Author	Country	Journal	Type of study	Disorders	Ages	NIV	Comments
Birnkrant et	USA	Pediatr	Retrospective	4 SMA I	2, 4, 7, and	NIV for 1, 3, 5, and 5	All died before 1
al. [1]		Neurology	study		7 m	m	yr
Bach et al. [2]	USA	Chest	Retrospective study	11 SMA I	2 - 11 m	11 treated with NIV after ARF, 8 continued NIV during 15 to 59 m	
Bach et al. [3]	USA	Pediatr Pulmonol	Retrospective study	56 SMA I	Respiratory failure before 2 yrs	33 treated with NIV compared to 16 treated with tracheotomy	31/33 survived to 42 ± 26 m, fewer hospitalisations > 5 yrs as compared to tracheotomy
Bach et al. [4]	USA	Am J Phys Med Rehab	2 cases	2 SMA I	7 m, 3 yrs	2 "high span" NIV (NIV settings not specified)	No pectus excavatum, survival until 7 and 3 yrs with NIV 24h/24
Bach et al. [5]	USA	Am J Phys Med Rehab	Retrospective study	106 SMA I	?	Untreated died at 9.6 \pm 4 m, 22 with tracheotomy survived at 70.5 \pm 43.3 m, 47 treated with NIV, 29/47 were 65.2 \pm 45.8 m, 8 died	Same survival with NIV as compared to tracheotomy but fewer hospitalisations with NIV
Lemoine et al [6]	USA	Pediatr Crit Care Med	Retrospective study	49 infants with SMA I	1 - 7 m	All treated with NIV	Longer survival in the proactive as

Online Table S2.2: Patients (pathologies) who may benefit from noninvasive ventilation (NIV).

							compared to the supportive group
Chatwin et al. [7]	UK	Arch Dis Childh	Retrospective study	13 SMA I	4-24 m	All treated with NIV + MI-E, 5 died, duration of NIV not specified	NIV + MI-E associated with a decrease in chest deformity
Ottonello et al. [8]	Italy	Am J Phys Med Rehab	Retrospective study	16 infants with SMA I	< 3 yrs	All treated with NIV	NIV reduces ARF
Gregoretti et al. [9]	Italy	Pediatrics	Retrospective study 1999- 2010	194 children with SMA I		121 (62%) no respiratory support, 42 (22%) IV, 31 (16%) NIV The choice of NIV increased from 8% in 1999-2004 to 23% in 2005-2010	Survival with NIV was 68% at 2 yrs and 45% at 4 yrs (95% and 89% with IV) Nearly all non treated patients died < 2 yrs of age
Pane et al. [10]	Italy	Neurology	Retrospective study	122 children with SMA I	3 - 266 m	Survival only possible with NIV > 16h/24 or tracheotomy + nutritional support after the age of 2 yrs	
Ioos et al. [11]	France	Chest	Retrospective cohort	33 SMA I, 35 SMA I-II 100 SMA II 12 SMA II	? (no access)	NIV for 43% SMA I- II 38% SMA II	
Mellies et al. [12]	Germany	Neuromuscul Disord	Prospective study	6 infants SMA I + 1 SMA II (+ 6 SMA controls without NIV)	6 -11 yrs	7 treated with NIV	6 – 12 m: improvement in sleep disordered breathing symptoms, sleep

							quality + architecture
Vasconcelos et al. [13]	Portugal	Revista Port Pneumol	Retrospective study	7 SMA I, 11 type II, 4 type III	6 m -26 yrs	17/22 treated with NIV	NIV associated with a decrease in thoracic deformity and ARF
Han et al. [14]	Korea	PlosOne	Retrospective study in one center (2000- 2013)	Home mechanical ventilation in 57 children with child- onset NMD: 58% SMA, 51% SMA I		NIV in only 9/57 children	Decrease of hospitalisations after start of home mechanical ventilation but most children (48/57) were on IV
Kapur et al. [15]	Australia	Pediatr Pulmonol	Cross- sectional study	3 SMA type I, 15 SMA type II and 7 SMA type III	0 - 18 yrs	10 (40%) required NIV: 5 for sleep disordered breathing, 5 for lower respiratory tract infection in the pediatric intensive care unit	
Markstrom et al. [16]	Sweden	Acta Pediatr	Retrospective study	18 infants treated with NIV: 7 SMA intermediate, 3 CCHS, 2 Down syndrome, 2 NMD, 1 diaphragmatic paralysis, 1	1 - 12 m	All treated with NIV	NIV for hypoventilation in 12 and cough/recurrent infections in 6 SMA Duration of NIV 1 - 84 m NIV was discontinued in 6

