Online Table S3.2: Initial and follow up settings for CPAP

Author	Countr	Journal	Type of study	Number of patients	Ages	CPAP mode	CPAP level	Follow up
Marcus et al. [1]	USA	J Pediatr	Retrospective study (written questionnaire)	94 children with obesity (27%), craniofacial malformation (25%), OSA type I (idiopathic post AT) (17%), Down syndrome (13%)	0-19 yrs	Constant CPAP- titration with PSG	Available for 70 patients Median CPAP =8 (range 4-20), CPAP were independent of age and diagnosis	Every 4 to 12 months Follow up: 22% required modification of CPAP level during follow up
McNam ara et al. [2]	Australi a	Chest	Prospective study	24 infants on long term CPAP	1-51 weeks old	Constant CPAP - Titration with PSG	Initial setting 3.7 to 6 cmH ₂ O Increments of 0.3 until obstruction overcome on PSG 5 infants with upper airway anomalies required up to 10 cmH ₂ O	CPAP discontinued in 13 infants; CPAP level was increased in the 5 other infants (6 drop off due to noncompliance/adherence)
Massa et al. [3]	UK	Arch Dis Child	Retrospective study	42/66 children on long term CPAP (17 (26%) failed trials and alternative treatment)	0-19 yrs	Data on 42 children who ended up succesfull y	Start at 4 cmH ₂ O then increments of 2 cm to overcome OSA and desaturation on PSG Mean CPAP 8.5 ±	Side effect: skin irritation/nasal dryness Up to 3 trials to achieve adherence

						adhering to CPAP	3.2 cmH ₂ O (4-16)	
Marcus et al. [4]	USA	Pediatric s	Prospective randomized study: CPAP or BPAP	29 children (13 CPAP 16 BPAP) 19 patients completed the study – of note 19 obese patients	2-16 yrs	CPAP vs BPAP	CPAP started at 3 cmH ₂ O then 4 then increments of 2 to overcome OSA on PSG BPAP aim to have 6 differential starting $4/3$, $6/3$, $8/3$, $10/4$, $12/6$, $14/8$, $16/10$ CPAP 8 ± 3 (4-12) BPAP 11 ± 4 (4-16) and 5 ± 3 (3-10)	CPAP vs BPAP no effect on drop outs, same mean compliance at 6 m: 5.3 ± 2.5 h/night
Tan et al. [5]	Australi a	J Pediatr Child Health	Retrospective study over 1 yr	61 sleep studies in 45 children 33% PSG, 33% polygraphy and 33% with autoCPAP	0.4- 18.6 yrs (media n 8.3 yrs)		64% CPAP - 31% BPAP Changes to improve OSA or ventilation where any persistent apnoea, hypopnoea or hypoventilation	Changes recommended in 66%: 12 CPAP increase, 12 BPAP increase, 1 CPAP decrease, 4 BPAP decrease, 2 CPAP withdrawal
Marcus et al. [6]	USA	J Clin Sleep Med	Prospective double blind randomized study	56 children	2-16 yrs	CPAP vs BiFlex	At 3 m: CPAP 10 ± 3 BiFlex 14 ± 3 and 8 ± 2	At 3 m: same efficacy on AHI and daytime sleepiness and compliance: 24 vs 22 nights/m and 201 vs 185 min/night for CPAP vs

								BiFlex
Khirani et al. [7]	France	Crit Care	Prospective physiological study: oesogastric pressures measures vs clinical parameters, single centre	12 infants, 5 BPD and 7 UAO (3 laryngomalaci a, 1 OSA, 1 Down syndrome, 1 Pierre Robin Sequence, 1 Prader Willi syndrome)	2-22 m 3.6- 10.3 kg	Constant CPAP, different ventilator s	CPAP level set on clinical signs: 8 cmH ₂ O CPAP level set on oesogastric pressures: 10 cmH ₂ O Physiological data superior to clinical. Patients discharged home with CPAP level determined by physiological data	Follow up program not specified. Improved gas exchange and weight gain. All patients weaned from CPAP (6 m – 3 yo) after improved clinical status
Widger et al. [8]	Australi	Sleep & Breathin g	Retrospective study of all patients on respiratory support (CPAP + BPAP) 2007-2012 Single centre	42 children (25 CPAP + 17 BPAP) had 71 PSG	11 ± 6 yrs	CPAP + BPAP	CPAP titration 1-2 cm upwards or downwards based on presence/absence of apnoeas/hypopnoe as on PSG, special protocol for adjustment of BPAP	Annual titration PSGs. Changes recommended in 27/41 studies with CPAP and 11/30 studies with NIV – overall recommended in 53% of studies Full or partial changes implemented in 90% improvement in OSA symptoms on questionnaire in 50% when changes were implemented
Chatwin et al. [9]	UK	PlosOne	Retrospective descriptive study of	449 children started on home NIV,	< 17 yrs 13%<1	CPAP (12%) + BPAP	CPAP settings 8 ± 1.3 cmH ₂ O	PSG 3 m after initiation of respiratory support, then 3 m again and if

