scheffold and C. Meisel contributed equally to this work.

Corresponding author: Christian Meisel (christian.meisel@laborberlin.com)

Shareable abstract (@ERSpublications)

In a prospective study, a scoring system based on analysis of the activation state of tuberculosis (TB)-specific CD4⁺ T-cells was developed that allows reliable discrimination of TB infection and TB disease with high sensitivity and specificity https://bit.ly/3EFG4KX

Cite this article as: Mantei A, Meyer T, Schürmann M, *et al. Mycobacterium tuberculosis*-specific CD4 T-cell scoring discriminates tuberculosis infection from disease. *Eur Respir J* 2022; 60: 2101780 [DOI: 10.1183/13993003.01780-2021].

This single-page version can be shared freely online.

Abstract

Copyright ©The authors 2022.

This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org

Received: 23 June 2021 Accepted: 26 Nov 2021 *Background* Rapid and reliable diagnostic work-up of tuberculosis (TB) remains a major healthcare goal. In particular, discrimination of TB infection from TB disease with currently available diagnostic tools is challenging and time consuming. This study aimed at establishing a standardised blood-based assay that rapidly and reliably discriminates TB infection from TB disease based on multiparameter analysis of TB antigen-reactive CD4⁺ T-cells acting as sensors for TB stage-specific immune status.

Methods 157 HIV-negative subjects with suspected TB infection or TB disease were recruited from local tertiary care hospitals in Berlin (Germany). Peripheral blood mononuclear cells were analysed for CD4⁺ T-cells reactive to the *Mycobacterium tuberculosis* antigens purified protein derivative and early secretory antigenic target 6 kDa/culture filtrate protein 10. The activation state of TB antigen-reactive T-cells, identified by surface expression of CD154, was evaluated according to the expression profile of proliferation marker Ki-67 and activation markers CD38 and HLA-DR. Using data from 81 subjects with clinically confirmed TB infection (n=34) or culture-proven pulmonary or extrapulmonary TB disease (n=47), 12 parameters were derived from the expression profile and integrated into a scoring system.

Results Using the scoring system, our assay (TB-Flow Assay) allowed reliable discrimination of TB infection from both pulmonary and extrapulmonary TB disease with high sensitivity (90.9%) and specificity (93.3%) as was confirmed by Monte-Carlo cross-validation.

Conclusion With low time requirement, ease of sample collection, and high sensitivity and specificity both for pulmonary and extrapulmonary TB disease, we believe this novel standardised TB-Flow Assay will improve the work-up of patients with suspected TB disease, supporting rapid TB diagnosis and facilitating treatment decisions.

