Author	Country	Journal	Study design	Number of patients	Ages	Benefits
Bach et al.	USA	Pediatr	Retrospective	56 SMA I	RF before	33 treated with NIV vs 16 treated with tracheotomy
[1]		Pulmonol	study		2 yrs	31/33 survived to 42 ± 26 m, fewer hospitalisations > 5 yrs with NIV vs tracheotomy
Bach et al.	USA	Am J Phys	2 cases	2 SMA I	7 m, 3 yrs	No pectus excavatum, survival until 7 and 3 yrs with
[2]		Med Rehab				NIV 24h/24
Mellies et al.	Germany	Neuromuscul	Prospective	7 infants	6-11 yrs	After 6-12 m of NIV: improvement in SDB symptoms,
[3]		Disord	study	SMA I (6)		sleep quality and architecture vs no improvement in
				and SMA II		controls
				(1)(+6)		
				controls		
				without		
				NIV)		
Bach et al.	USA	Am J Phys	Retrospective	106 SMA I	?	Untreated died at 9.6 ± 4 m, 22 with tracheotomy
[4]		Med Rehab	study			survived at 70.5 \pm 43.3 m, 47 treated with NIV, 29/47
						reached 65.2 ± 45.8 m, 8 died
						Same survival with NIV and tracheotomy but fewer
						hospitalisations with NIV
Vasconcelos	Portugal	Revista Port	Retrospective	7 SMA I, 11	6 m – 26	17/22 treated with NIV
et al. [5]		Pneumol	study	SMA II, 4	yrs	NIV associated with a decrease in chest deformity and
				SMA III		AKF episodes

Online Table S5.4: Benefits of NIV (except decrease in AHI)

Chatwin et	UK	Arch Dis	Retrospective	13 SMA I	4 – 24 m	All treated with NIV + MI-E, 5 died, duration of NIV
al. [6]		Child	study			not specified
						NIV + MI-E associated with a decrease in chest
						deformity
Ottonello et	Italy	Am J Phys	Retrospective	16 infants	< 3 yrs	All treated with NIV
al. [7]		Med Rehab	study	with SMA I		NIV associated with a reduction in ARF episodes
Lemoine et	USA	Pediatr Crit	Retrospective	49 infants	1 – 7 m	All treated with NIV
al. [8]		Care Med	study	with SMA I		Longer survival in the pro-active (n=26, BPAP + MI-E)
						vs supportive group (n=23, suctioning $\pm O_2$)
Gregoretti et	Italy	Pediatrics	Retrospective	194 infants		31 (16%) treated with NIV
al. [9]			study 1999-	with SMA I		Nearly all non treated patients died < 2 yrs
			2010			Survival at 24 m: 95% for IV vs 68% with NIV
						Survival et 48 m: 89% for IV and 45% with NIV
						Longer survival with NIV as compared to no
						respiratory support
Verrillo et	Italy	Sleep Med	Prospective	9 children	2.2 - 8.1	PSG during before and with NIV (after a mean of 2 yrs
al. [10]			study	with SMA II	yrs	of NIV)
				+ 15 healthy		NIV associated with a decrease in awakenings +
				controls		increase in >% of N2 sleep satge
						NIV associated with a decrease in cyclic-alternating
						pattern A1 duration and an increase in A3 index
Ishikawa et	Japan	Neuromuscul	Retrospective	3 cohorts of		88 treated with NIV
al. [11]	_	Disord	study	Duchenne:		Longer survival with NIV (mean 39.6 yrs)
				untreated,		
				tracheotomy,		
				NIV		

Eagle et al.	UK	Neuromuscul	Retrospective	197 patients		Improvement in survival
[12]		Disord	study 1	with		1960s: mean age of death $= 14.4$ yrs
			center 1967-	Duchenne		In 1990 with NIV: 25.3 yrs
			2002			
Lee et al.	Korea	Korean J	Retrospective	54 patients	NIV	Improved cardiac function in the NIV patients
[13]		Pediatr	study at one	with	treated:	As compared to the no-NIV group, the NIV group had
			center 2010-	Duchenne,	mean 16.3	(better):
			2016	24 treated	± 1.9 yrs	Lower early ventricular filling velocity (VFV)/late
				with NIV		VFV
						Higher tissue Doppler systolic S' (i.e. better LV
						systolic function)
LoMauro et	Italy	Eur Respir J	7 yr	115 patients	6-24 yrs	28/115 treated with NIV
al. [14]			retrospective	with		NIV associated with a transient (2 yrs) increase in %
			study	Duchenne		vital capacity and contribution of the abdomen to the
						vital volume (VAB%VT) before coming comparable to
						the no-NIV pts
Mellies et al.	Germany	Neurology	Retrospective	7 patients	3 – 27 yrs	2/7 treated with NIV
[15]			study	with juvenile		NIV improves nocturnal and daytime gas exchange
				Pompe		
				disease		
Nabatame et	Japan	Brain Dev	Retrospective	4 juvenile	9–15 yrs	3/4 treated with NIV
al. [16]			study	Pompe		With NIV: no ARF and resumption of SDB symptoms
				disease		
171 (1	I IIZ			4	c 12	
Khan et al.	UK	Arch Dis	Retrospective	4 congenital	6 - 13 yrs	All treated with NIV
		Child	study	myopathy, 2		NIV improves SDB symptoms, decreases WASO,
				congenital		increases SpO ₂