			outcomes at 1 center 1993- 2011	565 with NMD	y, age at initiati on 8.7 ±6 y			stable, once a year
Amadde o et al. [10]	France	Sleep Med	Retrospective study using PGs of consecutive patients between 2011- 2014, single centre	29 control PGs in 26 stable children treated with CPAP at home	7.8 ± 6.2 yrs	CPAP in 23 patients and Auto-CPAP in 3	Mean CPAP 7.7 ±1.5cm H ₂ O at time of PGs	Median respiratory events index: 1.4/h (range 0-34), > obstructive events often associated with desaturations/arousal; 50% unintentional leaks but with no desaturations. PGs resulted in 7 CPAP changes in settings or interface: 3 increase, 1 decrease, 1 to auto-CPAP, 1 to NIV and 1 interface change
Mihai et al. [11]	Australi	J Clin Sleep Med	Retrospective review on prospective collected data on children initially treated with auto- CPAP before switching to fixed CPAP (2013-2015)	26 children treated with auto-CPAP	11.9 ± 3.4 yrs	Auto- CPAP	Median CPAP level on titration PSG (9 (7-10)) comparable to median 90°percentile CPAP level on auto-CPAP (8.1 (7.1-9.5)) and higher than mean auto-CPAP (6.3 (5.3-7.5))	90° percentile CPAP is useful but does not completely eliminate the need for titration PSG when determining optimal CPAP level. Mean CPAP level downloaded from Auto-CPAP machine can be used to effectively shorten the PSG titration study

Al-Saleh	Canada	J Clin	Retrospective	623 titration	10.5 ±	CPAP	CPAP titration	Major outcome: clinical
et al.		Sleep	study	PSG in 166	5.1 yrs	BPAP	from 4, increase 1-	predictors of changes at
[12]		Med	2009/2013	children	-	IV	2, max 15 cmH ₂ O	follow-up PSG: age at
			Single centre	treated with			Switch to BPAP if	PSG, CNS or NMD
			Review of	BPAP and 83			CPAP failure	diagnosis, BPAP and
			PSGs for	children			BPAP: Start	shorter time between start
			technology	treated with			spontaneous/timed	of therapy and PSG had
			titration in	CPAP			mode, titrate from	higher likelihood of a
			patients with	and 25			8/4 cmH ₂ O, back-	change in settings.
			CPAP, BPAP	children with			up rate 8 bpm,	62% major change, 11%
			or IV	IV			increase	minor change, 27% no
			Major change:	50%			inspiratory /	change, 4% mask change,
			changes in	respiratory			expiratory	3% mode change.
			mode,	disorders, 28%			pressures by 1-2	First titration study
			pressure/ rate	NMD and			cmH ₂ O, minimum	should be done no more
			and/or mask	22% CNS			difference 4	than a year after
			Minor change:				cmH ₂ O	treatment initiation
			inspiratory					
			time, rise time,					
			trigger or cycle					
			setting					

Abbreviations: m: months, yrs: years, OSA: obstructive sleep apnea, BPAP: bilevel positive airway pressure, NIV: noninvasive ventilation, IV: invasive ventilation, NMD: neuromuscular disease, PSG: polysomnography, PG: respiratory polygraphy, AHI: apnea-hypopnea index, , CNS: central nervous system.

References

1. Marcus CL, Ward SL, Mallory GB, *et al.* Use of nasal continuous positive airway pressure as treatment of childhood obstructive sleep apnea. *J Pediatr* 1995; 127: 88-94.

- 2. McNamara F, Sullivan CE. Obstructive sleep apnea in infants and its management with nasal continuous positive airway pressure. *Chest* 1999; 116: 10-16.
- 3. Massa F, Gonsalez S, Laverty A, et al. The use of nasal continuous positive airway pressure to treat obstructive sleep apnoea. Arch Dis Child 2002; 87: 438-443.
- 4. Marcus CL, Rosen G, Ward SLD, et al. Adherence to and effectiveness of positive airway pressure therapy in children with obstructive sleep apnea. *Pediatrics* 2006; 117: e442-e451.
- 5. Tan E, Nixon GM, Edwards EA. Sleep studies frequently lead to changes in respiratory support in children. *J Paediatr Child Health* 2007; 43: 560-563.
- 6. Marcus CL, Radcliffe J, Konstantinopoulou S, et al. Effects of positive airway pressure therapy on neurobehavioral outcomes in children with obstructive sleep apnea. Am J Respir Crit Care Med 2012; 185: 998-1003.
- 7. Khirani S, Ramirez A, Aloui S, *et al.* Continuous positive airway pressure titration in infants with severe upper airway obstruction or bronchopulmonary dysplasia. *Crit Care* 2013; 17: R167.
- 8. Widger JA, Davey MJ, Nixon GM. Sleep studies in children on long-term non-invasive respiratory support. Sleep Breath 2014; 18: 885-889.
- 9. Chatwin M, Tan HL, Bush A, et al. Long term non-invasive ventilation in children: impact on survival and transition to adult care. PLoS One 2015; 10: e0125839.
- 10. Amaddeo A, Caldarelli V, Fernandez-Bolanos M, *et al.* Polygraphic respiratory events during sleep in children treated with home continuous positive airway pressure: description and clinical consequences. *Sleep Med* 2015; 16: 107-112.
- 11. Mihai R, Vandeleur M, Pecoraro S, et al. Autotitrating CPAP as a tool for CPAP initiation for children. J Clin Sleep Med 2017; 13: 713-719.
- 12. Al-Saleh S, Sayal P, Stephens D, *et al.* Factors associated with changes in invasive and noninvasive positive airway pressure therapy settings during pediatric polysomnograms. *J Clin Sleep Med* 2017; 13: 183-188.