Online Table S7: Which options when CPAP or NIV fails? | Author | Count | Journal | Type of study | Number of patients | Ages | Options | Efficacy | |--------------------------------|------------|-----------------------|--------------------------------|---|---|---|--| | Koontz
et al. [1] | USA | Sleep | Retrospe
ctive | 20 children with
syndromic OSA
not compliant to
BPAP | 1-15 yrs | Behavioral analysis
and then given the
options of
receiving
recommendations
or therapy | Improvement of compliance (= hours/night usage) in 75% of patients who received behavioral intervention (recommendation or behavioral therapy); benefit extended beyond the therapy period though follow up period not specified. Not clear what the referral criteria was in terms of non-compliance though at baseline, the usage ranged 0.77-3.3 hours/night - the significance of the duration of use may differ across age groups. | | Slifer et al. [2] | USA | Behav
Sleep
Med | Descripti
ve case
series | 4 children prescribed BPAP for complex OSA or hypoventilation but all demonstrated refusal behavior | 3-5 yrs | Behavioral therapy | Good use of the device (sleep age-
appropriate time) with sustained benefit | | Mendoz
a-Ruiz et
al. [3] | Franc
e | Sleep
Med | Prospecti
ve study | 6 CPAP non-
adherent
(defined as <3
hours/night)
children and 9
adherent
children | 2.2-14.1
yrs (non-
adherent
group);
0.9-8.6
yrs
(adherent
group) | Use of a table
based on token
economy,
adherence
evaluated after 1
mo | Mean adherence in non-adherent children improved from $1\pm0.33h/night$ to $4h31\pm1h12/night$ at 1 m, but still significantly lower than adherent children | | Delord | Franc | Chest | Retrospe | 9 children, in | 2-15 yrs | Hypnosis | Acceptance of the NIV in all patients after 1 | | et al. [4] | e | | ctive
study | whom initiation
of NIV was
expected to be
difficult or who
refused
CPAP/NIV by
standard
procedure (n=2) | | Distraction in the 2-yrs old, (In)direct hypnotic suggestions in the other (n=8) older children | session, median of 3 sessions for a > 6h use/night Mean compliance at 6 m: 7.5h/night | |--------------------------------|-------------|-----------------------------|--|--|-------------------------|---|--| | Cheng et al. [5] | Australia | ANZ J
of
Surgery | Retrospe
ctive
study
2003-
2008 | 20 infants with
Pierre Robin
Sequence | neonates | CPAP failed (failure to treat respiratory deterioration/distre ss due to obstruction) in 6 infants: successful management with MDO and glossopexy | MDO with glossopexy were effective for management of multilevel airway obstruction in infants who would otherwise be considered for tracheostomy following failed CPAP | | Abel et al. [6] | UK | Arch
Dis
Child | Retrospe
ctive
cohort
2000-
2010 | 104 patients
with Pierre
Robin Sequence | 64/104 < 4 weeks of age | Conservative management in 27 patients, NPT in 63 patients, tracheotomy in 14 patients | PSG results improved in all patients with NPT No CPAP trial in any patient. | | Kam et
al. [7] | Canad
a | Canadi
an
Respir
J | Retrospe
ctive
cohort | 139 patients
with Pierre
Robin Sequence | 9 – 14 m | 20 treated with
CPAP, 28 NPT, 45
TLA, 5 MDO, 19
tracheotomy | No details on the protocol but 13/60 surgical patients had another intervention prior to surgery TLA was performed earlier than MDO and tracheotomy | | Muller-
Hagedor
n et al. | Germ
any | Head
Face
Med | Retrospe
ctive
study at | 68 children with
Pierre Robin
Sequence | 0-12 yrs | Palatal plate | 5 patients did not tolerate PP, 2 laryngeal problems, 1 immediate tracheotomy Of the 56 patients who tolerated TPP, 1 | | [8] | | | 1 center (2003-2009) | treated with PP | | | needed CPAP and 4 HFNC (with O ₂) | |---------------------------|-------------|----------------------------------|---|---|-----------------|---|---| | Amadde
o et al.
[9] | Franc
e | Plastic
and
Rec
Surgery | Retrospe
ctive
study 1
center
(2014-
2015) | 44 children with
Pierre Robin
Sequence, 9
received CPAP
in NICU | 0-2 m | Tracheotomy in 4 out of 9 patients with severe upper airway obstruction and dependent on ventilation in the NICU Failure in CPAP = failure to wean non-invasive CPAP to usage during sleep time only in 1-2 weeks | No objective evaluation of tracheotomy efficacy (not clear if (1) polygraphy post tracheostomy insertion was performed to assess residual obstructive SDB (2) if any patient needed pressure support with tracheostomy in situ (3) no follow up on tracheotomy patients | | Overber gh et al. [10] | Belgi
um | Sleep
Med | Case
series | 9 children with
complex OSA
and CPAP
intolerance | 7 m - 15
yrs | Optiflow nasal cannula adapted to a life support ventilator | Median AHI reduction from 37 to 10/h. Drawback of the set up: cannot be used to deliver BPAP because of insufficient trigger | | Joseph et al. [11] | Israel | J Clin
Sleep
Med | Case
series | 5 children with OSA | 2m-15
yrs | High Flow Nasal
Cannula | One child used HFNC at home for 23 mo | | Amadde o et al. [12] | Franc
e | Sleep
Med | Prospecti
ve study | 8 CPAP non-
compliant
children, 6
Down
syndrome, 1
Pierre Robin
Sequence, 1
Pfeiffer | 0.1 17.3
yrs | High Flow Nasal
Cannula | Success in 5; mean compliance 7h10 ± 0.36 min/night Refusal (failure) in the 3 oldest patients with Down syndrome:1 orthodontic treatment, 1 spontaneous improvement | | Koncick et al. [13] | USA | Pediatr
Pulmon
ol | Retrospe
ctive
cohort on
data
from the
Pediatric
Health
Informati
on
System
(2007-
2015) | (one of the few studies with a clear definition of failed CPAP /non-adherence) 3802 children with chronic respiratory failure (OSA excluded) discharged on NIV | < 21 yrs | Tracheotomy: 337 (8.9%) were transitioned to tracheotomy 58% had a neurologic disorders and 39% a NMD | Factors associated with a tracheotomy: younger age, anoxia/encephalopathy, quadriplegia | |---------------------------|-----|--|---|---|----------------|---|---| | Diercks
et al.
