Supplement: Evidence Profiles

ERS Guidelines: High flow nasal cannula in acute respiratory failure

Authors

Simon Oczkowski^{1,2,*} Begüm Ergan^{3,*} Lieuwe Bos^{4,5}, Michelle Chatwin⁶, Miguel Ferrer⁷, Cesare Gregoretti^{8,9}, Leo Heunks¹⁰, Jean-Pierre Frat ^{11,12}, Federico

Longhini¹³, Stefano Nava^{14,15}, Paolo Navalesi_{16,17}, Aylin Ozsancak Uğurlu¹⁸, Lara Pisani^{14,15}, Teresa Renda¹⁹, Arnaud W. Thille^{11,12}, João Carlos Winck²⁰,

Wolfram Windisch²¹, Thomy Tonia²², Jeanette Boyd²³, Giovanni Sotgiu²⁴, Raffaele Scala²⁵

*co-first authors

Affiliations

- 1. Department of Medicine, Division of Critical Care, McMaster University, Hamilton, Ontario, Canada
- 2. Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- 3. Department of Pulmonary and Critical Care, Dokuz Eylul University School of Medicine, Izmir, Turkey
- 4. Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, location Academic Medical Center, Amsterdam
- 5. Respiratory Medicine, Amsterdam UMC, location Academic Medical Center, Amsterdam, The Netherlands.
- 6. Academic and Clinical Department of Sleep and Breathing and NIHR Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, UK.
- 7. Dept of Pneumology, Respiratory Institute, Hospital Clinic, IDIBAPS, University of Barcelona and CIBERES, Barcelona, Spain.
- 8. Department of Surgical, Oncological and Oral Science University of Palermo, Palermo, Italy.
- 9. G.Giglio Institute, Cefalu', Italy
- 10. Department of Intensive Care Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
- 11. Centre Hospitalier Universitaire de Poitiers, Médecine Intensive Réanimation, Poitiers, France.
- 12. INSERM Centre d'Investigation Clinique 1402 ALIVE, Université de Poitiers, Poitiers, France.
- 13. Anesthesia and Intensive Care Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
- 14. Alma Mater Studiorum University of Bologna, Dept of Clinical, Integrated and Experimental Medicine (DIMES), Bologna, Italy
- 15. IRCCS Azienda Ospedaliero-Universitaria di Bologna, University Hospital Sant'Orsola-Malpighi Respiratory and Critical Care Unit, Bologna, Italy
- 16. Anesthesia and Intensive Care, Padua University Hospital, University Hospital, Padua, Italy
- 17. Department of Medicine -DIMED, University of Padua, Italy
- 18. Department of Pulmonary Medicine, Baskent University, Istanbul, Turkey.
- 19. Cardiothoracic and Vascular Department, Respiratory and Critical Care Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy.
- 20. Faculdade de Medicina da Universidade do Porto, Portugal.
- 21. Cologne Merheim Hospital, Dept of Pneumology, Kliniken der Stadt Köln, gGmbH, Witten/Herdecke University, Faculty of Health/School of Medicine, Köln, Germany.
- 22. Institute of Social and Preventive Medicine, University of Bern, Switzterland
- 23. European Lung Foundation (ELF), Sheffield, United Kingdom
- 24. Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical, Experimental Sciences, University of Sassari, Sassari, Italy.
- 25. Pulmonology and Respiratory Intensive Care Unit, Cardio-Thoraco-Neuro-vascular and Methabolic Department, Usl Toscana Sudest, S Donato Hospital, Arezzo, Italy.

Certainty assessment							atients		Effect		
Nº of studies	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	HFNC	сот	Relative (95% Cl)	Absolute (95% Cl)	Certainty	Importance
Mortality	(90 day)				•	•	•			•	•
4 RCTs	not serious	not serious	not serious	serious ^a	none	208/659 (31.6%)	208/620 (33.5%)	RR 0.97 (0.83 to 1.13)	10 fewer per 1,000 (from 57 fewer to 44 more)	⊕⊕⊕○ MODERATE	CRITICAL
Mortality	(ICU, hosp	oital, or 28 day)	1			1	1	I			
6 RCTs	not serious	not serious	not serious	serious ^a	none	189/773 (24.5%)	187/734 (25.5%)	RR 0.99 (0.84 to 1.17)	3 fewer per 1,000 (from 41 fewer to 43 more)	⊕⊕⊕⊖ MODERATE	CRITICAL
Intubatio	n		!		1						
11 RCTs	not serious	not serious	not serious	serious ^a	none	231/943 (24.5%)	253/907 (27.9%)	RR 0.89 (0.77 to 1.02)	31 fewer per 1,000 (from 64 fewer to 6 more)	⊕⊕⊕⊖ MODERATE	CRITICAL
Escalatio	n to NIV		!		1	1					!
6 RCTs	not serious	not serious	not serious	serious ^a	none	38/409 (9.3%)	47/388 (12.1%)	RR 0.76 (0.43 to 1.34)	29 fewer per 1,000 (from 69 fewer to 41 more)	⊕⊕⊕○ MODERATE	CRITICAL
Hospital I	ength of s	tay									
5 RCTs	not serious	not serious	not serious	serious ^a	none	683	660	-	MD 0.72 days lower (1.54 lower to 0.1 higher)	⊕⊕⊕⊖ MODERATE	IMPORTANT
ICU lengt	h of stay		1		1	1	1	I			1
2 RCTs	not serious	not serious	not serious	serious ^b	none	494	482	-	MD 1.97 days higher (1.02 higher to 2.93 higher)	⊕⊕⊕⊖ MODERATE	IMPORTANT
Patient co	omfort										
6 RCTs	not serious	not serious	not serious	not serious	none	303	293	-	SMD 0.54 lower (0.86 lower to 0.23 lower)		IMPORTANT
Dyspnea											

6 RCTs	not serious	not serious	not serious ^c	serious ^a	none	173	189	-	SMD 0.32 lower (0.66 lower to 0.03 higher)		IMPORTANT
										WODERATE	
PaO2/FiO	2										
4 RCTs	not	serious d	not serious	serious ^a	none	526	514	-	MD 25.01 higher	$\oplus \oplus \bigcirc \bigcirc$	IMPORTANT
	serious								(14.21 lower to 64.24 higher)	LOW	
PaO2			1	!	1	1			1	1	
6 RCTs	not serious	not serious	not serious	not serious	none	202	193	-	MD 16.72 higher (5.74 higher to 27.71 higher)	⊕⊕⊕⊕ HIGH	IMPORTANT
PCO2			<u> </u>	1	1	1		<u> </u>			<u> </u>
6 RCTs	not serious	not serious	not serious	not serious	none	202	193	-	MD 0.01 higher (1.17 lower to 1.2 higher)	⊕⊕⊕⊕ HIGH	IMPORTANT
Respirato	ory rate			1						1	
10 RCTs	not serious	not serious	not serious	not serious	none	713	716	-	MD 2.25 lower (3.24 lower to 1.25 lower)	⊕⊕⊕⊕ HIGH	IMPORTANT

CI: Confidence interval; RR: Risk ratio; MD: Mean difference; SMD: Standardised mean difference

Explanations

a. Significant imprecision which does not rule out clinically significant benefit nor harm.

b. Though Azoulay 2018 demonstrates statistically significant increase in ICU length of stay, when estimated means and SD are used, they are not statistically significant when median (IQR) are compared.

c. Most studies used the validated Borg dyspnea scale.

d. Very significant heterogeneity between the Frat 2015 RCT and the other trials (I2= 93%) of likely clinical significance.

1. Mortality (90 day)

	HFN	с	CO	г		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M–H, Fixed, 95% Cl	Year	r M–H, Fixed, 95% Cl
1.1.1 Immunocompe	etent							
Frat 2015	9	80	14	64	7.4%	0.51 [0.24, 1.11]	2015	5
Jones 2016 Subtotal (95% CI)	35	165 245	24	138 202	12.4% 19.7%	1.22 [0.76, 1.95] 0.96 [0.65, 1.42]	2016	
Total events	44		38					-
Heterogeneity: $Chi^2 =$	3.53. df	= 1 (P)	= 0.06);	$l^2 = 72$	%			
Test for overall effect	,							
1.1.2 Immunocompr	omised							
Frat 2017	4	26	8	30	3.5%	0.58 [0.20, 1.70]	2017	7
Azoulay 2018 Subtotal (95% CI)	160	388 414	162	388 418	76.7% 80.3%	. , .	2018	3
Total events	164		170					
Heterogeneity: $Chi^2 =$	0.94. df	= 1 (P)	= 0.33):	$l^2 = 0\%$	6			
Test for overall effect	,	,						
Total (95% CI)		659		620	100.0%	0.97 [0.83, 1.13]		•
Total events Heterogeneity: Chi ² = Test for overall effect:	,			l ² = 33	8%			0.2 0.5 1 2 5 Favours HFNC Favours COT
Test for subaroup dif	ferences:	Chi ² =	0.00. df	= 1 (P	= 0.95).	$l^2 = 0\%$		

2. Mortality (early - ICU, hospital, or 28 day)

	HFN	С	CO	Г		Risk Ratio			Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year		M-H, Random, 95% Cl
1.3.1 Immunocompt	ent								
Frat 2015	8	80	12	64	3.9%	0.53 [0.23, 1.23]	2015		+
Jones 2016	15	165	11	138	4.9%	1.14 [0.54, 2.40]	2016		_ _
Makdee 2017 Subtotal (95% CI)	1	63 308	0	65 267	0.3% 9.1%		2017		· · · · · · · · · · · · · · · · · · ·
Total events	24		23						
Heterogeneity: $Tau^2 =$	= 0.07; Cł	1i ² = 2.	44, df =	2 (P =	0.29); I ²	= 18%			
Test for overall effect	Z = 0.50	(P = 0)).62)						
1.3.2 Immunocompr	omised								
Frat 2017	4	26	6	30	2.1%	0.77 [0.24, 2.43]	2017		
Azoulay 2018	138	388	140	388	76.8%	0.99 [0.82, 1.19]	2018		
Mendil 2019 Subtotal (95% CI)	23	51 465	18	49 467	12.0% 90.9%		2019		 ◆
Total events	165		164						
Heterogeneity: Tau ² =	,		,	2 (P =	0.63); I ²	= 0%			
Test for overall effect	Z = 0.10	(P = 0)).92)						
Total (95% CI)		773		734	100.0%	0.99 [0.84, 1.17]			•
Total events	189		187						
Heterogeneity: Tau ² =	= 0.00; Cł	1i ² = 3.	73, df =	5 ($P =$	0.59); I ²	= 0%		0.02	0.1 1 10 5
Test for overall effect	Z = 0.08	B (P = 0)).93)					0.02	Favours HFNC Favours COT
Test for subgroup dif	ferences:	Chi ² =	0.26, df	= 1 (P	= 0.61),	$I^2 = 0\%$			

3. Intubation

	HFN	с	co	г		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
1.4.1 Immunocompe	tent							
Frat 2015	32	80	31	64	14.4%	0.83 [0.57, 1.19]	2015	
Bell 2015	0	48	1	52	0.2%	0.36 [0.02, 8.64]	2015	
Rittayamai 2015	0	20	0	20		Not estimable	2015	
Jones 2016	9	165	16	138	3.2%	0.47 [0.21, 1.03]	2016	
Makdee 2017	1	63	0	65	0.2%	3.09 [0.13, 74.55]	2017	
Ko 2020	1	34	1	33	0.3%	0.97 [0.06, 14.88]	2020	
Geng 2020	1	16	1	20	0.3%	1.25 [0.08, 18.46]	2020	
Subtotal (95% CI)		426		392	18.5%	0.76 [0.55, 1.05]		•
Total events	44		50					
1.4.2 Immunocompre Lemaile 2015 Frat 2017 Azoulay 2018 Mendil 2019 Subtotal (95% CI)	omised 4 8 150 24	52 26 388 51 517	2 13 170 16	48 30 388 49 515	0.7% 3.9% 68.9% 7.9% 81.5%	1.85 [0.35, 9.63] 0.71 [0.35, 1.44] 0.88 [0.75, 1.04] 1.44 [0.88, 2.37] 0.99 [0.73, 1.35]	2017 2018	
Total events Heterogeneity: Tau ² = Test for overall effect:				3 (P =	0.21); I ²	= 35%		
Total (95% CI)		943		907	100.0%	0.89 [0.77, 1.02]		•
Total events Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff	Z = 1.64	4 (P = 0	.10)					0.02 0.1 1 10 50 Favours HFNC Favours COT

4. Escalation to NIV

	HFN	IFNC COT				Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
1.5.1 Immunocompe	tent							
Parke 2011	3	30	12	30	16.6%	0.25 [0.08, 0.80]	2011	
Bell 2015	2	48	2	58	7.5%	1.21 [0.18, 8.26]	2015	
Jones 2016	5	165	7	138	17.3%	0.60 [0.19, 1.84]	2016	
Makdee 2017 Subtotal (95% CI)	1	63 306	3	65 291	5.8% 47.2%		2017	
Total events	11		24					
Heterogeneity: Tau ² =	0.00; Cl	ni ² = 2.	30, df =	3 (P =	0.51); I ²	= 0%		
Test for overall effect:	Z = 2.22	P = 0).03)					
1.5.2 Immunocompre								
Lemaile 2015	6	52	3	48				
Mendil 2019 Subtotal (95% CI)	21	51 103	20	49 97	39.1% 52.8%		2019	
Total events	27		23					
Heterogeneity: Tau ² = Test for overall effect:	,		,	1 (P =	0.39); I ²	= 0%		
rest for overall effect.	2 = 0.5	. (1 – (,,,,,					
Total (95% CI)		409		388	100.0%	0.76 [0.43, 1.34]		
Total events	38		47					
Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff	Z = 0.96	5 (P = 0)).34)					0.05 0.2 1 5 20 Favours HFNC Favours COT

5. Hospital length of stay

	1	HFNC			сот			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
1.7.1 Immunocompe	tent									
Jones 2016	5	4.1	165	5.6	4.8	138	46.3%	-0.60 [-1.62, 0.42]	2016	
Makdee 2017	1.1	6.9	63	1.2	4.32	65	15.2%	-0.10 [-2.10, 1.90]	2017	-+-
Geng 2020 Subtotal (95% CI)	6.54	1.85	16 244	7.02	2.32	20 223		,	2020	
Heterogeneity: $Tau^2 =$	0.00; 0	Chi ² =	0.19, d	f = 2 (F	P = 0.9	$(91); I^2 =$	• 0%			
Test for overall effect:	Z = 1.2	28 (P =	• 0.20)			.,				
1.7.2 Immunocompr	omised									
Azoulay 2018	24	19.2	388	27	20	388	8.4%	-3.00 [-5.76, -0.24]	2018	
Mendil 2019	28	30.8	51	36	31.8	49	0.4%	-8.00 [-20.28, 4.28]	2019	
Subtotal (95% CI)			439			437	8.8%	-3.24 [-5.93, -0.55]		\bullet
Heterogeneity: Tau ² =	• 0.00; (Chi² =	0.61, d	f = 1 (F)	P = 0.4	14); I ² =	• 0%			
Test for overall effect:	Z = 2.3	86 (P =	= 0.02)							
Total (95% CI)			683			660	100.0%	-0.72 [-1.54, 0.10]		◆
Heterogeneity: $Tau^2 =$	0.11; 0	Chi ² =	4.51, d	f = 4 (F)	P = 0.3	$(34); I^2 =$: 11%			
Test for overall effect:	,		,							-20 -10 0 10 20
Test for subgroup diff		· _	,	df = 1	(P = 0)).05), l ²	= 73.1%			Favours HFNC Favours COT