				myelomening cele, 1 Leigh's sd			infants
Ishikawa et al. [17]	Japan	Neuromuscul Disord	Retrospective study	3 cohorts of Duchenne patients: untreated, tracheotomy, NIV		88 treated with NIV	Longer survival with NIV (mean 39.6 yrs)
Mellies et al. [18]	Germany	Eur Respir J	Retrospective study	5 Duchenne 9 muscular dystrophy 12 neuropathy 4 other NMD	6 - 19 yrs	All treated with NIV	NIV improves daytime and nocturnal gas exchange and sleep quality Re-appearance of sleep disordered breathing with NIV withdrawal
Mellies et al. [19]	Germany	Neurology	Retrospective study	7 juvenile Pompe disease	3 - 27 yrs	2/7 treated with NIV	NIV improves nocturnal and daytime gas exchange
Nabatame et al. [20]	Japan	Brain & Develop	Retrospective study	4 children juvenile Pompe disease	9 - 15 yrs	3 / 4 treated with NIV	No deaths and resumption sleep disordered breathing symptoms
Suresh et al. [21]	Australia	J Pediatr Child Health	Retrospective study	34 Duchenne	1 - 15 yrs	11 treated with NIV because of hypoventilation	

Khan et al. [22]	UK	Arch Dis Childh	Retrospective study	8 children: 4 congenital myopathy 2 congenital muscular dystrophy 2 rigid spine	6 - 13 years	All treated with NIV	Decrease in sleep disordered breathing symptoms, decrease wake time, better SpO ₂
Katz et al. [23]	Canada	Arch Dis Childh	Prospective study	49 children with progressive NMD	6 - 17 yrs	7 had nocturnal hypoventilation 6 were treated with NIV	After one yr of NIV: greater decrease in general percept- ion of health status on the Child Health Questionnaire (CHQ-PF50)
Kherani et al. [24]	Canada	Pediatr Pulmonol	Retrospective study	51 infants with NMD	< 1 yr	 25/51 treated with NIV 56% NMD 7 /25 weaned from NIV 4 children NIV for palliative care 	
Simonds et al. [25]	UK	Eur Respir J	Retrospective study	40 children with NMD or skeletal disease	9 m-16 yrs	38/40 tolerated NIV	Improvement in nighttime and daytime blood gases
Wallis et al. [26]	UK	Arch Dis Childh	Cross sectional survey	933 children on home ventilation	< 17 yrs	704 treated with NIV, 25 CCHS, 88 Duchenne, 10 SMA, 90 other NMD, 9	

			(questionnaire)			cyphoscoliosis, 58 Prader Willi syndrome/obesity	
Sato et al. [27]	Japan	Brain Development	Retrospective survey	48 patients with Fukuyama congenital muscular dystrophy	3.6-31.9 yrs	14 treated with NIV (mean age at NIV start 12 yrs)	
Nadeau et al. [28]	UK	Neurology	Retrospective study	13 patients with Ullrich congenital muscular dystrophy	> 15 yrs at last evaluation	9/13 started NIV at a mean age of 14.3 yrs	
Yonekawa et al. [29]	Japan	J Neurol, Neurosurg & Psychiatry	Cross sectional survey (questionnaire)	33 children + adults with Ullrich congenital muscular dystrophy		NIV started in 13 children, mean age 11.2 yrs	
Quijano- Roy et al. [30]	France	Neuromuscul Disord	Retrospective study	7 children with COL6 myopathy	6.7 ± 8.7 yrs	NIV in 2/7 patients	
Muntoni et al. [31]	UK	Eur J Pediatr Neurol	Retrospective study	5 patients with new form of muscular dystrophy with	< 11 yrs	3 on NIV (2 died)	