[14] | USA | JAMA
Otolary
ngolog
y Head
Neck
Surgery | Case
series | 6 Down
syndrome
adolescents not
compliant to
CPAP after
upper airway
surgery | 12 - 18
yrs | Hypoglossal nerve stimulation | 56% to 85% reduction in AHI and good use | | Caloway
et al.
[15] | USA | Laryng oscope | Case
series | 20 Down
syndrome non
obese
adolescents not
compliant to
CPAP after
adenotonsillecto | 10 - 21
yrs | Hypoglossal nerve stimulation | Median reduction in AHI of 85%, good use | | | | **** * * * * * * * * * * * * * * * * * | | | |--|--|--|--|--| | | | HIIV | | | | | | 1113 | | | Abbreviations: m: months, yrs: years, CPAP: continuous positive airway pressure, BPAP: bilevel positive airway pressure, NIV: noninvasive ventilation, NMD: neuromuscular disease, OSA: obstructive sleep apnea, MDO: mandibular distraction osteogenesis, NPT: nasopharyngeal tube, TLA: tongue-lip adhesion, PP: palatal plate, HFNC: high flow nasal cannula, AHI: apnea-hypopnea index, O2: oxygen, NICU: neonatal intensive care unit, BMI: body mass index. ## References - 1. Koontz KL, Slifer KJ, Cataldo MD, *et al.* Improving pediatric compliance with positive airway pressure therapy: The impact of behavioral intervention. *Sleep* 2003; 26: 1010-1015. - 2. Slifer KJ, Kruglak D, Benore E, *et al.* Behavioral training for increasing preschool children's adherence with positive airway pressure: a preliminary study. *Behav Sleep Med* 2007; 5: 147-175. - 3. Mendoza-Ruiz A, Dylgjeri S, Bour F, *et al.* Evaluation of the efficacy of a dedicated table to improve CPAP adherence in children: a pilot study. *Sleep Med* 2019; 53: 60-64. - 4. Delord V, Khirani S, Ramirez A, *et al.* Medical hypnosis as a tool to acclimatize children to noninvasive positive pressure ventilation: a pilot study. *Chest* 2013; 144: 87-91. - 5. Cheng ATL, Corke M, Loughran-Fowlds A, *et al.* Distraction osteogenesis and glossopexy for Robin sequence with airway obstruction. *ANZ J Surg* 2011; 81: 320-325. - 6. Abel F, Bajaj Y, Wyatt M, et al. The successful use of the nasopharyngeal airway in Pierre Robin sequence: an 11-year experience. Arch Dis Child 2012; 97: 331-334. - 7. Kam K, McKay M, MacLean J, *et al.* Surgical versus nonsurgical interventions to relieve upper airway obstruction in children with Pierre Robin sequence. *Can Respir J* 2015; 22: 171-175. - 8. Muller-Hagedorn S, Buchenau W, Arand J, *et al.* Treatment of infants with syndromic Robin Sequence with modified palatal plates: a minimally invasive treatment option. *Head Face Med* 2017; 13: 4. - 9. Amaddeo A, Abadie V, Chalouhi C, *et al.* Continuous positive airway pressure for upper airway obstruction in infants with Pierre Robin Sequence. *Plast Reconstruct Surg* 2016; 137: 609-612. - 10. Overbergh C, Installe S, Boudewyns A, et al. The OptiflowTM interface for chronic CPAP use in children. Sleep Med 2018; 44: 1-3. - 11. Joseph L, Goldberg S, Shitrit M, *et al.* High-Flow Nasal Cannula Therapy for Obstructive Sleep Apnea in Children. *J Clin Sleep Med* 2015; 11: 1007-1010. - 12. Amaddeo A, Khirani S, Frapin A, *et al.* High-flow nasal cannula for children not compliant with continuous positive airway pressure. *Sleep Med* 2019; 63: 24-28. - 13. Koncicki ML, Zachariah P, Lucas AR, *et al.* A multi-institutional analysis of children on long-term non-invasive respiratory support and their outcomes. *Pediatr Pulmonol* 2018; 53: 498-504. - 14. Diercks GR, Wentland C, Keamy D, *et al.* Hypoglossal nerve stimulation in adolescents with Down syndrome and obstructive sleep apnea. *JAMA Otolaryngol Head Neck Surg* 2018; 144: 37-42. - 15. Caloway CL, Diercks GR, Keamy D, *et al.* Update on hypoglossal nerve stimulation in children with Down syndrome and obstructive sleep apnea. *Laryngoscope* 2020; 130: E263-E267.