6. ICU length of stay

		HFNC			сот			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
1.6.1 Immunocompt	ent								
Frat 2015 Subtotal (95% CI)	10.7	15.8	106 106	9.1	11.7	94 94		1.60 [-2.23, 5.43] 1.60 [-2.23, 5.43]	
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 0.8	32 (P =	0.41)						
1.6.2 Immunocompr	omised								
Azoulay 2018 Subtotal (95% CI)	8	7.4	388 388	6	6.67	388 388	93.7% 93.7%	2.00 [1.01, 2.99] 2.00 [1.01, 2.99]	
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 3.9	95 (P <	0.000	1)					
Total (95% CI)			494			482	100.0%	1.97 [1.02, 2.93]	
Heterogeneity: $Chi^2 =$	0.04, d	f = 1 (P = 0.8	$(34); I^2 =$	0%			-	
Test for overall effect:									-4 -2 0 2 4 Favours HFNC Favours COT
Test for subgroup diff	ferences	: Chi ² =	= 0.04,	df = 1	(P = 0).84), I ²	= 0%		Favours firme Favours COT

7. Patient comfort (various rating systems)

	н	IFNC			сот			Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
1.8.1 Immunocompe	tent									
Schabbauer 2014	2.7	1.8	14	3.1	2.8	14	10.7%	-0.16 [-0.91, 0.58]	2014	
Frat 2015	29	26	106	40	29	94	21.4%	-0.40 [-0.68, -0.12]	2015	
Bell 2015	3	1.5	48	4	0.74	52	18.0%	-0.85 [-1.26, -0.44]	2015	
Rittayamai 2015	1.6	1.7	20	3.7	2.4	20	12.2%	-0.99 [-1.65, -0.33]	2015	_
Makdee 2017 Subtotal (95% CI)	-8.1	2	63 251	-6.4	1.9	65 245	19.2% 81.5%	-0.87 [-1.23, -0.50] -0.66 [-0.94, -0.39]	2017	•
Test for overall effect: 1.8.2 Immunocompresent			< 0.00	001)						
Lemaile 2015 Subtotal (95% CI) Heterogeneity: Not ap	3	3	52 52	3	3.7	48 48	18.5% 18.5%	0.00 [-0.39, 0.39] 0.00 [-0.39, 0.39]	2015	•
Test for overall effect:	Z = 0.0	00 (P	= 1.00)						
Total (95% CI)			303			293	100.0%	-0.54 [-0.86, -0.23]		•
Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff	Z = 3.3	85 (P	= 0.00	08)					-	-2 -1 0 1 2 Favours HFNC Favours COT

8. Dyspnea (various measures, Borg Dyspnea Scale or visual analog scale)

	1	HFNC			сот			Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
1.9.1 Immunocompet	ent									
Schabbauer 2014	2.9	2.1	14	3.3	2.3	14	13.3%	-0.18 [-0.92, 0.57]	2014	
Rittayamai 2015	2	1.8	2	3.8	2.3	20	4.7%	-0.76 [-2.23, 0.71]	2015	
Makdee 2017	3.1	2	63	3.6	2.2	65	25.8%	-0.24 [-0.58, 0.11]	2017	
Ruangsomboon 2019	3.3	2	22	5.6	1.8	22	15.7%	-1.19 [-1.83, -0.54]	2019	
Raeisi 2019	6	1.04	20	6.07	0.88	20	16.4%	-0.07 [-0.69, 0.55]	2019	
Subtotal (95% CI)			121			141	75.9%	-0.42 [-0.84, -0.01]		\bullet
1.9.2 Immunocompro		3	52	3	37	48	24 1%	0 00 [-0 39 0 39]	2015	
Lemaile 2015	3	3	52	3	3.7	48	24.1%	0.00 [-0.39, 0.39]	2015	_ _
Subtotal (95% CI)			52			48	24.1%	0.00 [-0.39, 0.39]		•
Heterogeneity: Not app	licable									
Test for overall effect:	Z = 0.00) (P =	1.00)							
Total (95% CI)			173			189	100.0%	-0.32 [-0.66, 0.03]		•
Heterogeneity: $Tau^2 =$	0.09; Ch	$ni^2 = 1$	0.47, d	f = 5 (F)	P = 0.0)6); I ² =	52%			
Test for overall effect:	Z = 1.81	(P =	0.07)							Favours HFNC Favours COT
Test for subgroup diffe	rences:	Chi ² =	2.11, 0	df = 1 (P = 0.	15), l ² =	= 52.6%			

9. PaO2:FiO2

	н	FNC			сот			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.10.1 Immunocomp	oetent								
Frat 2015	-130	60	106	-161	77	94	26.6%	31.00 [11.69, 50.31]	_ _
Mauri 2016	-184	53	15	-130	35	15	23.9%	-54.00 [-86.14, -21.86]	_
Mauri 2017 Subtotal (95% CI)	-205	61	17 138	-151	60	17 126		-54.00 [-94.67, -13.33] -24.15 [-88.18, 39.88]	
Heterogeneity: $Tau^2 =$	= 2941.8	6; Chi	$^{2} = 27$	51, df =	= 2 (P	< 0.00	001); I ² =	= 93%	
Test for overall effect:	Z = 0.74	4 (P =	0.46)						
1.10.2 Immunocomp	oromised								
Azoulay 2018 Subtotal (95% CI)	-150	93.3	388 388	-119	58.5	388 388		-31.00 [-41.96, -20.04] -31.00 [-41.96, -20.04]	•
Heterogeneity: Not ap Test for overall effect:	•	4 (P <	0.000	01)					
Total (95% CI)			526			514	100.0%	-25.01 [-64.24, 14.21]	
Heterogeneity: Tau ² =	= 1409.7	5; Chi	$^{2} = 37$.64, df =	= 3 (P	< 0.00	001); I ² =	= 92%	-100 -50 0 50 100
Test for overall effect:	Z = 1.25	5 (P =	0.21)						-100 -50 0 50 100 Favours HFNC Favours COT
Test for subaroup diff	ferences:	Chi ² =	= 0.04.	df = 1	(P = 0)	.84). I ²	= 0%		ravours firme ravours cor

10. PaO2

	н	FNC			сот			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Mauri 2017	-97.4	23	17	-70	9.6	17	17.9%	-27.40 [-39.25, -15.55]		_ - _
Schabbauer 2014	-101	34	14	-85	22	14	12.3%	-16.00 [-37.21, 5.21]	2014	
Frat 2015	-90	35	106	-93	36	94	19.1%	3.00 [-6.87, 12.87]	2015	
Mauri 2016	-98	39	15	-72	5.2	15	13.0%	-26.00 [-45.91, -6.09]	2016	
Geng 2020	-94.73	4.43	16	-86.98	6.42	20	22.1%	-7.75 [-11.30, -4.20]	2020	-
Ko 2020	-107.47	44.15	34	-73.25	13.02	33	15.6%	-34.22 [-49.71, -18.73]	2020	
Total (95% CI)			202			193	100.0%	-16.72 [-27.71, -5.74]		•
Heterogeneity: Tau ² =	= 138.87; 0	$2hi^2 = 2a$	8.63, d	f = 5 (P -	< 0.000	1); I ² =	83%			
Test for overall effect	:: Z = 2.98 (P = 0.0	03)							Favours HFNC Favours COT

11. PCO2 (most commonly PaCO2)

	H	HFNC			сот			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Mauri 2017	38.3	5.4	17	38.2	5	17	11.5%	0.10 [-3.40, 3.60]		
Schabbauer 2014	37	5	14	37	6	14	8.4%	0.00 [-4.09, 4.09]	2014	
Frat 2015	35	7	106	35	6	94	43.2%	0.00 [-1.80, 1.80]	2015	_
Mauri 2016	41.1	5.9	15	40.7	5.7	15	8.1%	0.40 [-3.75, 4.55]	2016	
Ko 2020	31.54	8.14	34	32.3	6.22	33	11.7%	-0.76 [-4.22, 2.70]	2020	
Geng 2020	40.22	4.37	16	39.87	4.35	20	17.1%	0.35 [-2.52, 3.22]	2020	
Total (95% CI)			202			193	100.0%	0.01 [-1.17, 1.20]		•
Heterogeneity: Tau ² =	= 0.00; C	$Chi^2 = 0$	0.28, d	f = 5 (P	= 1.00	D); $I^2 =$	0%		_	
Test for overall effect	Z = 0.0	2 (P =	0.98)							Favours HFNC Favours COT

12. Respiratory rate

	H	IFNC			сот			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
1.13.1 Immunocompe	tent									
Mauri 2017	18	7	17	24	8	17	3.4%	-6.00 [-11.05, -0.95]		
Schabbauer 2014	26	7	14	28	8	14	2.9%	-2.00 [-7.57, 3.57]	2014	
Frat 2015	27	7	106	29	8	94	12.9%	-2.00 [-4.10, 0.10]	2015	
Rittayamai 2015	26	6.2	2	27.5	4.9	20	1.2%	-1.50 [-10.36, 7.36]	2015	
Mauri 2016	22	5.2	15	24	5.2	15	5.8%	-2.00 [-5.72, 1.72]	2016	
Makdee 2017	23.5	3.6	63	26.5	3.9	65	19.8%	-3.00 [-4.30, -1.70]	2017	
Ruangsomboon 2019	26	3.7	22	31.9	9.3	22	4.8%	-5.90 [-10.08, -1.72]	2019	
Ko 2020	21.32	3.32	34	24.3	3.55	33	16.5%	-2.98 [-4.63, -1.33]	2020	
Subtotal (95% CI)			273			280	67.2%	-2.95 [-3.79, -2.10]		◆
Heterogeneity: $Tau^2 = 0$	0.00; Chi	$^{2} = 4.$	57, df =	= 7 (P =	= 0.71); $I^2 = C$	%			
Test for overall effect: Z	2 = 6.84	(P < 0	0.00001	L)						
1.13.2 Immunocompre	omised									
Lemaile 2015	25	5.2	52	25	7.4	48	10.2%	0.00 [-2.53, 2.53]	2015	
Azoulay 2018	25	7.4	388	26	7.4	388	22.5%	-1.00 [-2.04, 0.04]	2018	
Subtotal (95% CI)			440			436	32.8%	-0.85 [-1.82, 0.11]		\bullet
Heterogeneity: $Tau^2 = 0$	0.00: Chi	$^{2} = 0.$	51. df =	= 1 (P =	= 0.47): $ ^2 = 0$	%			
Test for overall effect: Z	,		,							
Total (95% CI)			713			716	100.0%	-2.25 [-3.24, -1.25]		•
Heterogeneity: $Tau^2 = 0$	0.86: Chi	$^{2} = 15$	5.33. df	= 9 (P)	= 0.0	8): $I^2 =$	41%			
Test for overall effect: Z						-,, .				
Test for subgroup diffe					$(\mathbf{P} = 0)$	001)	$^{2} - 00.2\%$	<u>(</u>		Favours HFNC Favours COT

		Certa	iinty assessmer	ıt		Nº of p	atients		Effect		
№ of studies	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	HFNC	NIV	Relative (95% Cl)	Absolute (95% Cl)	Certainty	Importance
Mortality	(90 day)										
1 RCT	not serious	not serious	serious ^a	serious ^b	none	13/106 (12.3%)	31/110 (28.2%)	RR 0.43 (0.24 to 0.78)	161 fewer per 1,000 (from 214 fewer to 62 fewer)		CRITICAL
Mortality	/ (ICU, hos	pital or 28 day)			1						1
3 RCTs	not serious	serious ^c	serious ^a	serious ^d	none	35/234 (15.0%)	47/240 (19.6%)	RR 0.77 (0.52 to 1.14)	45 fewer per 1,000 (from 94 fewer to 27 more)	⊕⊖⊖⊖ VERY LOW	CRITICAL
Intubatio	on	1									1
5 RCTs	not serious	not serious	serious ^a	serious ^d	none	74/352 (21.0%)	92/356 (25.8%)	RR 0.84 (0.61 to 1.16)	41 fewer per 1,000 (from 101 fewer to 41 more)		CRITICAL
Hospital	length of	stay									1
1 RCTs	not serious	not serious	serious ^a	very serious e	none	104	100	-	MD 0.8 days higher (0.59 lower to 2.19 higher)	⊕⊖⊖⊖ VERY LOW	IMPORTANT
ICU leng	th of stay	1	<u> </u>	<u> </u>	1	1					1
2 RCTs	not serious	not serious	serious ^a	serious ^d	none	154	157	-	MD 0.55 days lower (2 lower to 0.89 higher)		IMPORTANT
Patient c	comfort	1	1								
4 RCTs	not serious	not serious	serious ^a	not serious	none	207	208	-	SMD 0.23 lower (0.55 lower to 0.09 higher)	⊕⊕⊕⊖ MODERATE	IMPORTANT
Dyspnea	1	1	1	1							1
4 RCTs	not serious	very serious ^f	serious ^a	serious ^g	none	193	194	-	SMD 0.19 higher (0.01 lower to 0.40 higher)	⊕⊖⊖⊖ VERY LOW	IMPORTANT

PaO2/FiC	02										
3 RCTs	not serious	not serious	serious ^a	not serious	none	215	219	-	MD 43.26 lower (29.48 lower to 57.04 lower)	$\oplus \oplus \oplus \bigcirc \bigcirc$	IMPORTANT
										MODERATE	
PaO2			•	:					1	!	•
4 RCTs	not	not serious	serious ^a	not serious	none	229	233	-	MD 19.98 mmHg lower	$\oplus \oplus \oplus \bigcirc \bigcirc$	IMPORTANT
	serious								(11.97 lower to 28 lower)	MODERATE	
PCO2			1	1					1		1
4 RCTs	not	serious ^c	serious ^a	not serious	none	209	211	-	MD 0.45 mmHg lower	$\oplus \oplus \bigcirc \bigcirc$	IMPORTANT
	serious								(1.94 lower to 1.05 higher)	LOW	
Respirat	ory rate		1		1		i		1		
5 RCTs	not	serious ^c	serious ^a	not serious	none	302	309	-	MD 0.83 breaths per minute higher	$\oplus \oplus \bigcirc \bigcirc$	IMPORTANT
	serious								(1.04 lower to 2.7 higher)	LOW	

CI: Confidence interval; RR: Risk ratio; MD: Mean difference; SMD: Standardised mean difference

Explanations

a. Concerns were raised about the short duration of NIV in the study with the largest effects (Frat et al); as well NIV interfaces used (face mask vs. helmet) and use of humidification for secretion clearance during NIV varied between studies. As a result, we rated down for indirectness of the comparator.

b. Optimal information size not met, assuming even a conservative relative risk reduction of 30%; thus we chose to rate down for imprecision, despite a statistically significant reduction in mortality.