				secondary merosine deficiency			
Scoto et al. [32]	UK	Neurology	Retrospective survey	41 children and adults with SEPN1- related myopathy	1-60 yrs	Mean age of NIV start 13.9 yrs 1 child full-time NIV at 1 yr	
Schara et al. [33]	Germany	Eur J Pediatr Neurology	Retrospective survey	11 children with SEPN1- related myopathy	5-21 yrs	NIV in 4 children at a mean age of 11 yrs	
Caggiano et al. [34]	France	Neuromuscul Disord	Retrospective study	6 children with SEPN1- related myopathy (+1 adult)	1-18 yrs	5 treated with NIV (diaphragmatic dysfunction)	
Caggiano at al. [35]	France	Eur J Pediatr Neurology	Retrospective study	5 infants with congenital myasthenic syndrome	3, 6 and 24 mo	3/5 infants treated with NIV	
Payo et al [36]	Spain	Eur Spine J	Retrospective study	24 children severe scoliosis (17 NMD, 7 other)	9-19 yrs	8 children long term NIV (pre-operative)	
Kirk et al.	Canada	Pediatr	Retrospective	73 children with	0-18 yrs	25 central sleep apnea: 7 required NIV	

[37]		Pulmonol	study	myelomening ocele		30 with OSA: CPAP successful in 18/21	
Nashed et al. [38]	Canada	J Inherited Metabolic Dis	Retrospective study	11 children with mucopolysacc haridosis	08-17.8 yrs	4 treated with NIV	
Tibbals et al. [39]	Australia	Pediatr Pulmonol	Retrospective study	4 children with CCHS	6-16 yrs	4 treated with NIV	
Vanderlaan et al. [40]	USA	Pediatr Pulmonol	Cross- sectional survey (questionnaire)	196 patients with CCHS	0.4-38 yrs	55 treated with NIV, 5 with negative pressure ventilation, 17 with phrenic nerve pacing	
Hasegawa et al. [41]	Japan	Pediatr International	Cross sectional survey (questionnaire)	37 CCHS	4 m-34 yrs	14 treated with NIV + 1 with phrenic nerve pacing	
Diep et al. [42]	USA	Respiration	Retrospective study	18 CCHS	19.5 ± 10 yrs	3 prior NIV, 13 transitioned to phrenic nerve pacing with success, 1 failure due to upper airway obstruction	
Facchina et al. [43]	France	Am J Clin Gen Part A	Retrospective study	16 children with mucopolysacc haridosis type IVA	10.5 ± 4.2 yrs	2/16 treated with NIV 4./16 treated with CPAP (all > 11 yrs)	

				(Morquio)			
Tabone et al. [44]	France	Am J Med Gen Part A	Retrospective study	7 patients with mucolipidosis (5 type II, 1 II-III, 1 III)	0.3-17.4 yrs	5 treated with CPAP, 1 with NIV due to hypoventilation	
Dudoignon et al. [45]	France	Am J Med Gen Part A	Retrospective study	57 children with Down syndrome	6.2 ± 5.9 yrs	4/57 treated with NIV 15/57 treated with CPAP	
Clift et al. [46]	UK	J Sleep Research	Retrospective study	17 children with Prader Willi syndrome	?	7/17 treated with CPAP or BPAP (most obese, 2 did not tolerate)	
Pavone et al. [47]	Italy and France	Pediatr Pulmonol	Retrospective study	70 children and 18 adults with Prader Willi syndrome		16/88 treated with CPAP or BPAP (> older patients)	
Repucci et al. [48]	Canada	Orphanet J Rare Dis	Retrospective study	6 children with ROHHAD syndrome	4.7 - 10 yrs	1 died 5/6 treated with BPAP	
Padman et al. [49]	USA	Clin Pediatr	Retrospective study on effect of BPAP on sleep parameters	10 children with OSA	3 - 18 yrs	All treated with BPAP: 3 craniofacial malformation, 1 NMD, 6 obesity 8 continued BPAP	

