Online Table S3.2: Initial and follow up settings for CPAP | Author | Countr | Journal | Type of study | Number of patients | Ages | CPAP
mode | CPAP level | Follow up | |----------------------------|---------------|-------------------|---|---|----------------------|---|--|--| | Marcus
et al. [1] | USA | J Pediatr | Retrospective
study (written
questionnaire) | 94 children with obesity (27%), craniofacial malformation (25%), OSA type I (idiopathic post AT) (17%), Down syndrome (13%) | 0-19
yrs | Constant
CPAP-
titration
with PSG | Available for 70 patients Median CPAP =8 (range 4-20), CPAP were independent of age and diagnosis | Every 4 to 12 months Follow up: 22% required modification of CPAP level during follow up | | McNam
ara et al.
[2] | Australi
a | Chest | Prospective study | 24 infants on
long term
CPAP | 1-51
weeks
old | Constant
CPAP -
Titration
with PSG | Initial setting 3.7 to 6 cmH ₂ O Increments of 0.3 until obstruction overcome on PSG 5 infants with upper airway anomalies required up to 10 cmH ₂ O | CPAP discontinued in 13 infants; CPAP level was increased in the 5 other infants (6 drop off due to noncompliance/adherence) | | Massa et al. [3] | UK | Arch Dis
Child | Retrospective study | 42/66 children
on long term
CPAP (17
(26%) failed
trials and
alternative
treatment) | 0-19
yrs | Data on
42
children
who
ended up
succesfull
y | Start at 4 cmH ₂ O
then increments of
2 cm to overcome
OSA and
desaturation on
PSG
Mean CPAP 8.5 ± | Side effect: skin irritation/nasal dryness Up to 3 trials to achieve adherence | | | | | | | | adhering
to CPAP | 3.2 cmH ₂ O (4-16) | | |----------------------|---------------|------------------------------|---|--|--|---------------------|---|---| | Marcus et al. [4] | USA | Pediatric
s | Prospective
randomized
study: CPAP
or BPAP | 29 children
(13 CPAP
16 BPAP)
19 patients
completed the
study – of note
19 obese
patients | 2-16
yrs | CPAP vs
BPAP | CPAP started at 3 cmH ₂ O then 4 then increments of 2 to overcome OSA on PSG BPAP aim to have 6 differential starting $4/3$, $6/3$, $8/3$, $10/4$, $12/6$, $14/8$, $16/10$ CPAP 8 ± 3 (4-12) BPAP 11 ± 4 (4-16) and 5 ± 3 (3-10) | CPAP vs BPAP no effect
on drop outs, same mean
compliance at 6 m: 5.3 ±
2.5 h/night | | Tan et al. [5] | Australi
a | J Pediatr
Child
Health | Retrospective
study over 1 yr | 61 sleep
studies in 45
children
33% PSG,
33%
polygraphy
and 33% with
autoCPAP | 0.4-
18.6
yrs
(media
n 8.3
yrs) | | 64% CPAP -
31% BPAP
Changes to
improve OSA or
ventilation where
any persistent
apnoea, hypopnoea
or hypoventilation | Changes recommended
in 66%:
12 CPAP increase, 12
BPAP increase, 1 CPAP
decrease, 4 BPAP
decrease, 2 CPAP
withdrawal | | Marcus
et al. [6] | USA | J Clin
Sleep
Med | Prospective
double blind
randomized
study | 56 children | 2-16
yrs | CPAP vs
BiFlex | At 3 m:
CPAP 10 ± 3
BiFlex 14 ± 3 and
8 ± 2 | At 3 m: same efficacy on
AHI and daytime
sleepiness and
compliance: 24 vs 22
nights/m and 201 vs 185
min/night for CPAP vs | | | | | | | | | | BiFlex | |-----------------------|----------|--------------------|---|---|---------------------------|---|--|---| | Khirani
et al. [7] | France | Crit Care | Prospective physiological study: oesogastric pressures measures vs clinical parameters, single centre | 12 infants, 5 BPD and 7 UAO (3 laryngomalaci a, 1 OSA, 1 Down syndrome, 1 Pierre Robin Sequence, 1 Prader Willi syndrome) | 2-22 m
3.6-
10.3 kg | Constant
CPAP,
different