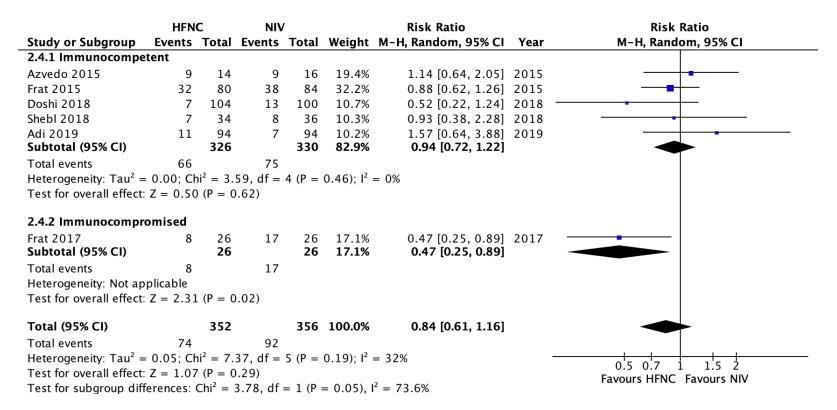
c. Substantial heterogeneity (I2>40%) not easily explained by study characteristics.

d. Wide 95% confidence intervals which do not exclude clinically meaningful benefit or harm.

e. Very wide 95% confidence intervals which do not exclude clinically meaningful benefit or harm.

f. Very substantial heterogeneity (I2>80%) with two studies demonstrating opposite effects.

g. We chose not to rate down for imprecision as this was accounted for in considering the very significant inconsistency between the included studies.


1. Mortality (90 day)

	HFN	с	NIV	,		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year	M–H, Fixed, 95% Cl
2.1.1 Immunocompe	tent							
Frat 2015 Subtotal (95% CI)	9	80 80	19	84 84	60.7% 60.7%		2015	
Total events	9		19					
Heterogeneity: Not ap	plicable							
Test for overall effect:	Z = 1.87	'(P = 0)	.06)					
2.1.2 Immunocompro	omised							
Frat 2017 Subtotal (95% CI)	4	26 26	12	26 26	39.3% 39.3%	• / •	2017	
Total events	4		12					
Heterogeneity: Not ap	plicable							
Test for overall effect:	Z = 2.17	'(P = 0)	.03)					
Total (95% CI)		106		110	100.0%	0.43 [0.24, 0.78]		
Total events	13		31					
Heterogeneity: $Chi^2 =$	0.40, df	= 1 (P	= 0.52);	$I^2 = 0\%$	6			
Test for overall effect:								0.1 0.2 0.5 1 2 5 10 Favours HFNC Favours NIV
Test for subgroup diff	erences:	Chi ² =	0.40, df	= 1 (P	= 0.52),	$l^2 = 0\%$		FAVOUIS FINC FAVOUIS NIV

2. Mortality (early - ICU, hospital, or 28 day)

	HFN	С	NIV	/		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M–H, Fixed, 95% Cl	Year	M–H, Fixed, 95% Cl
2.3.1 Immunocompe	tent							
Frat 2015	8	80	16	84	33.7%	0.53 [0.24, 1.16]	2015	
Shebl 2018	9	34	11	36	23.1%	0.87 [0.41, 1.83]	2018	
Adi 2019 Subtotal (95% CI)	14	94 208	9	94 214	19.4% 76.2%	. ,	2019	
Total events Heterogeneity: Chi ² = Test for overall effect:	,		.,	$l^2 = 45$	5%			
2.3.2 Immunocompr	omised							
Frat 2017 Subtotal (95% CI)	4	26 26	11	26 26	23.8% 23.8%		2017	
Total events Heterogeneity: Not ap Test for overall effect:	•	7 (P = (11					
Total (95% CI)		234		240	100.0%	0.77 [0.52, 1.14]		
Total events Heterogeneity: Chi ² = Test for overall effect: Test for subgroup diff	Z = 1.32	= 3 (P 2 (P = 0	47 = 0.10);).19)	$l^2 = 52$	2%			0.1 0.2 0.5 1 2 5 10 Favours HFNC Favours NIV

3. Intubation

4. Hospital length of stay

	H	IFNC			NIV			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Doshi 2018	6.8	5.7	104	6	4.4	100	100.0%	0.80 [-0.59, 2.19]	
Total (95% CI)			104			100	100.0%	0.80 [-0.59, 2.19]	
Heterogeneity: Not ap Test for overall effect:	•		= 0.26)					-2 -1 0 1 2 Favours HFNC Favours NIV

5. ICU length of stay

	1	HFNC			NIV			Mean Difference			Mean	Differe	nce	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	Year		IV, Fix	ed, 95%	6 CI	
Frat 2015	10.7	15.8	106	11	11.6	110	15.2%	-0.30 [-4.01, 3.41]	2015			•		
Doshi 2018	3.3	3.7	48	3.9	4.1	47	84.8%	-0.60 [-2.17, 0.97]	2018				-	
Total (95% CI)			154			157	100.0%	-0.55 [-2.00, 0.89]						
Heterogeneity: Chi ² =					: 0%					 -4	-2	0	2	
Test for overall effect:	Z = 0.7	75 (P =	0.45)							-	Favours HFN	C Favo	urs NIV	

6. Patient comfort (various rating systems)

	F	IFNC			NIV			Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Schabbauer 2014	2.7	1.8	14	5.4	3.1	14	12.5%	-1.03 [-1.83, -0.24]	2014	
Frat 2015	38	31	106	46	30	110	38.8%	-0.26 [-0.53, 0.01]	2015	
Doshi 2018	2	3	72	2	3.7	69	34.0%	0.00 [-0.33, 0.33]	2018	_ + _
Grieco 2020	5	3	15	5	3	15	14.7%	0.00 [-0.72, 0.72]	2020	
Total (95% CI)			207			208	100.0%	-0.23 [-0.55, 0.09]		
Heterogeneity: Tau ² =	= 0.05; (Chi² =	6.13,	df = 3	(P =	0.11); I	$^{2} = 51\%$			
Test for overall effect:	Z = 1.4	40 (P	= 0.16)						Favours HFNC Favours NIV

7. Dyspnea (various measures, Borg Dyspnea Scale or visual analog scale)

		HFNC			NIV		:	Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	Year	IV, Fixed, 95% CI
Schabbauer 2014	2.9	2.1	13	5	3.3	14	6.7%	-0.73 [-1.51, 0.05]	2014	
Doshi 2018	2.6	2	71	2.2	1.8	71	38.0%	0.21 [-0.12, 0.54]	2018	+=-
Adi 2019	21.7	10.64	94	20.43	11.91	94	50.5%	0.11 [-0.17, 0.40]	2019	
Grieco 2020	8	2.2	15	3	2.2	15	4.7%	2.21 [1.28, 3.15]	2020	
Total (95% CI)			193			194	100.0%	0.19 [-0.01, 0.40]		◆
Heterogeneity: Chi ² = Test for overall effect)001); l ²	² = 87%					-2 -1 0 1 2 Favours HFNC Favours NIV

8. PaO2:FiO2

	н	FNC			NIV			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	Year	IV, Fixed, 95% CI
Frat 2015	-130	60	106	-186	85	110	49.6%	56.00 [36.44, 75.56]	2015	
Adi 2019	-271.83	73.63	94	-294.19	68.52	94	45.9%	22.36 [2.03, 42.69]	2019	
Grieco 2020	-138	52.6	15	-255	118	15	4.4%	117.00 [51.62, 182.38]	2020	
Total (95% CI)			215			219	100.0%	43.26 [29.48, 57.04]		•
Heterogeneity: Chi ² = Test for overall effect	,); $I^2 = 81\%$	6				_	-100 -50 0 50 100 Favours HFNC Favours NIV

9. PaO2

	ŀ	HFNC			NIV			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Adi 2019	-163.1	44.18	94	-176.52	41.11	94	43.2%	13.42 [1.22, 25.62]	
Frat 2015	-90	35	106	-111	59	110	38.7%	21.00 [8.12, 33.88]	— ∎ —
Grieco 2020	-69	21.5	15	-108	48.1	15	9.0%	39.00 [12.34, 65.66]	
Schabbauer 2014	-101	34	14	-129	38	14	9.0%	28.00 [1.29, 54.71]	
Total (95% CI)			229			233	100.0%	19.98 [11.97, 28.00]	•
Heterogeneity: Chi ² = Test for overall effect								-	-50 -25 0 25 50 Favours HFNC Favours NIV

10. PCO2 (most commonly PaCO2)

	I	HFNC			NIV			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	Year	IV, Fixed, 95% CI
Schabbauer 2014	37	5	14	39	7	14	11.0%	-2.00 [-6.51, 2.51]	2014	
Frat 2015	35	7	106	35	7	110	64.1%	0.00 [-1.87, 1.87]	2015	
Doshi 2018	46.3	12.7	74	52.5	17.8	72	8.8%	-6.20 [-11.23, -1.17]	2018	
Grieco 2020	33	4.4	15	31	5.9	15	16.1%	2.00 [-1.72, 5.72]	2020	
Total (95% CI)			209			211	100.0%	-0.45 [-1.94, 1.05]		•
Heterogeneity: Chi ² = Test for overall effect					= 59%					-10 -5 0 5 10 Favours HFNC Favours NIV

11. Respiratory rate

	H	HFNC			NIV			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Schabbauer 2014	26	7	14	24	9	14	7.5%	2.00 [-3.97, 7.97]	2014	
Frat 2015	27	7	106	29	7	110	23.9%	-2.00 [-3.87, -0.13]	2015	_
Doshi 2018	22.2	4.7	73	22.1	4.8	76	26.0%	0.10 [-1.43, 1.63]	2018	_
Adi 2019	24.51	3.69	94	23	3.61	94	28.6%	1.51 [0.47, 2.55]	2019	
Grieco 2020	29	4.4	15	24	5.9	15	14.0%	5.00 [1.28, 8.72]	2020	
Total (95% CI)			302			309	100.0%	0.83 [-1.04, 2.70]		
Heterogeneity: Tau ² =	= 2.92; C	: 2hi ² = 2	16.23,	df = 4 ((P = 0.	003); l ²	² = 75%			
Test for overall effect	: Z = 0.8	7 (P =	0.39)							-4 -2 0 2 4 Favours HFNC Favours NIV

Recommendation 4: High-flow nasal cannula (HFNC) vs. conventional oxygen therapy (COT) in post-operative patients

		Certainty a	issessment			№ of pa	tients		Effect		
№ of studies	Risk of bias	Inconsistency	Indirectness	Imprecision	Other	HFNC	СОТ	Relative (95% Cl)	Absolute (95% Cl)	Certainty	Importance
Mortality ·	- Post-opera	ative	!		· · · · · ·		I		1	-	
7 RCTs	not serious	not serious	not serious	serious ^a	none	4/526 (0.8%)	7/523 (1.3%)	RR 0.64 (0.19 to 2.14)	5 fewer per 1,000 (from 11 fewer to 15 more)	⊕⊕⊕⊖ MODERATE	CRITICAL
Re-intuba	tion - Post-	operative									
8 RCTs	serious ^b	not serious	not serious	serious ^a	none	14/609 (2.3%)	22/601 (3.7%)	RR 0.66 (0.23 to 1.91)	12 fewer per 1,000 (from 28 fewer to 33 more)		CRITICAL
Escalate t	to NIV - Pos	t-op	1		II		I				1
7 RCTs	serious ^b	serious ^c	not serious	serious ^a	none	52/558 (9.3%)	65/552 (11.8%)	RR 0.77 (0.42 to 1.40)	27 fewer per 1,000 (from 68 fewer to 47 more)	⊕⊖⊖⊖ VERY LOW	CRITICAL
ICU Lengt	th of Stay - I	Post-op								_	
10 RCTs	not serious	not serious	not serious	not serious	none	707	709	-	MD 0.02 higher (0.09 lower to 0.13 higher)	⊕⊕⊕⊕ HIGH	CRITICAL
Hospital L	_ength of St	ay - Post-op									
11 RCTs	not serious	not serious	not serious	not serious	none	639	655	-	MD 0.47 lower (0.83 lower to 0.11 lower)	⊕⊕⊕⊕ HIGH	IMPORTANT
Comfort -	Post-op										
6 RCTs	not serious	very serious ^d	not serious	not serious ^e	none	413	415	-	SMD 0.54 lower (1.12 lower to 0.05 higher)		IMPORTANT
PaO2 - Po	ost-op								1		
2 RCTs	not serious	not serious	not serious	not serious	none	158	162	-	MD 6.2 lower (8.82 lower to 3.58 lower)	⊕⊕⊕⊕ HIGH	IMPORTANT
PCO2 - Po	ost-Op										

Recommendation 4: High-flow nasal cannula (HFNC) vs. conventional oxygen therapy (COT) in post-operative patients

5 RCTs	not serious	not serious ^f	not serious	not serious	none	284	285	-	MD 1.9 lower (4.18 lower to 0.38 higher)	⊕⊕⊕⊕ HIGH	IMPORTANT
PaO2:FiO	2 - Post-op										
4 RCTs	not serious	not serious ^f	not serious	not serious	none	159	142	-	MD 34.89 lower (84.96 lower to 15.19 higher)	⊕⊕⊕⊖ MODERATE	IMPORTANT
Respirato	ry Rate - Po	st-op	1								
3 RCTs	not serious	serious °	not serious	not serious	none	178	167	-	MD 0.14 lower (0.83 lower to 0.54 higher)	⊕⊕⊕⊖ MODERATE	IMPORTANT

CI: Confidence interval; RR: Risk ratio; MD: Mean difference; SMD: Standardised mean difference

Explanations

a. Wide 95% confidence intervals which do not exclude clinically important benefit or harm.

b. Lack of blinding may have resulted in bias from co-intervention as many trials did not have protocols for escalation of respiratory support.

c. Significant heterogeneity (I2 >50%) with point estimates on both sides of the line of no effect and limited overlap of 95% confidence intervals.

d. Very significant heterogeneity (12 >90%) with point estimates on both sides of the line of no effect and limited overlap of 95% confidence intervals.

e. We did not rate down for imprecision as this is accounted for in rating down twice for inconsistency.

f. Although there is significant heterogeneity (I2 >90%) the discrepancies in absolute effect sizes are of questionable significance

1. Mortality

	HFN	С	CO	г		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M–H, Random, 95% Cl	
Futier 2016	2	108	3	112	46.0%	0.69 [0.12, 4.06]			
Parke 2013	1	169	1	171	18.9%	1.01 [0.06, 16.05]			
Pennisi 2019	0	47	0	48		Not estimable			
Sahin 2018	0	50	2	50	15.9%	0.20 [0.01, 4.06]			
Vourc'h 2020	0	47	0	43		Not estimable			
Yu 2017	0	56	0	54		Not estimable			
Zochios 2018	1	49	1	45	19.2%	0.92 [0.06, 14.25]			
Total (95% CI)		526		523	100.0%	0.64 [0.19, 2.14]			
Total events	4		7					_	
Heterogeneity: Tau ² =	= 0.00; Cl	$ni^2 = 0.$	76, df =	3 (P =	0.86); I ²	= 0%			100
Test for overall effect	Z = 0.72	2 (P = 0)).47)				0.01	0.1 1 10 Favours HFNC Favours COT	100