Pellen et al. [50]	Australia	Int J Pediatr Otorhinolaryngol	Retrospective study	16 infants with congenital tracheal stenosis	0 – 9 m	All treated with NIV pre- post operative, age at start $1 - 6$ m, duration $1 - 24$ m, 2 (20%) discharged home on NIV	
Archangelidi et al. [51]	UK	J Cystic Fibrosis	Data from UK cystic fibrosis registry 2007- 2015	1107/11079 (10%) patients with cystic fibrosis had at least on record with NIV	Children + adults	For children (only): Median age at NIV initiation 13.5 yrs	NIV associated with increased risk of death/transplant 16% of children with NIV died during follow up

Abbreviations: m: months, yrs: years, SMA: spinal muscular atrophy, ARF: acute respiratory failure, NIV: noninvasive ventilation, MI-E: mechanical insufflation-exsufflation, IV: invasive ventilation, NMD: neuromuscular disease, CCHS: congenital central hypoventilation syndrome, BPAP: bilevel positive airway pressure, ROHHAD syndrome: rapid-onset obesity with hypoventilation, hypothalamic dysfunction, and autonomic dysregulation (ROHHAD) syndrome, OSA: obstructive sleep apnea.

References

1. Birnkrant DJ, Pope JF, Martin JE, *et al.* Treatment of type I spinal muscular atrophy with noninvasive ventilation and gastrostomy feeding. *Pediatr Neurol* 1998; 18: 407-410.

2. Bach JR, Niranjan V, Weaver B. Spinal muscular atrophy type 1: A noninvasive respiratory management approach. *Chest* 2000; 117: 1100-1105.

3. Bach JR, Baird JS, Plosky D, et al. Spinal muscular atrophy type 1: management and outcomes. Pediatr Pulmonol 2002; 34: 16-22.

4. Bach JR, Bianchi C. Prevention of pectus excavatum for children with spinal muscular atrophy type 1. Am J Phys Med Rehabil 2003; 82: 815-819.

5. Bach JR, Saltstein K, Sinquee D, et al. Long-term survival in Werdnig-Hoffmann disease. Am J Phys Med Rehabil 2007; 86: 339-345.

6. Lemoine TJ, Swoboda KJ, Bratton SL, *et al.* Spinal muscular atrophy type 1: are proactive respiratory interventions associated with longer survival? *Pediatr Crit Care Med* 2012; 13: e161-165.

7. Chatwin M, Bush A, Simonds AK. Outcome of goal-directed non-invasive ventilation and mechanical insufflation/exsufflation in spinal muscular atrophy type I. *Arch Dis Child* 2011; 96: 426-432.

8. Ottonello G, Mastella C, Franceschi A, *et al.* Spinal muscular atrophy type 1: avoidance of hospitalization by respiratory muscle support. *Am J Phys Med Rehabil* 2011; 90: 895-900.

9. Gregoretti C, Ottonello G, Chiarini Testa MB, et al. Survival of patients with spinal muscular atrophy type 1. Pediatrics 2013; 131: e1509-e1514.

10. Pane M, Palermo C, Messina S, *et al.* An observational study of functional abilities in infants, children, and adults with type 1 SMA. *Neurology* 2018; 91: e696-e703.

11. Ioos C, Leclair-Richard D, Mrad S, *et al.* Respiratory capacity course in patients with infantile spinal muscular atrophy. *Chest* 2004; 126: 831-837.

12. Mellies U, Dohna-Schwake C, Stehling F, *et al.* Sleep disordered breathing in spinal muscular atrophy. *Neuromuscul Disord* 2004; 14: 797-803.