ventilator
s | CPAP level set on clinical signs: 8 cmH ₂ O CPAP level set on oesogastric pressures: 10 cmH ₂ O Physiological data superior to clinical. Patients discharged home with CPAP level determined by physiological data | Follow up program not specified. Improved gas exchange and weight gain. All patients weaned from CPAP (6 m – 3 yo) after improved clinical status | | Widger et al. [8] | Australi | Sleep & Breathin g | Retrospective
study of all
patients on
respiratory
support (CPAP
+ BPAP)
2007-2012
Single centre | 42 children
(25 CPAP +
17 BPAP) had
71 PSG | 11 ± 6
yrs | CPAP +
BPAP | CPAP titration 1-2
cm upwards or
downwards based
on
presence/absence
of
apnoeas/hypopnoe
as on PSG, special
protocol for
adjustment of
BPAP | Annual titration PSGs. Changes recommended in 27/41 studies with CPAP and 11/30 studies with NIV – overall recommended in 53% of studies Full or partial changes implemented in 90% improvement in OSA symptoms on questionnaire in 50% when changes were implemented | | Chatwin et al. [9] | UK | PlosOne | Retrospective descriptive study of | 449 children
started on
home NIV, | < 17
yrs
13%<1 | CPAP
(12%) +
BPAP | CPAP settings 8 ± 1.3 cmH ₂ O | PSG 3 m after initiation of respiratory support, then 3 m again and if | | | | | outcomes at 1
center 1993-
2011 | 565 with
NMD | y, age
at
initiati
on 8.7
±6 y | | | stable, once a year | |----------------------|----------|------------------------|---|--|--|--|---|--| | Amadde o et al. [10] | France | Sleep
Med | Retrospective
study using
PGs of
consecutive
patients
between 2011-
2014, single
centre | 29 control PGs
in 26 stable
children
treated with
CPAP at home | 7.8 ± 6.2 yrs | CPAP in 23 patients and Auto-CPAP in 3 | Mean CPAP 7.7
±1.5cm H ₂ O at
time of PGs | Median respiratory events index: 1.4/h (range 0-34), > obstructive events often associated with desaturations/arousal; 50% unintentional leaks but with no desaturations. PGs resulted in 7 CPAP changes in settings or interface: 3 increase, 1 decrease, 1 to auto-CPAP, 1 to NIV and 1 interface change | | Mihai et al. [11] | Australi | J Clin
Sleep
Med | Retrospective
review on
prospective
collected data
on children
initially treated
with auto-
CPAP before
switching to
fixed CPAP
(2013-2015) | 26 children
treated with
auto-CPAP | 11.9 ± 3.4 yrs | Auto-
CPAP | Median CPAP level on titration PSG (9 (7-10)) comparable to median 90°percentile CPAP level on auto-CPAP (8.1 (7.1-9.5)) and higher than mean auto-CPAP (6.3 (5.3-7.5)) | 90° percentile CPAP is useful but does not completely eliminate the need for titration PSG when determining optimal CPAP level. Mean CPAP level downloaded from Auto-CPAP machine can be used to effectively shorten the PSG titration study | | Al-Saleh | Canada | J Clin | Retrospective | 623 titration | 10.5 ± | CPAP | CPAP titration | Major outcome: clinical | |----------|--------|--------|------------------|----------------|---------|------|-------------------------------|----------------------------| | et al. | | Sleep | study | PSG in 166 | 5.1 yrs | BPAP | from 4, increase 1- | predictors of changes at | | [12] | | Med | 2009/2013 | children | - | IV | 2, max 15 cmH ₂ O | follow-up PSG: age at | | | | | Single centre | treated with | | | Switch to BPAP if | PSG, CNS or NMD | | | | | Review of | BPAP and 83 | | | CPAP failure | diagnosis, BPAP and | | | | | PSGs for | children | | | BPAP: Start | shorter time between start | | | | | technology | treated with | | | spontaneous/timed | of therapy and PSG had | | | | | titration in | CPAP | | | mode, titrate from | higher likelihood of a | | | | | patients with | and 25 | | | 8/4 cmH ₂ O, back- | change in settings. | | | | | CPAP, BPAP | children with | | | up rate 8 bpm, | 62% major change, 11% | | | | | or IV | IV | | | increase | minor change, 27% no | | | | | Major change: | 50% | | | inspiratory / | change, 4% mask change, | | | | | changes in | respiratory | | | expiratory | 3% mode change. | | | | | mode, | disorders, 28% | | | pressures by 1-2 | First titration study | | | | | pressure/ rate | NMD and | | | cmH ₂ O, minimum | should be done no more | | | | | and/or mask | 22% CNS | | | difference 4 | than a year after | | | | | Minor change: | | | | cmH ₂ O | treatment initiation | | | | | inspiratory | | | | | | | | | | time, rise time, | | | | | | | | | | trigger or cycle | | | | | | | | | | setting | | | | | | Abbreviations: m: months, yrs: years, OSA: obstructive sleep apnea, BPAP: bilevel positive airway pressure, NIV: noninvasive ventilation, IV: invasive ventilation, NMD: neuromuscular disease, PSG: polysomnography, PG: respiratory polygraphy, AHI: apnea-hypopnea index, , CNS: central nervous system. ## References 1. Marcus CL, Ward SL, Mallory GB, *et al.* Use of nasal continuous positive airway pressure as treatment of childhood obstructive sleep apnea. *J Pediatr* 1995; 127: 88-94. - 2. McNamara F, Sullivan CE. Obstructive sleep apnea in infants and its management with nasal continuous positive airway pressure. *Chest* 1999; 116: 10-16. - 3. Massa F, Gonsalez S, Laverty A, et al. The use of nasal continuous positive airway pressure to treat obstructive sleep apnoea. Arch Dis Child 2002; 87: 438-443. - 4. Marcus CL, Rosen G, Ward SLD, et al. Adherence to and effectiveness of positive airway pressure therapy in children with obstructive sleep apnea. *Pediatrics* 2006; 117: e442-e451. - 5. Tan E, Nixon GM, Edwards EA. Sleep studies frequently lead to changes in respiratory support in children. *J Paediatr Child Health* 2007; 43: 560-563. - 6. Marcus CL, Radcliffe J, Konstantinopoulou S, et al. Effects of positive airway pressure therapy on neurobehavioral outcomes in children with obstructive sleep apnea. Am J Respir Crit Care Med 2012; 185: 998-1003. - 7. Khirani S, Ramirez A, Aloui S, *et al.* Continuous positive airway pressure titration in infants with severe upper airway obstruction or bronchopulmonary dysplasia. *Crit Care* 2013; 17: R167. - 8. Widger JA, Davey MJ, Nixon GM. Sleep studies in children on long-term non-invasive respiratory support. Sleep Breath 2014; 18: 885-889. - 9. Chatwin M, Tan HL, Bush A, et al. Long term non-invasive ventilation in children: impact on survival and transition to adult care. PLoS One 2015; 10: e0125839. - 10. Amaddeo A, Caldarelli V, Fernandez-Bolanos M, *et al.* Polygraphic respiratory events during sleep in children treated with home continuous positive airway pressure: description and clinical consequences. *Sleep Med* 2015; 16: 107-112. - 11. Mihai R, Vandeleur M, Pecoraro S, et al. Autotitrating CPAP as a tool for CPAP initiation for children. J Clin Sleep Med 2017; 13: 713-719. - 12. Al-Saleh S, Sayal P, Stephens D, *et al.* Factors associated with changes in invasive and noninvasive positive airway pressure therapy settings during pediatric polysomnograms. *J Clin Sleep Med* 2017; 13: 183-188.