2. Re-intubation

	HFN	С	co	Г		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% Cl
Parke 2013	2	169	0	171	9.1%	5.06 [0.24, 104.59]	2013	
Corley 2015	0	81	2	74	9.1%	0.18 [0.01, 3.75]	2015	
Futier 2016	7	108	4	112	23.7%	1.81 [0.55, 6.02]	2016	
Yu 2017	0	56	5	54	9.8%	0.09 [0.00, 1.55]	2017	
Sahin 2018	0	50	4	50	9.7%	0.11 [0.01, 2.01]	2018	
Zochios 2018	1	51	5	49	14.5%	0.19 [0.02, 1.59]	2018	
Pennisi 2019	1	47	1	48	10.5%	1.02 [0.07, 15.86]	2019	
Vourc'h 2020	3	47	1	43	13.7%	2.74 [0.30, 25.40]	2020	
Total (95% CI)		609		601	100.0%	0.66 [0.23, 1.91]		
Total events	14		22					
Heterogeneity: Tau ² =	0.88; Cl	$hi^2 = 11$	L.51, df =	= 7 (P =	= 0.12); I	$^{2} = 39\%$		0.005 0.1 1 10 200
Test for overall effect:	Z = 0.77	7 (P = 0)).44)					Favours HFNC Favours COT

Recommendation 4: High-flow nasal cannula (HFNC) vs. conventional oxygen therapy (COT) in post-operative patients

3. Escalation to NIV

	HFN	с	CO	г		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
Corley 2015	3	81	2	74	8.3%	1.37 [0.24, 7.97]	
Futier 2016	18	108	11	112	20.4%	1.70 [0.84, 3.42]	+
Parke 2013	9	169	5	171	14.9%	1.82 [0.62, 5.32]	
Pennisi 2019	1	47	3	48	5.8%	0.34 [0.04, 3.16]	
Sahin 2018	6	50	11	50	17.1%	0.55 [0.22, 1.36]	
Vourc'h 2020	13	47	24	43	23.0%	0.50 [0.29, 0.84]	
Yu 2017	2	56	9	54	10.4%	0.21 [0.05, 0.95]	
Total (95% CI)		558		552	100.0%	0.77 [0.42, 1.40]	
Total events	52		65				
Heterogeneity: Tau ² =	= 0.34; Cł	$ni^2 = 14$	4.31, df =	= 6 (P =	= 0.03); I	$^{2} = 58\%$	0.05 0.2 1 5 20
Test for overall effect	z = 0.86	5 (P = 0)).39)				Favours HFNC Favours COT

4. ICU length of stay

		HFNC			сот			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Parke 2013	1.39	0.95	169	1.2	1	171	24.8%	0.19 [-0.02, 0.40]	2013	
Corley 2015	1.61	1.47	81	1.61	0.995	74	7.4%	0.00 [-0.39, 0.39]	2015	
Futier 2016	6	8.9	108	5	7.4	112	0.2%	1.00 [-1.17, 3.17]	2016	
Yu 2017	3.72	0.56	56	3.64	0.83	54	15.7%	0.08 [-0.19, 0.35]	2017	- - -
Brainard 2017	2	1.2	18	3.2	3.8	26	0.5%	-1.20 [-2.76, 0.36]	2017	
Zochios 2018	1	0.74	49	1	0.74	45	12.5%	0.00 [-0.30, 0.30]	2018	_ + _
Sahin 2018	2.4	0.5	50	2.8	1.7	50	4.8%	-0.40 [-0.89, 0.09]	2018	
Pennisi 2019	1	1.48	47	1	1.48	48	3.3%	0.00 [-0.60, 0.60]	2019	
Twose 2019	1.04	0.34	10	1.22	0.42	10	10.1%	-0.18 [-0.51, 0.15]	2019	
Tatsuishi 2020	1	0.74	72	1	0.74	76	19.2%	0.00 [-0.24, 0.24]	2020	+
Vourc'h 2020	3.3	2.4	47	3.1	1.6	43	1.7%	0.20 [-0.64, 1.04]	2020	
Total (95% CI)			707			709	100.0%	0.02 [-0.09, 0.13]		•
Heterogeneity: Tau ² =	= 0.00; 0	Chi ² =	10.31,	df = 10	0 (P = 0)	.41); I ²	= 3%		_	<u> </u>
Test for overall effect	Z = 0.4	41 (P =	0.68)							-2 -1 U I 2
Test for overall effect	Z = 0.4	41 (P =	= 0.68)							Favours HFNC Favours C

Favours HFNC Favours COT

Recommendation 4: High-flow nasal cannula (HFNC) vs. conventional oxygen therapy (COT) in post-operative patients

5. Hospital length of stay

	I	HFNC			сот			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	r IV, Random, 95% CI
Parke 2013	11.6	6.6	169	11.4	6.7	171	5.3%	0.20 [-1.21, 1.61]	2013	·
Ansari 2016	2.5	7.4	28	4	12.6	31	0.5%	-1.50 [-6.71, 3.71]	2016	;
Futier 2016	12	9.6	108	11	8.1	112	2.2%	1.00 [-1.35, 3.35]	2016	;
Brainard 2017	6.6	2.1	18	9.5	7	26	1.5%	-2.90 [-5.76, -0.04]	2017	·
Yu 2017	7.41	0.82	56	7.54	0.91	54	22.7%	-0.13 [-0.45, 0.19]	2017	' +
Sahin 2018	6.5	0.7	50	6.9	1.1	50	21.7%	-0.40 [-0.76, -0.04]	2018	; 🗕
Zochios 2018	7	2.2	49	9	6.7	45	2.8%	-2.00 [-4.05, 0.05]	2018	;
Pennisi 2019	6	1.48	47	6	1.48	48	15.8%	0.00 [-0.60, 0.60]	2019) +
Ferrando 2019	3	1	32	4	1	32	18.3%	-1.00 [-1.49, -0.51]	2019) -
Twose 2019	14.5	12.4	10	16	5.2	10	0.2%	-1.50 [-9.83, 6.83]	2019	•
Tatsuishi 2020	8	2.2	72	9	3.7	76	9.1%	-1.00 [-1.97, -0.03]	2020)
Total (95% CI)			639			655	100.0%	-0.47 [-0.83, -0.11]		◆
Heterogeneity: Tau ² = Test for overall effect:				df = 10) (P =	0.04); I	$^{2} = 48\%$			
i est isi sverali elleet.			0.01)							Favours HFNC Favours COT

6. Comfort

	H	IFNC			сот			Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Tiruvoipati 2010	0.53	1.04	42	0.96	1.42	42	16.9%	-0.34 [-0.77, 0.09]	2010	- -+
Parke 2013	-6.94	2.5	169	-7.78	1.9	171	18.1%	0.38 [0.16, 0.59]	2013	
Rittayamai 2014	1.4	0.9	17	1.9	1.1	17	14.8%	-0.49 [-1.17, 0.20]	2014	
Futier 2016	7.9	2.1	108	8.1	2.4	112	17.9%	-0.09 [-0.35, 0.18]	2016	
Song 2017	3	1.1	30	5	1.5	30	15.7%	-1.50 [-2.08, -0.92]	2017	_
Vourc'h 2020	-4	0.74	47	-3	0.74	43	16.6%	-1.34 [-1.80, -0.88]	2020	_ - _
Total (95% CI)			413			415	100.0%	-0.54 [-1.12, 0.05]		
Heterogeneity: Tau ² =	= 0.47; 0	2hi ² = 2	71.88,	df = 5 (P < 0.	00001)); $I^2 = 93\%$	6		
Test for overall effect	: Z = 1.8	1 (P =	0.07)							Favours HFNC Favours COT

7. PaO2

	н	IFNC		C	сот			Mean Difference		Mean Differen	ce
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 959	% CI
Futier 2016	-89	35	108	-87	32	112	8.7%	-2.00 [-10.87, 6.87]	2016	· · · · · · · · · · · · · · · · · · ·	
Sahin 2018	-106	6.9	50	-99.4	7.1	50	91.3%	-6.60 [-9.34, -3.86]	2018		
Total (95% CI)			158			162	100.0%	-6.20 [-8.82, -3.58]			
Heterogeneity: Tau ² =					(P =)	0.33); I	$^{2} = 0\%$			-10 -5 0	5 10
Test for overall effect:	Z = 4.6	53 (P	< 0.00	001)						Favours HFNC Favou	irs COT

8. PCO2

	1	HFNC			сот			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Futier 2016	41	7	108	41	6	112	19.9%	0.00 [-1.73, 1.73]	2016	
Sahin 2018	37.9	2.6	50	42.3	2.2	50	21.6%	-4.40 [-5.34, -3.46]	2018	_ _
Pennisi 2019	38.9	3.15	47	40.6	3.89	48	20.6%	-1.70 [-3.12, -0.28]	2019	
Ferrando 2019	37.9	5.6	32	42.3	5.1	32	17.3%	-4.40 [-7.02, -1.78]	2019	
Vourc'h 2020	39.8	3	47	39	3.8	43	20.6%	0.80 [-0.62, 2.22]	2020	
Total (95% CI)			284			285	100.0%	-1.90 [-4.18, 0.38]		
Heterogeneity: Tau ² =	= 6.03; 0	Chi ² =	47.20,	df = 4	(P < 0	.00001); $I^2 = 92$	%		
Test for overall effect	: Z = 1.6	63 (P =	0.10)							Favours HFNC Favours COT

9. PaO2/FiO2

		HFNC			СОТ			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI Ye	ar IV, Random, 95% CI
Corley 2015	-175.8	96.3791	33	-159.3	96.3791	19	22.0%	-16.50 [-70.90, 37.90] 202	15
Ferrando 2019	-344	104.8	32	-226	66.3	32	24.3%	-118.00 [-160.97, -75.03] 202	19 —
Pennisi 2019	-300	75.2	47	-299	81.3	48	26.5%	-1.00 [-32.48, 30.48] 201	19 —
Vourc'h 2020	-136.5	47	47	-128.1	81.3	43	27.2%	-8.40 [-36.17, 19.37] 202	20
Total (95% CI)			159			142	100.0%	-34.89 [-84.96, 15.19]	
Heterogeneity: Tau ² = Test for overall effect				f = 3 (P -	< 0.0001);	$l^2 = 86$	5%		-100 -50 0 50 100 Favours HFNC Favours COT

10. Respiratory rate

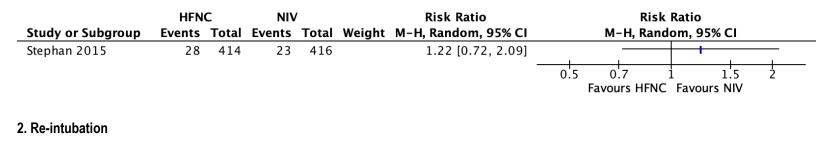
		HFNC			СОТ			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Corley 2015	18.29	2.6017	81	17.85	2.6017	74	33.5%	0.44 [-0.38, 1.26]	2015	
Sahin 2018	19.3	0.9	50	19.5	1.1	50	53.2%	-0.20 [-0.59, 0.19]	2018	
Vourc'h 2020	19.2	4	47	20.6	4.1	43	13.3%	-1.40 [-3.08, 0.28]	2020	
Total (95% CI)			178			167	100.0%	-0.14 [-0.83, 0.54]		-
Heterogeneity: Tau ² =	= 0.19; C	$2hi^2 = 4.1$	8, df =	2 (P =	0.12); I ²	= 52%				
Test for overall effect:	Z = 0.4	1 (P = 0.	68)							Favours HFNC Favours COT

		Certainty as	sessment			Nº of p	atients		Effect		
Nº of studies	Risk of bias	Inconsistency	Indirectness	Imprecision	Other	HFNC	NIV	Relative (95% Cl)	Absolute (95% Cl)	Certainty	Importance
Mortality	- Post-op										1
1 RCT	not serious	not serious	not serious ^a	very serious b	none	28/414 (6.8%)	23/416 (5.5%)	RR 1.22 (0.72 to 2.09)	12 more per 1,000 (from 15 fewer to 60 more)		CRITICAL
Re-intuba	ation - Post-op										
1 RCT	not serious ^c	not serious	not serious ^a	serious ^d	none	58/414 (14.0%)	57/416 (13.7%)	RR 1.02 (0.73 to 1.44)	3 more per 1,000 (from 37 fewer to 60 more)	⊕⊕⊕⊖ MODERATE	CRITICAL
ICU lengt	th of stay - Post	-ор									
1 RCT	not serious	not serious	not serious ^a	not serious ^e	none	414	416	-	MD 0 days (0.6 lower to 0.6 higher)	⊕⊕⊕⊕ HIGH	IMPORTANT
Hospital	length of stay -	Post-op									
1 RCT	not serious	not serious	not serious ^a	serious ^d	none	414	416	-	MD 1 lower (2.21 lower to 0.21 higher)	⊕⊕⊕⊖ MODERATE	IMPORTANT
PCO2 - P	ost-op										
1 RCT	not serious	not serious	not serious ^a	not serious	none	414	416	-	MD 1.1 mmHg lower (2.02 lower to 0.18 lower)	⊕⊕⊕⊕ HIGH	IMPORTANT
PaO2:FIC	02 - Post-op										
1 RCT	not serious	not serious	not serious ^a	not serious	none	414	416	-	MD 63 lower (80 lower to 46 lower)	⊕⊕⊕⊕ HIGH	IMPORTANT
Respirate	ory Rate - Post-	ор									
1 RCT	not serious	not serious	not serious ^a	not serious	none	414	416	-	MD 0.9 RPM lower (1.81 lower to 0.01 higher)	⊕⊕⊕⊕ HIGH	IMPORTANT

CI: Confidence interval; RR: Risk ratio; MD: Mean difference

Explanations

a. Single trial recruited patients after cardiothoracic surgery only; patients with other types of surgery are not represented in this evidence.


b. Very wide 95% confidence interval does not exclude moderate harm or small benefit of HFNC.

c. Single included trial used pre-specified criteria for escalation of respiratory support, including intubation.

d. Wide 95% confidence interval does not exclude clinically meaningful benefit or harm.

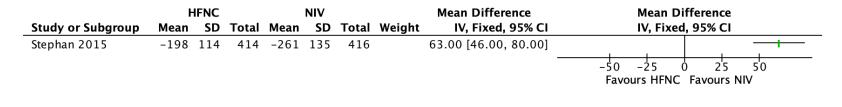
e. Though not statistically significant, the 95% confidence intervals likely exclude a meaningful benefit (less than 1 day difference).