13. Vasconcelos M, Fineza I, Felix M, *et al.* Spinal muscular atrophy--noninvasive ventilatory support in pediatrics. *Rev Port Pneumol* 2005; 11: 443-455.

14. Han YJ, Park JD, Lee B, *et al.* Home mechanical ventilation in childhood-onset hereditary neuromuscular diseases: 13 years' experience at a single center in Korea. *PLoS One* 2015; 30: e0122346.

15. Kapur N, Deegan S, Parakh A, *et al.* Relationship between respiratory function and need for NIV in childhood SMA. *Pediatr Pulmonol* 2019; 54: 1774-1780.

16. Markstrom A, Sundell K, Stenberg N, *et al.* Long-term non-invasive positive airway pressure ventilation in infants. *Acta Paediatr* 2008; 97: 1658-1662.

17. Ishikawa Y, Miura T, Ishikawa Y, et al. Duchenne muscular dystrophy: survival by cardio-respiratory interventions. *Neuromuscul Disord* 2011; 21: 47-51.

18. Mellies U, Ragette R, Dohna Schwake C, *et al.* Long-term noninvasive ventilation in children and adolescents with neuromuscular disorders. *Eur Respir J* 2003; 22: 631-636.

19. Mellies U, Ragette R, Schwake C, *et al.* Sleep-disordered breathing and respiratory failure in acid maltase deficiency. *Neurology* 2001; 57: 1290-1295.

20. Nabatame S, Taniike M, Sakai N, et al. Sleep disordered breathing in childhood-onset acid maltase deficiency. Brain Dev 2009; 31: 234-239.

21. Suresh S, Wales P, Dakin C, *et al.* Sleep-related breathing disorder in Duchenne muscular dystrophy: disease spectrum in the paediatric population. *J Paediatr Child Health* 2005; 41: 500-503.

22. Khan Y, Heckmatt JZ, Dubowitz V. Sleep studies and supportive ventilatory treatment in patients with congenital muscle disorders. *Arch Dis Child* 1996; 74: 195-200.

23. Katz SL, Gaboury I, Keilty K, *et al.* Nocturnal hypoventilation: predictors and outcomes in childhood progressive neuromuscular disease. *Arch Dis Child* 2010; 95: 998-1003.

24. Kherani T, Sayal A, Al-Saleh S, *et al.* A comparison of invasive and noninvasive ventilation in children less than 1 year of age: A long-term follow-up study. *Pediatr Pulmonol* 2016; 51: 189-195.

25. Simonds AK, Ward S, Heather S, *et al.* Outcome of paediatric domiciliary mask ventilation in neuromuscular and skeletal disease. *Eur Respir* J 2000; 16: 476-481.

26. Wallis C, Paton JY, Beaton S, et al. Children on long-term ventilatory support: 10 years of progress. Arch Dis Childh 2011; 96: 998-1002.

27. Sato T, Murakami T, Ishiguro K, *et al.* Respiratory management of patients with Fukuyama congenital muscular dystrophy. *Brain Dev* 2016; 38: 324-330.

28. Nadeau A, Kinali M, Main M, et al. Natural history of Ullrich congenital muscular dystrophy. Neurology 2009; 73: 25-31.

29. Yonekawa T, Komaki H, Okada M, et al. Rapidly progressive scoliosis and respiratory deterioration in Ullrich congenital muscular dystrophy. J Neurol Neurosurg Psychiatry 2013; 84: 982-988.

30. Quijano-Roy S, Khirani S, Colella M, et al. Diaphragmatic dysfunction in Collagen VI myopathies. Neuromuscul Disord 2014; 24: 125-133.

31. Muntoni F, Taylor J, Sewry CA, *et al.* An early onset muscular dystrophy with diaphragmatic involvement, early respiratory failure and secondary alpha2 laminin deficiency unlinked to the LAMA2 locus on 6q22. *Eur J Paediatr Neurol* 1998; 2: 19-26.

32. Scoto M, Cirak S, Mein R, et al. SEPN1-related myopathies: clinical course in a large cohort of patients. Neurology 2011; 76: 2073-2078.