Simonds et al. [18]	UK	Eur Respir J	Retrospective study	muscular dystrophy, 2 rigid spine 40 children with NMD or skeletal disease	9 mo 16 yrs	38/40 tolerated NIV NIV associated with an improvement in nocturnal PtcCO ₂ and SpO ₂ and daytime blood gases
Mellies et al. [19]	Germany	Eur Respir J	Prospective study	30 children with progressive NMD	12.3 ± 4.1 yrs	 NIV normalized daytime and nocturnal gas exchange, improved RDI + arousal index, decreased nocturnal heart rate, decreased light sleep, and increased slow wave sleep. 10 patients were also studied with and after 3 nights without NIV: NIV withdrawal was associated with a prompt deterioration of SDB and gas exchange back to baseline but resolved immediately after resumption of NIV
Dohna- Schwake et al. [20]	Germany	Pediatr Pulmonol	Retrospective study	12 children with NMD treated with NIV > 5 yrs		As compared with the yr before NIV, after NIV: decrease in the number of GP consultations for RTI; number of antibiotic treatments and number of hospital admissions due to RTI
Katz et al. [21]	Canada	Arch Dis Child	Prospective cohort study	46 children with progressive NMD	6 - 17 yrs	7/46 had nocturnal hypoventilation (NH: increase in PetCO2 > 10 mmHg ± decrease in SpO2 > 5% for > 10 min): 6 treated with NIV After one year of NIV (5 patients): greater decrease in the general perception of health status of the Child Health Questionnaire (CHQ-PF50) as compared to the

						children without NH
Zaman- Haque et al. [22]	Canada	Child Neurol Open	Retrospective study	7 children with NMD and 7 with CNS disease		CNS: Trisomy 18, Prader Willi syndrome, Leigh sd, cerebral palsy No change in the number of pneumonias 2 yrs before and after the start of NIV
Padman et al. [23]	USA	Pediatr Pulmonol	Retrospective study	15 children with ARF treated with BPAP: 4 CF and 11 NMD	4 - 21 yrs	1 BPAP failure (1 patient with NMD) In other patients: duration of BPAP 1 day to 21 m Decrease in the number of hospitalisation days in the yr after BPAP initiation vs the yr before: 6 vs 36 days/yr
Fauroux et al. [24]	France	Pediatr Crit Care	Retrospective study	15 children who were decannulated and had a relapse OSA	2 – 12 yrs	Pathologies: upper airway obstruction (n=13), congenital diaphragmatic hypoplasia (n=1) or lung disease (n=1) In 9 patients, NIV was started after recurrence of obstructive symptoms after a delay of 1 to 48 m following a successful immediate decannulation. NIV was anticipated in 6 patients who failed repeated decannulation trials because of poor clinical tolerance of tracheal tube removal or tube closure during sleep NIV avoids re-cannulation in case of relapse of OSA

Abbreviations: m: months, yrs: years, SMA: spinal muscular atrophy, RF: respiratory failure, ARF: acute respiratory failure, NIV: noninvasive ventilation, MI-E: mechanical insufflation-exsufflation, IV: invasive ventilation, NMD: neuromuscular disease, CNS: central nervous system, CF: cystic fibrosis, BPAP: bilevel positive airway pressure,O₂: oxygen, OSA: obstructive sleep apnea, GP: general practitioner, PSG: polysomnography, WASO: wake after sleep onset, SpO₂ :pulse oximetry, RDI: respiratory disturbance index, RTI respiratory tract infection.

References

1. Bach JR, Baird JS, Plosky D, et al. Spinal muscular atrophy type 1: management and outcomes. Pediatr Pulmonol 2002; 34: 16-22.

2. Bach JR, Bianchi C. Prevention of pectus excavatum for children with spinal muscular atrophy type 1. Am J Phys Med Rehabil 2003; 82: 815-819.