1. Mortality

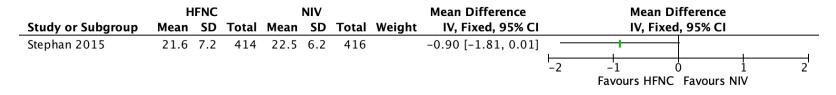
	HFN	С	NIV	/		Risk Ratio			Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M–H, I	Random, 9	5% CI	
Stephan 2015	58	414	57	416		1.02 [0.73, 1.44]					
							L				
							0.5	0.7	1	1.5	2
								Favours H	IFNC Favou	ırs NIV	

3. ICU length of stay

	н	IFNC			NIV			Mean Difference		Mea	an Differe	nce	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Ra	andom, 95	% CI	
Stephan 2015	6	4.4	414	6	4.4	416		0.00 [-0.60, 0.60]					
									-1	-0.5	0	0.5	1
										Favours H	FNC Favo	urs NIV	


4. Hospital length of stay

	н	IFNC			NIV			Mean Difference			Mea	n Differe	nce	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	Year		IV, F	ixed, 95%	6 CI	
Stephan 2015	13	9.6	414	14	8.1	416		-1.00 [-2.21, 0.21]	2015					
									-	-2	-1	0	i	2
											Favours HI	NC Favo	urs NIV	


5. PCO2

	н	IFNC			NIV			Mean Difference		Mean	Differ	ence	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI		IV, Fi	xed, 95	% CI	
Stephan 2015	38.2	6.2	414	39.3	7.3	416		-1.10 [-2.02, -0.18]			-		1
									-2	-1	Ó	1	2
										Favours HF	NC Fav	ours NIV	

6. PaO2/FiO2

7. Respiratory rate

		Certainty a	ssessment			Nº of p	atients		Effect		
№ of studies	Risk of bias	Inconsistency	Indirectness	Imprecision	Other	HFNC	СОТ	Relative (95% Cl)	Absolute (95% Cl)	Certainty	Importance
Mortality											
9 RCTs	not serious	not serious	not serious	serious ^a	none	42/503 (8.3%)	41/495 (8.3%)	RR 1.01 (0.68 to 1.52)	1 more per 1,000 (from 27 fewer to 43 more)		CRITICAL
Re-intuba	tion	1	1	!				1	1		
10 RCTs	serious ^b	not serious	not serious	not serious ^c	none	42/563 (7.5%)	75/564 (13.3%)	RR 0.62 (0.38 to 1.01)	51 fewer per 1,000 (from 82 fewer to 1 more)		CRITICAL
Escalate t	to NIV	1		1				1			
6 RCTs	serious ^b	not serious	not serious	not serious	none	15/260 (5.8%)	40/265 (15.1%)	RR 0.38 (0.17 to 0.85)	94 fewer per 1,000 (from 125 fewer to 23 fewer)		CRITICAL
ICU Lengt	th of Stay	1	<u> </u>					1			
6 RCTs	not serious	not serious	not serious	not serious ^c	none	485	487	-	MD 0.29 higher (0.27 lower to 0.85 higher)	⊕⊕⊕⊕ HIGH	IMPORTANT
Hospital L	_ength of St	tay	<u> </u>					1			
4 RCTs	not serious	serious ^d	not serious	serious ^a	none	424	417	-	MD 1.08 lower (4.83 lower to 2.66 higher)		IMPORTANT
Comfort	1										
3 RCTs	not serious	not serious ^e	not serious	not serious	none	89	89	-	SMD 0.77 lower (1.5 lower to 0.03 lower)	⊕⊕⊕⊕ HIGH	IMPORTANT
PaO2											
5 RCTs	not serious	not serious	not serious	not serious	none	165	154	-	MD 7.57 higher (2.68 higher to 12.46 higher)	⊕⊕⊕⊕ HIGH	IMPORTANT
PCO2											

7 RCTs	not serious	not serious	not serious	not serious	none	460	446	-	MD 0.15 lower (1.89 lower to 1.58 higher)	⊕⊕⊕ HIGH	IMPORTANT
PaO2:FiO	2										
4 RCTs	not serious	serious ^d	not serious	serious ^a	none	378	383	-	MD 14.13 higher (20.48 lower to 48.75 higher)		IMPORTANT
Respirato	ory Rate										
7 RCTs	not serious	not serious ^f	not serious	not serious	none	213	200	-	MD 1.98 lower (3.9 lower to 0.06 lower)	⊕⊕⊕ HIGH	IMPORTANT

CI: Confidence interval; RR: Risk ratio; MD: Mean difference; SMD: Standardised mean difference

Explanations

a. Wide 95% confidence intervals do not exclude clinically significant benefit nor harm.

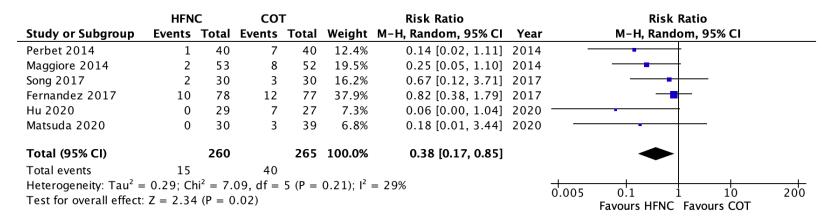
b. Lack of blinding may have resulted in bias from co-intervention, though several trials did have specific criteria for escalation of respiratory support.

c. Though not statistically significant, 95% confidence interval likely excludes a significant differences.

d. Large values of I2 (>70%) with point estimates on both sides of the line of no effect.

e. Significant statistical heterogeneity, however all estimates of effect favour HFNC.

f. Although significant statistical heterogeneity, the absolute differences are of questionable clinical significance.


1. Mortality

	HFN	с	CO	г		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
Maggiore 2014	6	53	5	52	13.0%	1.18 [0.38, 3.62]	2014	
Perbet 2014	3	40	4	40	8.0%	0.75 [0.18, 3.14]	2014	
Hernandez (low risk) 2016	10	264	13	263	25.3%	0.77 [0.34, 1.72]	2016	
Fernandez 2017	12	78	12	77	30.4%	0.99 [0.47, 2.06]	2017	+
Arman 2017	0	8	0	7		Not estimable	2017	
Hu 2020	2	29	1	27	3.0%	1.86 [0.18, 19.38]	2020	
Cho 2020	9	31	6	29	20.3%	1.40 [0.57, 3.45]	2020	
Total (95% CI)		503		495	100.0%	1.01 [0.68, 1.52]		•
Total events	42		41					
Heterogeneity: $Tau^2 = 0.00$;	$Chi^2 = 1.$	47, df	= 5 (P =	0.92);	$l^2 = 0\%$			
Test for overall effect: $Z = 0$.		-						0.1 0.2 0.5 1 2 5 10 Favours HFNC Favours COT

2. Re-intubation

	HFN	С	co	г		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% Cl
Perbet 2014	9	40	10	40	21.1%	0.90 [0.41, 1.98]	2014	
Maggiore 2014	2	53	11	52	9.0%	0.18 [0.04, 0.77]	2014	
Hernandez (low risk) 2016	13	264	32	263	26.6%	0.40 [0.22, 0.75]	2016	_
Song 2017	1	30	3	30	4.4%	0.33 [0.04, 3.03]	2017	· · · · · · · · · · · · · · · · · · ·
Fernandez 2017	9	78	12	77	20.5%	0.74 [0.33, 1.66]	2017	
Arman 2017	0	8	0	7		Not estimable	2017	
Hu 2020	0	29	0	27		Not estimable	2020	
Matsuda 2020	5	30	6	39	14.0%	1.08 [0.37, 3.21]	2020	
Cho 2020	3	31	1	29	4.4%	2.81 [0.31, 25.48]	2020	
Total (95% CI)		563		564	100.0%	0.62 [0.38, 1.01]		•
Total events	42		75					
Heterogeneity: $Tau^2 = 0.13$;	$Chi^2 = 8$.88, df	= 6 (P =	0.18);	$I^2 = 32\%$			
Test for overall effect: $Z = 1$.								0.05 0.2 İ 5 20 Favours HFNC Favours COT

3. Escalation to NIV

4. ICU length of stay

	1	HFNC			сот			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Maggiore 2014	11.7	10.2	53	10.4	8.5	52	2.4%	1.30 [-2.29, 4.89]	2014	
Hernandez (low risk) 2016	6	4.4	264	6	5.2	263	45.8%	0.00 [-0.82, 0.82]	2016	
Fernandez 2017	12	13.3	78	14	5.9	77	3.0%	-2.00 [-5.23, 1.23]	2017	
Matsuda 2020	4.4	1.8	30	3.8	1.8	39	42.3%	0.60 [-0.26, 1.46]	2020	+=-
Hu 2020	10	4.4	29	9	4.4	27	5.8%	1.00 [-1.31, 3.31]	2020	
Cho 2020	14.7	9.6	31	13.8	15.7	29	0.7%	0.90 [-5.74, 7.54]	2020	
Total (95% CI)			485			487	100.0%	0.29 [-0.27, 0.85]		•
Heterogeneity: $Tau^2 = 0.00$;	$Chi^2 = 3$	3.61, d	df = 5 (P = 0.6	51); I ² =	= 0%				
Test for overall effect: $Z = 1$.02 (P =	0.31)								Favours HFNC Favours COT

5. Hospital length of stay

	I	HFNC			сот			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Hernandez (low risk) 2016	11	6.7	264	12	7.4	263	42.2%	-1.00 [-2.21, 0.21]	2016	
Fernandez 2017	27	26.7	78	27	21.5	77	15.6%	0.00 [-7.63, 7.63]	2017	
Blaudszun 2017	8.6	4.3	51	13.4	9.9	48	34.1%	-4.80 [-7.84, -1.76]	2017	
Cho 2020	37.7	25.8	31	25.7	20.9	29	8.1%	12.00 [0.15, 23.85]	2020	
Total (95% CI)			424			417	100.0%	-1.08 [-4.83, 2.66]		-
Heterogeneity: $Tau^2 = 8.26$;				(P = 0)	.02); I ²	= 71%			-	-20 -10 0 10 20
Test for overall effect: $Z = 0$.57 (P =	0.57)								Favours HFNC Favours COT

6. Comfort

	I	HFNC			сот			Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Tiruvoipati 2010	0.53	1.04	42	0.96	1.42	42	36.4%	-0.34 [-0.77, 0.09]	2010	
Rittayamai 2014	1.4	0.9	17	1.9	1.1	17	30.6%	-0.49 [-1.17, 0.20]	2014	
Song 2017	3	1.1	30	5	1.5	30	33.1%	-1.50 [-2.08, -0.92]	2017	_
Total (95% CI)			89			89	100.0%	-0.77 [-1.50, -0.03]		
Heterogeneity: Tau ² = Test for overall effect				df = 2	(P = 0	.005); I	$^{2} = 81\%$			-2 -1 0 1 2 Favours HFNC Favours COT

7. PaO2

	Н	IFNC			сот			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Tiruvoipati 2010	-102.14	40.25	42	-98.35	38.54	42	7.5%	-3.79 [-20.64, 13.06]	2010	
Maggiore 2014	-97.5	29.2	53	-85.4	16.3	52	20.2%	-12.10 [-21.12, -3.08]	2014	
Song 2017	-83.2	10.5	27	-74.5	13.1	19	27.4%	-8.70 [-15.80, -1.60]	2017	
DiMussi 2018	-75.1	6.9	14	-72.9	8.6	14	34.1%	-2.20 [-7.98, 3.58]	2018	
Hu 2020	-102.4	25.4	29	-86.6	26.4	27	10.8%	-15.80 [-29.39, -2.21]	2020	
Total (95% CI)			165			154	100.0%	-7.57 [-12.46, -2.68]		•
Heterogeneity: Tau ² =	,		,	4 (P = 0.	21); $I^2 =$	32%				-20 -10 0 10 20
Test for overall effect:	Z = 3.04	(P = 0.0)	02)							Favours HFNC Favours COT

8. PCO2

	I	HFNC			сот			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Tiruvoipati 2010	37.53	6.23	42	37.91	6.22	42	20.2%	-0.38 [-3.04, 2.28]	2010	
Maggiore 2014	32.3	7.1	53	36.2	11	52	14.7%	-3.90 [-7.45, -0.35]	2014	_
Hernandez (low risk) 2016	37	8	264	36	6	263	32.5%	1.00 [-0.21, 2.21]	2016	+=-
Song 2017	41.4	6.5	27	42.2	13.1	19	6.2%	-0.80 [-7.18, 5.58]	2017	
DiMussi 2018	49.9	11.9	14	51.8	12.7	14	3.3%	-1.90 [-11.02, 7.22]	2018	
Hu 2020	41.3	7.5	29	37.2	9.6	27	10.6%	4.10 [-0.43, 8.63]	2020	
Cho 2020	35.9	7	31	37.1	8.8	29	12.4%	-1.20 [-5.24, 2.84]	2020	
Total (95% CI)			460			446	100.0%	-0.15 [-1.89, 1.58]		•
Heterogeneity: $Tau^2 = 2.02$;	$Chi^2 = 1$	0.46,	df = 6	(P = 0.2)	11); I ²	= 43%				
Test for overall effect: $Z = 0$.17 (P =	0.86)								-10 -5 0 5 10 Favours HFNC Favours COT

9. PaO2/FiO2

	I	HFNC			сот			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Maggiore 2014	-313.3	83.8	53	-259.2	110.1	52	24.2%	-54.10 [-91.58, -16.62]	2014	
Hernandez (low risk) 2016	-105	32	264	-108	34	263	33.6%	3.00 [-2.64, 8.64]	2016	-
Cho 2020	-277.1	102.5	31	-314.2	102.1	29	19.3%	37.10 [-14.70, 88.90]	2020	
Matsuda 2020	-264	105	30	-224	53	39	22.9%	-40.00 [-81.09, 1.09]	2020	
Total (95% CI)			378			383	100.0%	-14.13 [-48.75, 20.48]		
Heterogeneity: $Tau^2 = 920.9$ Test for overall effect: $Z = 0$			df = 3	(P = 0.0)	02); I ² =	79%				-100 -50 0 50 100 Favours HFNC Favours COT

10. Respiratory rate

	HFNC COT					Mean Difference		Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Tiruvoipati 2010	18.68	5.51	42	19.68	6.5	42	14.0%	-1.00 [-3.58, 1.58]	2010	
Maggiore 2014	21	4	53	26	4.3	52	16.6%	-5.00 [-6.59, -3.41]	2014	_
Rittayamai 2014	19.8	3.2	17	23.1	4.4	17	14.0%	-3.30 [-5.89, -0.71]	2014	
Song 2017	22	4	27	26	4	19	14.6%	-4.00 [-6.35, -1.65]	2017	
DiMussi 2018	20.5	2.9	14	21.4	4	14	14.0%	-0.90 [-3.49, 1.69]	2018	
Hu 2020	21	5	29	22	6	27	13.1%	-1.00 [-3.90, 1.90]	2020	
Cho 2020	22.8	5.9	31	20.7	4.5	29	13.8%	2.10 [-0.54, 4.74]	2020	
Total (95% CI)			213			200	100.0%	-1.98 [-3.90, -0.06]		
Heterogeneity: Tau ² =	= 5.11; C	$hi^2 = 2$	26.84,	df = 6 (P = 0	.0002)	; $I^2 = 78\%$			
Test for overall effect:	Z = 2.0	3 (P =	0.04)							Favours HFNC Favours COT