33. Schara U, Kress W, Bonnemann CG, *et al.* The phenotype and long-term follow-up in 11 patients with juvenile selenoprotein N1-related myopathy. *Eur J Paediatr Neurol* 2008; 12: 224-230.

34. Caggiano S, Khirani S, Dabaj I, et al. Diaphragmatic dysfunction in SEPN1-related myopathy. Neuromuscul Disord 2017; 27: 747-755.

35. Caggiano S, Khirani S, Verrillo E, et al. Sleep in infants with congenital myasthenic syndromes. Eur J Paediatr Neurol 2017; 21: 842-851.

36. Payo J, Perez-Grueso FS, Fernandez-Baillo N, *et al.* Severe restrictive lung disease and vertebral surgery in a pediatric population. *Eur Spine J* 2009; 18: 1905-1910.

37. Kirk VG, Morielli A, Gozal D, *et al.* Treatment of sleep-disordered breathing in children with myelomeningocele. *Pediatr Pulmonol* 2000; 30: 445-452.

38. Nashed A, Al-Saleh S, Gibbons J, *et al.* Sleep-related breathing in children with mucopolysaccharidosis. *J Inherited Metabol Dis* 2009; 32: 544-550.

39. Tibballs J, Henning RD. Noninvasive ventilatory strategies in the management of a newborn infant and three children with congenital central hypoventilation syndrome. *Pediatr Pulmonol* 2003; 36: 544-548.

40. Vanderlaan M, Holbrook CR, Wang M, et al. Epidemiologic survey of 196 patients with congenital central hypoventilation syndrome. *Pediatr Pulmonol* 2004; 37: 217-229.

41. Hasegawa H, Kawasaki K, Inoue H, *et al.* Epidemiologic survey of patients with congenital central hypoventilation syndrome in Japan. *Pediatr Int* 2012; 54: 123-126.

42. Diep B, Wang A, Kun S, *et al.* Diaphragm pacing without tracheostomy in Congenital Central Hypoventilation Syndrome patients. *Respiration* 2015; 89: 534-538.

43. Facchina G, Amaddeo A, Baujat G, et al. A retrospective study on sleep-disordered breathing in Morquio-A syndrome. Am J Med Genet A 2018; 176: 2595-2603.

44. Tabone L, Caillaud C, Amaddeo A, et al. Sleep-disordered breathing in children with mucolipidosis. Am J Med Genet A 2019; 179: 1196-1204.

45. Dudoignon B, Amaddeo A, Frapin A, *et al.* Obstructive sleep apnea in Down syndrome: Benefits of surgery and noninvasive respiratory support. *Am J Med Genet A* 2017; 173: 2074-2080.

46. Clift S, Dahlitz M, Parkes JD. Sleep apnoea in the Prader-Willi syndrome. J Sleep Res 1994; 3: 121-126.

47. Pavone M, Caldarelli V, Khirani S, et al. Sleep disordered breathing in patients with Prader-Willi syndrome: A multicenter study. *Pediatr Pulmonol* 2015; 50: 1354-1359.

48. Reppucci D, Hamilton J, Yeh EA, *et al.* ROHHAD syndrome and evolution of sleep disordered breathing. *Orphanet J Rare Dis* 2016; 11: 106.

49. Padman R, Hyde C, Foster P, *et al.* The pediatric use of bilevel positive airway pressure therapy for obstructive sleep apnea syndrome: a retrospective review with analysis of respiratory parameters. *Clin Pediatr* 2002; 41: 163-169.

50. Pellen G, Pandit C, Castro C, et al. Use of non-invasive ventilation in children with congenital tracheal stenosis. Int J Pediatr Otorhinolaryngol 2019; 127: 109672.

51. Archangelidi O, Carr SB, Simmonds NJ, *et al.* Non-invasive ventilation and clinical outcomes in cystic fibrosis: Findings from the UK CF registry. *J Cyst Fibros* 2019; 18: 665-670.