3. Mellies U, Dohna-Schwake C, Stehling F, et al. Sleep disordered breathing in spinal muscular atrophy. *Neuromuscul Disord* 2004; 14: 797-803.

4. Bach JR, Saltstein K, Sinquee D, et al. Long-term survival in Werdnig-Hoffmann disease. Am J Phys Med Rehabil 2007; 86: 339-345.

5. Vasconcelos M, Fineza I, Felix M, *et al.* Spinal muscular atrophy--noninvasive ventilatory support in pediatrics. *Rev Port Pneumol* 2005; 11: 443-455.

6. Chatwin M, Bush A, Simonds AK. Outcome of goal-directed non-invasive ventilation and mechanical insufflation/exsufflation in spinal muscular atrophy type I. *Arch Dis Child* 2011; 96: 426-432.

7. Ottonello G, Mastella C, Franceschi A, *et al.* Spinal muscular atrophy type 1: avoidance of hospitalization by respiratory muscle support. *Am J Phys Med Rehabil* 2011; 90: 895-900.

8. Lemoine TJ, Swoboda KJ, Bratton SL, *et al.* Spinal muscular atrophy type 1: are proactive respiratory interventions associated with longer survival? *Pediatr Crit Care Med* 2012; 13: e161-165.

9. Gregoretti C, Ottonello G, Chiarini Testa MB, et al. Survival of patients with spinal muscular atrophy type 1. Pediatrics 2013; 131: e1509-e1514.

10. Verrillo E, Pavone M, Bruni O, et al. Effects of long-term non-invasive ventilation on sleep structure in children with spinal muscular atrophy type 2. Sleep Med 2019; 58: 82-87.

11. Ishikawa Y, Miura T, Ishikawa Y, et al. Duchenne muscular dystrophy: survival by cardio-respiratory interventions. Neuromuscul Disord 2011; 21: 47-51.

12. Eagle M, Baudouin SV, Chandler C, *et al.* Survival in Duchenne muscular dystrophy: Improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. *Neuromuscul Disord* 2002; 12: 926-929.

13. Lee S, Lee H, Eun LY, *et al.* Cardiac function associated with home ventilator care in Duchenne muscular dystrophy. *Korean J Pediatr* 2018; 61: 59-63.

14. LoMauro A, Romei M, Gandossini S, *et al.* Evolution of respiratory function in Duchenne muscular dystrophy from childhood to adulthood. *Eur Respir J* 2018; 51:

15. Mellies U, Ragette R, Schwake C, *et al.* Sleep-disordered breathing and respiratory failure in acid maltase deficiency. *Neurology* 2001; 57: 1290-1295.

16. Nabatame S, Taniike M, Sakai N, et al. Sleep disordered breathing in childhood-onset acid maltase deficiency. Brain Dev 2009; 31: 234-239.

17. Khan Y, Heckmatt JZ, Dubowitz V. Sleep studies and supportive ventilatory treatment in patients with congenital muscle disorders. *Arch Dis Child* 1996; 74: 195-200.

18. Simonds AK, Ward S, Heather S, *et al.* Outcome of paediatric domiciliary mask ventilation in neuromuscular and skeletal disease. *Eur Respir* J 2000; 16: 476-481.

19. Mellies U, Ragette R, Dohna Schwake C, *et al.* Long-term noninvasive ventilation in children and adolescents with neuromuscular disorders. *Eur Respir J* 2003; 22: 631-636.

20. Dohna-Schwake C, Podlewski P, Voit T, *et al.* Non-invasive ventilation reduces respiratory tract infections in children with neuromuscular disorders. *Pediatr Pulmonol* 2008; 43: 67-71.

21. Katz SL, Gaboury I, Keilty K, *et al.* Nocturnal hypoventilation: predictors and outcomes in childhood progressive neuromuscular disease. *Arch Dis Child* 2010; 95: 998-1003.

22. Zaman-Haque A, Campbell C, Radhakrishnan D. The effect of noninvasive positive pressure ventilation on pneumonia hospitalizations in children with neurological disease. *Child Neurol Open* 2017; 4: 2329048X16689021.

23. Padman R, Lawless S, Von Nessen S. Use of BiPAP by nasal mask in the treatment of respiratory insufficiency in pediatric patients: preliminary investigation. *Pediatr Pulmonol* 1994; 17: 119-123.

24. Fauroux B, Leboulanger N, Roger G, *et al.* Noninvasive positive-pressure ventilation avoids recannulation and facilitates early weaning from tracheotomy in children. *Pediatr Crit Care Med* 2010; 11: 31-37.