		Certainty a	ssessment			Nº of p	atients		Effect		
Nº of studies	Risk of bias	Inconsistency	Indirectness	Imprecision	Other	HFNC	NIV	Relative (95% Cl)	Absolute (95% Cl)	Certainty	Importance
Mortality	- General IC	CU		4		•					-
5 RCTs	not serious	not serious	not serious	serious ^a	none	111/729 (15.2%)	112/784 (14.3%)	RR 1.07 (0.84 to 1.36)	10 more per 1,000 (from 23 fewer to 51 more)	⊕⊕⊕⊖ MODERATE	CRITICAL
Re-intuba	ation - Gene	ral ICU		1		1					
5 RCTs	not serious ^b	not serious	not serious	serious	none	139/746 (18.6%)	115/803 (14.3%)	RR 1.31 (1.04 to 1.64)	44 more per 1,000 (from 6 more to 92 more)	⊕⊕⊕⊕ HIGH	CRITICAL
ICU lengt	th of stay - (General ICU		1		1			1		_
4 RCTs	not serious	not serious	not serious	not serious	none	658	705	-	MD 1.0 days lower (1.52 lower to 0.47 lower)	⊕⊕⊕⊕ HIGH	IMPORTANT
Hospital	length of st	ay - General ICU		1		1			1		
3 RCTs	not serious	not serious	not serious	not serious	none	636	695	-	MD 1.44 days lower (2.63 lower to 0.25 lower)	⊕⊕⊕⊕ HIGH	IMPORTANT
Comfort	- General IC	U	1								_
4 RCTs	not serious	not serious	not serious	not serious	none	85	79	-	SMD 0.73 SD lower (0.98 lower to 0.49 lower)	⊕⊕⊕⊕ HIGH	IMPORTANT
PCO2 - G	eneral ICU			I		1					
3 RCTs	not serious	not serious	not serious	not serious	none	356	376	-	MD 1.01 mmHg lower (1.47 lower to 0.55 lower)	⊕⊕⊕⊕ HIGH	IMPORTANT
PaO2:FIC)2 - General	ICU									
3 RCTs	not serious	not serious	not serious	not serious ^c	none	356	376	-	MD 3.86 higher (0.39 higher to 7.34 higher)	⊕⊕⊕⊕ HIGH	IMPORTANT
Respirate	ory Rate - G	eneral ICU									
2 RCTs	not serious	not serious ^d	not serious	not serious ^c	none	66	62	-	MD 0.59 respirations per minute lower (2.48 lower to 1.29 higher)	⊕⊕⊕⊕ HIGH	IMPORTANT

CI: Confidence interval; RR: Risk ratio; MD: Mean difference; SMD: Standardised mean difference

Explanations

- a. Wide 95% confidence intervals do not exclude the possibility of meaningful benefit nor harm.
- b. Lack of blinding may have resulted in bias from co-intervention, though most trials did have specific criteria for escalation of respiratory support, including intubation.
- c. Though not statistically significant, 95% confidence interval likely excludes a meaningful difference.
- d. Statistically significant statistical heterogeneity, but considerable overlap of confidence intervals.

1. Mortality

	HFN	С	NIV	/		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% Cl
Hernandez (high risk) 2016	59	290	56	314	53.6%	1.14 [0.82, 1.59]	2016	
Theerawit 2020	7	71	7	69	5.9%	0.97 [0.36, 2.63]	2017	
Jing 2018	5	22	5	20	5.0%	0.91 [0.31, 2.68]	2018	
Thille 2019	33	302	39	339	30.4%	0.95 [0.61, 1.47]	2019	
Tan 2020	7	44	5	42	5.1%	1.34 [0.46, 3.88]	2020	
Total (95% CI)		729		784	100.0%	1.07 [0.84, 1.36]		
Total events	111		112					
Heterogeneity: $Tau^2 = 0.00$; 0	$Chi^2 = 0.7$	72, df =	= 4 (P =	0.95); I	$^{2} = 0\%$		_	
Test for overall effect: $Z = 0.5$	52 (P = 0)	.61)						0.5 0.7 1 1.5 2 Favours HFNC Favours NIV

2. Re-intubation

	HFN	С	NIV	/		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
Hernandez (high risk) 2016	66	290	60	314	52.3%	1.19 [0.87, 1.63]	2016	
Theerawit 2020	5	71	6	69	3.9%	0.81 [0.26, 2.53]	2017	
Guoqiang 2018	1	17	1	19	0.7%	1.12 [0.08, 16.52]	2018	· · · · · · · · · · · · · · · · · · ·
Jing 2018	2	22	1	20	0.9%	1.82 [0.18, 18.55]	2018	· · · · · · · · · · · · · · · · · · ·
Thille 2019	59	302	41	339	37.6%	1.62 [1.12, 2.33]	2019	- -
Tan 2020	6	44	6	42	4.6%	0.95 [0.33, 2.73]	2020	
Total (95% CI)		746		803	100.0%	1.31 [1.04, 1.64]		◆
Total events	139		115					
Heterogeneity: $Tau^2 = 0.00$;	$Chi^2 = 2.7$	73, df =	= 5 (P =	0.74); I	$^{2} = 0\%$			0.05 0.2 1 5 20
Test for overall effect: $Z = 2.3$	33 (P = 0)	.02)						Favours HFNC Favours NIV

3. ICU length of stay

	F	IFNC			NIV			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Hernandez (high risk) 2016	3	3.7	290	4	5.2	314	54.4%	-1.00 [-1.72, -0.28]	2016	
Jing 2018	8.5	3.5	22	9.4	4.8	20	4.2%	-0.90 [-3.46, 1.66]	2018	
Thille 2019	11	5.9	302	12	5.9	339	33.3%	-1.00 [-1.92, -0.08]	2019	
Tan 2020	7.5	3	44	8.5	4.7	32	8.1%	-1.00 [-2.85, 0.85]	2020	
Total (95% CI)			658			705	100.0%	-1.00 [-1.52, -0.47]		•
Heterogeneity: Tau ² = 0.00; Test for overall effect: Z = 3.				(P = 1.0	00); I	$^{2} = 0\%$				-2 -1 0 1 2 Favours HFNC Favours NIV

4. Hospital length of stay

	I	HFNC			NIV			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	Year	IV, Fixed, 95% CI
Hernandez (high risk) 2016	23	23.7	290	26	15.6	314	13.6%	-3.00 [-6.23, 0.23]	2016	
Thille 2019	23	17.8	302	25	20	339	16.5%	-2.00 [-4.93, 0.93]	2019	
Tan 2020	10	2.7	44	11	3.9	42	69.9%	-1.00 [-2.42, 0.42]	2020	
Total (95% CI)			636			695	100.0%	-1.44 [-2.63, -0.25]		•
Heterogeneity: Chi ² = 1.40, c Test for overall effect: Z = 2.2			0); I ² =	0%						-4 -2 0 2 4 Favours HFNC Favours NIV

5. Comfort

	н	IFNC			NIV			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Guoqiang 2018	-6	3	19	-4	2.2	17	12.7%	-0.74 [-1.42, -0.06]	
Jing 2018	3.6	1.9	22	5.2	2.3	20	14.7%	-0.75 [-1.38, -0.12]	
Tan 2020	-7	1.5	44	-5	2.2	42	27.1%	-1.06 [-1.51, -0.60]	-
Theerawit 2020	2.8	1.8	71	3.8	1.9	69	45.4%	-0.54 [-0.88, -0.20]	
Total (95% CI)			156			148	100.0%	-0.73 [-0.98, -0.49]	◆
Heterogeneity: Tau ² =	= 0.01; 0	Chi² =	= 3.26,	df = 3	(P =	0.35); I	$ ^2 = 8\%$		
Test for overall effect	Z = 5.8	32 (P	< 0.00	001)					Favours HFNC Favours NIV

6. Dyspnea

	н	FNC			NIV			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Tan 2020	3	1.5	44	2	0.74	42		1.00 [0.50, 1.50]	-1 -0.5 0 0.5 1 Favours HFNC Favours NIV

8. PCO2

	н	IFNC			NIV			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	Year	IV, Fixed, 95% CI
Hernandez (high risk) 2016	46	3.1	290	47	2.8	314	96.2%	-1.00 [-1.47, -0.53]	2016	
Jing 2018	56.9	10	22	61.5	16.3	20	0.3%	-4.60 [-12.88, 3.68]	2018	
Tan 2020	51	6.5	44	52	5.2	42	3.5%	-1.00 [-3.48, 1.48]	2020	
Total (95% CI)			356			376	100.0%	-1.01 [-1.47, -0.55]		•
Heterogeneity: $Chi^2 = 0.72$, c Test for overall effect: $Z = 4.2$				= 0%					-	-10 -5 0 5 10 Favours HFNC Favours NIV

9. PaO2/FiO2

	н	FNC			NIV			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	Year	IV, Fixed, 95% CI
Hernandez (high risk) 2016	-99	2	290	-103	32	314	96.0%	4.00 [0.45, 7.55]	2016	
Jing 2018	-201.2	92.4	22	-257.5	130.7	20	0.3%	56.30 [-12.78, 125.38]	2018	
Tan 2020	-230.3	44	44	-227.2	40.5	42	3.8%	-3.10 [-20.96, 14.76]	2020	
Total (95% CI)			356			376	100.0%	3.86 [0.39, 7.34]		•
Heterogeneity: $Chi^2 = 2.80$, or Test for overall effect: $Z = 2$.); $I^2 = 2$	9%					-	-100 -50 0 50 100 Favours HFNC Favours NIV

9. Respiratory rate

	Н	IFNC			NIV			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	Year	IV, Fixed, 95% CI
Jing 2018	22.4	4.4	22	21	4.5	20	48.9%	1.40 [-1.30, 4.10]	2018	
Tan 2020	19	5.6	44	21.5	6.8	42	51.1%	-2.50 [-5.14, 0.14]	2020	
Total (95% CI)			66			62	100.0%	-0.59 [-2.48, 1.29]		
Heterogeneity: Chi ² =	4.10, d	f = 1	(P = 0)	.04); I ²	= 76	%				
Test for overall effect:	Z = 0.6	61 (P	= 0.54)						Favours HFNC Favours NIV

Recommendation 8: High-flow nasal cannula (HFNC) vs. non-invasive ventilation (NIV) in hypercapnic respiratory failure

		Certai	nty assessment	t		Nº of p	atients		Effect		
№ of studies	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	HFNC	NIV	Relative (95% Cl)	Absolute (95% Cl)	Certainty	Importance
Mortality	- RCTs	!	1	1		1					
4 RCTs	not serious	not serious	not serious ^a	very serious b	none	18/127 (14.2%)	21/123 (17.1%)	RR 0.82 (0.46 to 1.47)	31 fewer per 1,000 (from 92 fewer to 80 more)		CRITICAL
Intubatio	n - RCTs	1	1	1							1
4 RCTs	not serious	not serious	not serious ^a	very serious b	none	19/141 (13.5%)	23/134 (17.2%)	RR 0.79 (0.46 to 1.35)	36 fewer per 1,000 (from 93 fewer to 60 more)		CRITICAL
ICU lengt	th of stay - I	RCTs	l			1					
3 RCTs	not serious	not serious	not serious	serious ^c	none	118	117	-	MD 0.1 higher (0.73 lower to 0.94 higher)	⊕⊕⊕⊖ MODERATE	IMPORTANT
Hospital	length of st	ay - RCTs	1	1							1
4 RCTs	not serious	not serious	not serious	serious ^c	none	178	174	-	MD 0.82 days lower (1.83 lower to 0.2 higher)	⊕⊕⊕⊖ MODERATE	IMPORTANT
Comfort	(lower is be	tter) (Scale from:	0 to 10)								
2 RCTs	not serious ^d	serious ^e	not serious	serious ^f	none	49	52	-	SMD 0.57 SD lower (0.98 lower to 0.16 lower)		IMPORTANT
Dyspnea					1						
3 RCTs	not serious ^d	not serious	not serious	serious ^c	none	77	76	-	MD 0.31 lower (0.94 lower to 0.33 higher)	⊕⊕⊕⊖ MODERATE	IMPORTANT
PaO2/FiC	02 - RCTs (fe	ollow up: mean 6	hours)								

Recommendation 8: High-flow nasal cannula (HFNC) vs. non-invasive ventilation (NIV) in hypercapnic respiratory failure

2 RCTs	not serious	not serious	not serious ^a	not serious	none	44	44	-	MD 0.52 lower (3.59 lower to 2.56 higher)	⊕⊕⊕⊕ HIGH	IMPORTANT
PO2 - RC	Ts		1								
3 RCTs	not serious	not serious	not serious	not serious	none	151	109	-	MD 0.32 higher (3.83 lower to 4.47 higher)	⊕⊕⊕⊕ HIGH	IMPORTANT
PCO2 - R	CTs										
6 RCTs	not serious	serious ^e	not serious	serious ^c	none	230	227	-	MD 0.79 mmHg lower (5.19 lower to 3.61 higher)		IMPORTANT
Respirate	ory rate - RC	CTs	1								
5 RCTs	not serious	not serious	not serious	not serious	none	148	144	-	MD 0.40 lower (1.60 lower to 0.8 higher)	⊕⊕⊕⊕ HIGH	IMPORTANT

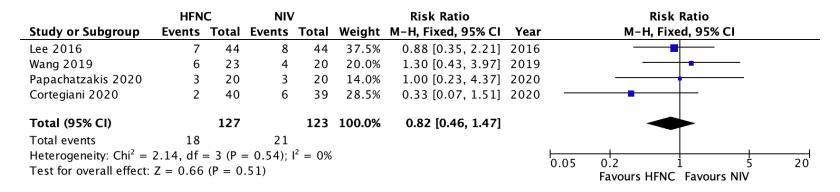
CI: Confidence interval; RR: Risk ratio; MD: Mean difference; SMD: Standardised mean difference

Explanations

a. NIV settings in comparison group appear to have been reasonable and titrated to patient need in most studies.

b. Very wide 95% confidence intervals resulting in very serious imprecision.

c. Wide 95% confidence intervals which do not rule out significant benefit nor harm.


d. High statistical heterogeneity with study point estimates on opposite sides of the line of no effect.

e. Lack of blinding of patients may result in bias, but given the immediacy of the comfort/discomfort using NIV/HFNC we judge patient assessments of comfort and dyspnea to be of lower risk of bias.

f. Statistically significant but optimal information size not met.

Recommendation 8: High-flow nasal cannula (HFNC) vs. non-invasive ventilation (NIV) in hypercaphic respiratory failure

1. Mortality

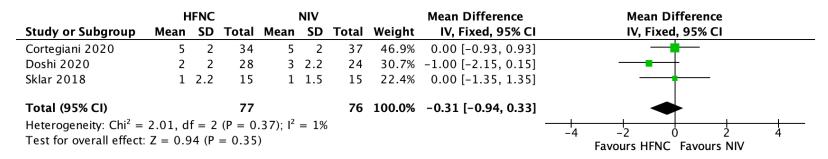
2. Intubation

	HFN	С	NIV	/		Risk Ratio			Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M–H, Fixed, 95% Cl	Year		M–H, Fixed, 95% CI		
Lee 2016	11	44	12	44	50.9%	0.92 [0.45, 1.85]	2016				
Wang 2019	4	23	5	20	22.7%	0.70 [0.22, 2.24]	2019				
Doshi 2020	2	34	5	31	22.2%	0.36 [0.08, 1.75]	2020				
Cortegiani 2020	2	40	1	39	4.3%	1.95 [0.18, 20.64]	2020				
Total (95% CI)		141		134	100.0%	0.79 [0.46, 1.35]					
Total events	19		23						_		
Heterogeneity: Chi ² =	1.72, df	= 3 (P	= 0.63);	$l^2 = 0\%$	6					<u> </u>	- 20
Test for overall effect	Z = 0.86	5 (P = C)).39)					0.05	0.2 1 Favours HFNC Favours N	1IV 2	20

Recommendation 8: High-flow nasal cannula (HFNC) vs. non-invasive ventilation (NIV) in hypercapnic respiratory failure

3. ICU length of stay

	H	HFNC			NIV			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Wang 2019	9.09	1.56	23	8.5	1.32	20	57.1%	0.59 [-0.27, 1.45]	2019	
Cong 2019	18.04	6.15	84	18.31	7.01	84	15.6%	-0.27 [-2.26, 1.72]	2019	
Doshi 2020	1.8	1.2	11	2.5	2.3	13	27.3%	-0.70 [-2.14, 0.74]	2020	
Total (95% CI)			118			117	100.0%	0.10 [-0.73, 0.94]		
Heterogeneity: Tau ² = Test for overall effect				f = 2 (P	= 0.29	9); I ² =	20%			-2 -1 0 1 2 Favours HFNC Favours NIV


4. Hospital length of stay

	I	HFNC			NIV			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	Year	IV, Fixed, 95% CI
Cong 2019	18.04	6.15	84	18.31	7.01	84	26.0%	-0.27 [-2.26, 1.72]	2019	
Doshi 2020	4.37	3.08	34	5.01	2.39	31	58.0%	-0.64 [-1.97, 0.69]	2020	
Papachatzakis 2020	11.5	8.5	20	11	10.5	20	2.9%	0.50 [-5.42, 6.42]	2020	
Cortegiani 2020	10	7.4	40	13	5.2	39	13.0%	-3.00 [-5.81, -0.19]	2020	
Total (95% CI)			178			174	100.0%	-0.82 [-1.83, 0.20]		•
Heterogeneity: Chi ² =	2.86, df	= 3 (P	P = 0.42	1); $I^2 = 0$	0%				-	
Test for overall effect:	Z = 1.5	8 (P =	0.11)							Favours HFNC Favours NIV

5. Comfort

	ŀ	IFNC			NIV			Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	Year	IV, Fixed, 95% CI
Sklar 2018	-6	2.2	15	-7	2.2	15	32.0%	0.44 [-0.28, 1.17]	2018	
Cortegiani 2020	0	1.5	34	2	2.2	37	68.0%	-1.04 [-1.54, -0.54]	2020	
Total (95% CI)			49			52	100.0%	-0.57 [-0.98, -0.16]		•
Heterogeneity: Chi ² =); ² =	= 91%				
Test for overall effect	Z = 2.7	71 (P	= 0.00	7)						Favours HFNC Favours NIV

6. Dyspnea

7. PaO2/FiO2

	н	FNC			NIV			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	Year	IV, Fixed, 95% CI
Lee 2016	-134.8	7.3	44	-134.5	7.5	44	98.9%	-0.30 [-3.39, 2.79]	2016	
Cortegiani 2020	-2.2	62.3	40	17.8	70.8	39	1.1%	-20.00 [-49.44, 9.44]	2020 🕂	<u>_</u>
Total (95% CI)			84			83	100.0%	-0.52 [-3.59, 2.56]		•
Heterogeneity: Chi ² = Test for overall effect	,	,); $I^2 = 41$.%				_	-20 -10 0 10 20 Favours HFNC Favours NIV

8. PO2

		HFNC			NIV			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	Year	IV, Fixed, 95% CI
Cong 2019	81.87	15.27	84	82.22	15.64	84	78.7%	-0.35 [-5.02, 4.32]	2019	
Doshi 2020	83	43	27	88	14.8	25	5.8%	-5.00 [-22.23, 12.23]	2020	
Cortegiani 2020	3.1	20.7	40	-2.6	26.6	39	15.5%	5.70 [-4.83, 16.23]	2020	- +
Total (95% CI)			151			148	100.0%	0.32 [-3.83, 4.47]		•
Heterogeneity: Chi ² = Test for overall effect:				b); $I^2 = 0$	%					-50 -25 0 25 50 Favours HFNC Favours NIV

9. PCO2

	HFNC			NIV				Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	r IV, Random, 95% CI
Lee 2016	56.4	10.1	44	52.6	8.8	44	21.5%	3.80 [-0.16, 7.76]	2016	5
Sklar 2018	53	14	15	54	14	15	11.1%	-1.00 [-11.02, 9.02]	2018	3
Cong 2019	58.87	14.42	84	59.95	13.56	84	21.0%	-1.08 [-5.31, 3.15]	2019)
Doshi 2020	50	11.9	27	57	17	25	13.9%	-7.00 [-15.03, 1.03]	2020)
Cortegiani 2020	64	14.9	40	58.1	12.4	39	17.5%	5.90 [-0.14, 11.94]	2020)
Papachatzakis 2020	50.8	9.4	20	59.6	13.9	20	15.1%	-8.80 [-16.15, -1.45]	2020)
Total (95% CI)			230			227	100.0%	-0.79 [-5.19, 3.61]		
Heterogeneity: Tau ² = 19.33; Chi ² = 15.83, df = 5 (P = 0.007); l ² = 68%										
Test for overall effect: $Z = 0.35$ (P = 0.72) Test for overall effect: $Z = 0.35$ (P = 0.72) Test for overall effect: $Z = 0.35$ (P = 0.72)										

10. Respiratory rate

	HFNC			NIV				Mean Difference		Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	r IV, Random, 95% CI		
Lee 2016	24	5.9	44	24	5.4	44	25.8%	0.00 [-2.36, 2.36]	2016	;		
Sklar 2018	18	5.2	15	19	5.9	15	9.1%	-1.00 [-4.98, 2.98]	2018	;		
Papachatzakis 2020	15.7	3.5	20	17.3	4.6	20	22.5%	-1.60 [-4.13, 0.93]	2020)		
Doshi 2020	21	3.7	29	22	5.2	26	24.8%	-1.00 [-3.41, 1.41]	2020)		
Cortegiani 2020	-6	6	40	-7.7	6.9	39	17.7%	1.70 [-1.15, 4.55]	2020)		
Total (95% CI)			148			144	100.0%	-0.40 [-1.60, 0.80]		•		
Heterogeneity: Tau ² = 0.00; Chi ² = 3.38, df = 4 (P = 0.50); $l^2 = 0\%$												
Test for overall effect: $7 = 0.65$ (P = 0.52)										-10 -5 0 5 10 Favours HFNC Favours NIV		

References

- Chidekel A, Zhu Y, Wang J, et al. The effects of gas humidification with high-flow nasal cannula on cultured human airway epithelial cells. Pulm Med 2012; 2012: 380686.
- 2. Renda T, Corrado A, Iskandar G, et al. High-flow nasal oxygen therapy in intensive care and anaesthesia. Br J Anaesth 2018; 120: 18–27.
- 3. Pisani L, Astuto M, Prediletto I, et al. High flow through nasal cannula in exacerbated COPD patients: a systematic review. Pulmonology 2019; 25: 348–354.
- 4. Ricard J-D, Roca O, Lemiale V, et al. Use of nasal high flow oxygen during acute respiratory failure. Intensive Care Med 2020; 46: 2238–2247.
- 5. Kang BJ, Koh Y, Lim C-M, et al. Failure of high-flow nasal cannula therapy may delay intubation and increase mortality. Intensive Care Med 2015; 41: 623–632.
- 6. Schünemann H, Brożek J, Guyatt G, et al. GRADE Handbook. Version 3.2. 2008. https://gdt.gradepro.org/app/handbook/handbook.html Date last updated: October 2013.
- 7. Guyatt GH, Oxman AD, Santesso N, et al. GRADE guidelines: 12. Preparing summary of findings tables binary outcomes. J Clin Epidemiol 2013; 66: 158–172.
- Guyatt GH, Thorlund K, Oxman AD, et al. GRADE guidelines: 13. Preparing summary of findings tables and evidence profiles – continuous outcomes. J Clin Epidemiol 2013; 66: 173–183.
- 9. Balshem H, Helfand M, Schünemann HJ, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 2011; 64: 401–406.
- 10. Guyatt GH, Oxman AD, Vist G, et al. GRADE guidelines: 4. Rating the quality of evidence study limitations (risk of bias). J Clin Epidemiol 2011; 64: 407–415.
- 11. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: 7. Rating the quality of evidence inconsistency. J Clin Epidemiol 2011; 64: 1294–1302.
- 12. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: 8. Rating the quality of evidence indirectness. J Clin Epidemiol 2011; 64: 1303–1310.
- 13. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines 6. Rating the quality of evidence imprecision. J Clin Epidemiol 2011; 64: 1283–1293.
- 14. Guyatt GH, Oxman AD, Montori V, et al. GRADE guidelines: 5. Rating the quality of evidence publication bias. J Clin Epidemiol 2011; 64: 1277–1282.
- 15. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: 2. Framing the question and deciding on important outcomes. J Clin Epidemiol 2011; 64: 395–400.
- 16. Andrews JC, Schünemann HJ, Oxman AD, et al. GRADE guidelines: 15. Going from evidence to recommendation determinants of a recommendation's direction and strength. J Clin Epidemiol 2013; 66: 726–735.

- 17. Andrews J, Guyatt G, Oxman AD, et al. GRADE guidelines: 14. Going from evidence to recommendations: the significance and presentation of recommendations. J Clin Epidemiol 2013; 66: 719–725.
- Matthay MA, Thompson BT, Ware LB. The Berlin definition of acute respiratory distress syndrome: should patients receiving high-flow nasal oxygen be included? Lancet Respir Med 2021; 9: 933–936.
- 19. Scala R, Heunks L. Highlights in acute respiratory failure. Eur Respir Rev 2018; 27: 180008.
- Rochwerg B, Brochard L, Elliott MW, et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J 2017; 50: 1602426.
- Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med 2017; 195: 438– 442.
- Yoshida T, Grieco DL, Brochard L, et al. Patient self-inflicted lung injury and positive end-expiratory pressure for safe spontaneous breathing. Curr Opin Crit Care 2020; 26: 59–65.
- 23. Papazian L, Corley A, Hess D, et al. Use of high-flow nasal cannula oxygenation in ICU adults: a narrative review. Intensive Care Med 2016; 42: 1336–1349.
- 24. Mauri T, Turrini C, Eronia N, et al. Physiologic effects of high-flow nasal cannula in acute hypoxemic respiratory failure. Am J Respir Crit Care Med 2017; 195: 1207–1215.
- 25. Cortegiani A, Crimi C, Noto A, et al. Effect of high-flow nasal therapy on dyspnea, comfort, and respiratory rate. Crit Care 2019; 23: 201.
- Azoulay E, Pickkers P, Soares M, et al. Acute hypoxemic respiratory failure in immunocompromised patients: the Efraim multinational prospective cohort study. Intensive Care Med 2017; 43: 1808–1819.
- 27. Frat J-P, Coudroy R, Marjanovic N, et al. High-flow nasal oxygen therapy and noninvasive ventilation in the management of acute hypoxemic respiratory failure. Ann Transl Med 2017; 5: 297.
- 28. Parke RL, McGuinness SP, Eccleston ML. A preliminary randomized controlled trial to assess effectiveness of nasal high-flow oxygen in intensive care patients. Respir Care 2011; 56: 265–270.
- 29. Bell N, Hutchinson CL, Green TC, et al. Randomised control trial of humidified high flow nasal cannulae versus standard oxygen in the emergency department. Emerg Med Australas 2015; 27: 537–541.
- 30. Frat JP, Thille AW, Mercat A, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 2015; 372: 2185–2196.
- 31. Lemiale V, Mokart D, Mayaux J, et al. The effects of a 2-h trial of high-flow oxygen by nasal cannula versus Venturi mask in immunocompromised patients with

hypoxemic acute respiratory failure: a multicenter randomized trial. Crit Care 2015; 19: 380.

- Rittayamai N, Tscheikuna J, Praphruetkit N, et al. Use of high-flow nasal cannula for acute dyspnea and hypoxemia in the emergency department. Respir Care 2015; 60: 1377–1382.
- 33. Jones PG, Kamona S, Doran O, et al. Randomized controlled trial of humidified high-flow nasal oxygen for acute respiratory distress in the emergency department: the HOT-ER Study. Respir Care 2016; 61: 291–299.
- 34. Makdee O, Monsomboon A, Surabenjawong U, et al. High-flow nasal cannula versus conventional oxygen therapy in emergency department patients with cardiogenic pulmonary edema: a randomized controlled trial. Ann Emerg Med 2017; 70: 465–472.
- 35. Azoulay E, Lemiale V, Mokart D, et al. Effect of high-flow nasal oxygen vs standard oxygen on 28-day mortality in immunocompromised patients with acute respiratory failure: the HIGH randomized clinical trial. JAMA 2018; 320: 2099–2107.
- 36. Raeisi S, Fakharian A, Ghorbani F, et al. Value and safety of high flow oxygenation in the treatment of inpatient asthma: a randomized, double-blind, pilot study. Iran J Allergy Asthma Immunol 2019; 18: 615–623.
- 37. Geng W, Batu W, You S, et al. High-flow nasal cannula: a promising oxygen therapy for patients with severe bronchial asthma complicated with respiratory failure. Can Respir J 2020; 2020: 2301712.
- 38. Ko DR, Beom J, Lee HS, et al. Benefits of high-flow nasal cannula therapy for acute pulmonary edema in patients with heart failure in the emergency department: a prospective multi-center randomized controlled trial. J Clin Med 2020; 9: 1937.
- 39. Nö AM, Temel Ş, Yüksel R, et al. The use of high-flow nasal oxygen vs. standard oxygen therapy in hematological malignancy patients with acute respiratory failure in hematology wards. Turkish J Med Sci 2021; 51: 1756–1763.
- 40. Cuquemelle E, Pham T, Louis B, et al. Heated and humidified high flow oxygen therapy reduces discomfort during hypoxemic respiratory failure. Intensive Care Med 2011; 37: S190.
- 41. Schwabbauer N, Berg B, Blumenstock G, et al. Nasal high-flow oxygen therapy in patients with hypoxic respiratory failure: effect on functional and subjective respiratory parameters compared to conventional oxygen therapy and non-invasive ventilation (NIV). BMC Anesthesiol 2014; 14: 66.
- 42. Ruangsomboon O, Dorongthom T, Chakorn T, et al. High-flow nasal cannula versus conventional oxygen therapy in relieving dyspnea in emergency palliative patients with do-not-intubate status: a randomized crossover study. Ann Emerg Med 2019; 75: 615–626.
- 43. Bos LD, Artigas A, Constantin J-M, et al. Precision medicine in acute respiratory distress syndrome: workshop report and recommendations for future research. Eur Respir Rev 2021; 30: 200317.

- 44. Renda T, Scala R, Corrado A, et al. Adult pulmonary intensive and intermediate care units: the Italian Thoracic Society (ITS-AIPO) position paper. Respiration 2021; 100: 1027–1037.
- Jahagirdar D, Picheca L. Heated Humidified High Flow Oxygen for Respiratory Support: a Review of Clinical Effectiveness, Cost-Effectiveness, and Guidelines. 2019. https://www.ncbi.nlm.nih.gov/books/NBK544686/
- 46. Attaway AH, Scheraga RG, Bhimraj A, et al. Severe covid-19 pneumonia: pathogenesis and clinical management. BMJ 2021; 372: n436.
- 47. Agarwal A, Basmaji J, Muttalib F, et al. High-flow nasal cannula for acute hypoxemic respiratory failure in patients with COVID-19: systematic reviews of effectiveness and its risks of aerosolization, dispersion, and infection transmission. Can J Aneasth 2020; 67: 1217–1248.
- 48. Ferioli M, Cisternino C, Leo V, et al. Protecting healthcare workers from SARS-CoV-2 infection: practical indications. Eur Respir Rev 2020; 29: 200068.
- 49. Franco C, Facciolongo N, Tonelli R, et al. Feasibility and clinical impact of out-of-ICU noninvasive respiratory support in patients with COVID-19-related pneumonia. Eur Respir J 2020; 56: 2002130.
- 50. Winck J, Scala R. Non-invasive respiratory support paths in hospitalized patients with COVID-19: proposal of an algorithm. Pulmonology 2021; 27: 305–312.
- 51. Ding L, Wang L, Ma W, et al. Efficacy and safety of early prone positioning combined with HFNC or NIV in moderate to severe ARDS: a multi-center prospective cohort study. Crit Care 2020; 24: 28.
- 52. Ibarra-Estrada MÁ, Marín-Rosales M, García-Salcido R, et al. Prone positioning in non-intubated patients with COVID-19 associated acute respiratory failure, the PRO-CARF trial: a structured summary of a study protocol for a randomised controlled trial. Trials 2020; 21: 940.
- 53. Al-Hazzani W. Awake prone position in hypoxemic patients with coronavirus disease 19 (COVI-PRONE): a randomized clinical trial (COVI-PRONE). 2021. ClinicalTrials.Gov identifier NCT04350723.
- 54. Garcia MA, Rampon GL, Doros G, et al. Rationale and design of the awake prone position for early hypoxemia in COVID-19 study protocol: a clinical trial. Ann Am Thorac Soc 2021; 18: 1560–1566.
- 55. Grieco DL, Menga LS, Eleuteri D, et al. Patient self-inflicted lung injury: implications for acute hypoxemic respiratory failure and ARDS patients on non-invasive support. Minerva Anestesiol 2019; 85: 1014–1023.
- 56. Bellani G, Laffey JG, Pham T, et al. Noninvasive ventilation of patients with acute respiratory distress syndrome. Insights from the LUNG SAFE study. Am J Respir Crit Care Med 2017; 195: 67–77.
- 57. Carteaux G, Millán-Guilarte T, De Prost N, et al. Failure of noninvasive ventilation for de novo acute hypoxemic respiratory failure: role of tidal volume. Crit Care Med 2016; 44: 282–290.

- 58. Frat JP, Ragot S, Coudroy R, et al. Predictors of intubation in patients with acute hypoxemic respiratory failure treated with a noninvasive oxygenation strategy. Crit Care Med 2018; 46: 208–215.
- 59. Patel BK, Kress JP. The changing landscape of noninvasive ventilation in the intensive care unit. JAMA 2015; 314: 1697–1699.
- 60. Ferreyro BL, Angriman F, Munshi L, et al. Association of noninvasive oxygenation strategies with all-cause mortality in adults with acute hypoxemic respiratory failure: a systematic review and meta-analysis. JAMA 2020; 324: 57–67.
- 61. Azevedo JR, Montenegro WS, Leitao AL, et al. High flow nasal cannula oxygen (HFNC) versus non-invasive positive pressure ventilation (NIPPV) in acute hypoxemic respiratory failure. A pilot randomized controlled trial. Intensive Care Med Exp 2015; 3: Suppl. 1, A166.
- 62. Doshi P, Whittle JS, Bublewicz M, et al. High-velocity nasal insufflation in the treatment of respiratory failure: a randomized clinical trial. Ann Emerg Med 2018; 72: 73–83.
- 63. Shebl E, Embarak S. High-flow nasal oxygen therapy versus noninvasive ventilation in chronic interstitial lung disease patients with acute respiratory failure. Egypt J Chest Dis Tuberculosis 2018; 67: 270–275.
- 64. Adi O, Kai Fei S, Azma Haryaty A, et al. Preliminary report: a randomized controlled trial comparing helmet continuous positive airway pressure (CPAP) vs high flow nasal cannula (HFNC) for treatment of acute cardiogenic pulmonary oedema in the emergency department. Critical Care 2019; 23: Suppl. 2, P340.
- 65. Artaud-Macari E, Bubenheim M, Le Bouar G, et al. High-flow oxygen therapy vs non invasive ventilation – a prospective cross-over physiological study of alveolar recruitment in acute respiratory failure. Ann Intensive Care 2019; 9: Suppl. 1, CO-27.
- 66. Grieco DL, Menga LS, Raggi V, et al. Physiological comparison of high-flow nasal cannula and helmet noninvasive ventilation in acute hypoxemic respiratory failure.
 Am J Respir Crit Care Med 2020; 201: 303–312.
- 67. Patel BK, Wolfe KS, Pohlman AS, et al. Effect of noninvasive ventilation delivered by helmet vs face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 2016; 315: 2435–2441.
- 68. Grieco DL, Menga LS, Cesarano M, et al. Effect of helmet noninvasive ventilation vs high-flow nasal oxygen on days free of respiratory support in patients with COVID-19 and moderate to severe hypoxemic respiratory failure: the HENIVOT randomized clinical trial. JAMA 2021; 325: 1731–1743.
- 69. Frat JP, Brugiere B, Ragot S, et al. Sequential application of oxygen therapy via high-flow nasal cannula and noninvasive ventilation in acute respiratory failure: an observational pilot study. Respir Care 2015; 60: 170–178.

- 70. Spoletini G, Mega C, Pisani L, et al. High-flow nasal therapy vs standard oxygen during breaks off noninvasive ventilation for acute respiratory failure: a pilot randomized controlled trial. J Crit Care 2018; 48: 418–425.
- 71. Jammer I, Wickboldt N, Sander M, et al. Standards for definitions and use of outcome measures for clinical effectiveness research in perioperative medicine: European Perioperative Clinical Outcome (EPCO) definitions: a statement from the ESA-ESICM joint taskforce on perioperative outcome measures. Eur J Anaesthesiol 2015; 32: 88–105.
- 72. O'Gara B, Talmor D. Perioperative lung protective ventilation. BMJ 2018; 362: k3030.
- 73. Odor PM, Bampoe S, Gilhooly D, et al. Perioperative interventions for prevention of postoperative pulmonary complications: systematic review and meta-analysis.
 BMJ 2020; 368: m540.
- 74. Leone M, Einav S, Chiumello D, et al. Noninvasive respiratory support in the hypoxaemic peri-operative/periprocedural patient: a joint ESA/ESICM guideline. Intensive Care Med 2020; 46: 697–713.
- 75. Stéphan F, Barrucand B, Petit P, et al. High-flow nasal oxygen vs noninvasive positive airway pressure in hypoxemic patients after cardiothoracic surgery: a randomized clinical trial. JAMA 2015; 313: 2331–2339.
- 76. Hernández G, Vaquero C, Colinas L, et al. Effect of postextubation high-flow nasal cannula vs noninvasive ventilation on reintubation and postextubation respiratory failure in high-risk patients: a randomized clinical trial. JAMA 2016; 316: 1565–1574.
- 77. Yu Y, Qian X, Liu C, et al. Effect of high-flow nasal cannula versus conventional oxygen therapy for patients with thoracoscopic lobectomy after extubation. Can Respir J 2017; 2017: 7894631.
- 78. Xia M, Li W, Yao J, et al. A postoperative comparison of high-flow nasal cannula therapy and conventional oxygen therapy for esophageal cancer patients. Ann Palliat Med 2021; 10: 2530–2539.
- 79. D'Cruz RF, Hart N, Kaltsakas G. High-flow therapy: physiological effects and clinical applications. Breathe 2020; 16: 200224.
- Parke R, McGuinness S, Dixon R, et al. Open-label, phase II study of routine highflow nasal oxygen therapy in cardiac surgical patients. Br J Anaesth 2013; 111: 925– 931.
- 81. Corley A, Bull T, Spooner AJ, et al. Direct extubation onto high-flow nasal cannulae post-cardiac surgery versus standard treatment in patients with a BMI ≥30: a randomised controlled trial. Intensive Care Med 2015; 41: 887–894.
- 82. Ansari BM, Hogan MP, Collier TJ, et al. A randomized controlled trial of high-flow nasal oxygen (Optiflow) as part of an enhanced recovery program after lung resection surgery. Ann Thorac Surg 2016; 101: 459–464.
- 83. Futier E, Paugam-Burtz C, Godet T, et al. Effect of early postextubation high-flow nasal cannula vs conventional oxygen therapy on hypoxaemia in patients after

major abdominal surgery: a French multicentre randomised controlled trial (OPERA). Intensive Care Med 2016; 42: 1888–1898.

- Blaudszun G, Zochios V, Butchart A, et al. A randomised controlled trial of high-flow nasal oxygen (OptiflowTM) in high-risk cardiac surgical patients. Anaesthesia 2017; 72: Suppl. 4, 15.
- 85. Brainard J, Scott BK, Sullivan BL, et al. Heated humidified high-flow nasal cannula oxygen after thoracic surgery a randomized prospective clinical pilot trial. J Crit Care 2017; 40: 225–228.
- Sahin M, El H, Akkoç I. Comparison of mask oxygen therapy and high-flow oxygen therapy after cardiopulmonary bypass in obese patients. Can Respir J 2018; 2018: 1039635.
- 87. Zochios V, Collier T, Blaudszun G, et al. The effect of high-flow nasal oxygen on hospital length of stay in cardiac surgical patients at high risk for respiratory complications: a randomised controlled trial. Anaesthesia 2018; 73: 1478–1488.
- 88. Ferrando C, Puig J, Serralta F, et al. High-flow nasal cannula oxygenation reduces postoperative hypoxemia in morbidly obese patients: a randomized controlled trial. Minerva Anestesiol 2019; 85: 1062–1070.
- 89. Pennisi MA, Bello G, Congedo MT, et al. Early nasal high-flow versus Venturi mask oxygen therapy after lung resection: a randomized trial. Crit Care 2019; 23: 68.
- 90. Twose P, Thomas C, Morgan M, et al. Comparison of high-flow oxygen therapy with standard oxygen therapy for prevention of postoperative pulmonary complications after major head and neck surgery involving insertion of a tracheostomy: a feasibility study. Br J Oral Maxillofac Surg 2019; 57: 1014–1018.
- 91. Tatsuishi W, Sato T, Kataoka G, et al. High-flow nasal cannula therapy with early extubation for subjects undergoing off-pump coronary artery bypass graft surgery. Respir Care 2020; 65: 183–190.
- 92. Vourc'h M, Nicolet J, Volteau C, et al. High-flow therapy by nasal cannulae versus high-flow face mask in severe hypoxemia after cardiac surgery: a single-center randomized controlled study – the HEART FLOW study. J Cardiothorac Vasc Anesth 2020; 34: 157–165.
- 93. Stéphan F, Bérard L, Rézaiguia-Delclaux S, et al. High-flow nasal cannula therapy versus intermittent noninvasive ventilation in obese subjects after cardiothoracic surgery. Respir Care 2017; 62: 1193–1202.
- 94. Esteban A, Frutos-Vivar F, Muriel A, et al. Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med 2013; 188: 220–230.
- 95. Miu T, Joffe AM, Yanez ND, et al. Predictors of reintubation in critically ill patients. Respir Care 2014; 59: 178–185.
- 96. Tiruvoipati R, Lewis D, Haji K, et al. High-flow nasal oxygen vs high-flow face mask: a randomized crossover trial in extubated patients. J Crit Care 2010; 25: 463–468.

- 97. Maggiore SM, Idone FA, Vaschetto R, et al. Nasal high-flow versus Venturi mask oxygen therapy after extubation. Effects on oxygenation, comfort, and clinical outcome. Am J Respir Crit Care Med 2014; 190: 282–288.
- Perbet S, Gerst A, Chabanne R, et al. High-flow nasal oxygen cannula versus conventional oxygen therapy to prevent postextubation lung aeration loss: a multicentric randomized control lung ultrasound study. Intensive Care Med 2014; 40: S128.
- 99. Rittayamai N, Tscheikuna J, Rujiwit P. High-flow nasal cannula versus conventional oxygen therapy after endotracheal extubation: a randomized crossover physiologic study. Respir Care 2014; 59: 485–490.
- 100. Hernández G, Vaquero C, González P, et al. Effect of postextubation high-flow nasal cannula vs conventional oxygen therapy on reintubation in low-risk patients: a randomized clinical trial. JAMA 2016; 315: 1354–1361.
- 101. Arman PD, Varn MN, Povian S, et al. Effects of direct extubation to high-flow nasal cannula compared to standard nasal cannula in patients in the intensive care unit. Am J Respir Crit Care Med 2017; 195: A1887.
- 102. Fernandez R, Subira C, Frutos-Vivar F, et al. High-flow nasal cannula to prevent postextubation respiratory failure in high-risk non-hypercapnic patients: a randomized multicenter trial. Ann Intensive Care 2017; 7: 47.
- 103. Song HZ, Gu JX, Xiu HQ, et al. The value of high-flow nasal cannula oxygen therapy after extubation in patients with acute respiratory failure. Clinics 2017; 72: 562–567.
- 104. Di Mussi R, Spadaro S, Stripoli T, et al. High-flow nasal cannula oxygen therapy decreases postextubation neuroventilatory drive and work of breathing in patients with chronic obstructive pulmonary disease. Crit Care 2018; 22: 180.
- 105. Cho JY, Kim H-S, Kang H, et al. Comparison of postextubation outcomes associated with high-flow nasal cannula vs. conventional oxygen therapy in patients at high risk of reintubation: a randomized clinical trial. J Korean Med Sci 2020; 35: e194.
- 106. Hu TY, Lee CH, Cheng KH, et al. Effect of high-flow nasal oxygen vs. conventional oxygen therapy on extubation outcomes and physiologic changes for patients with high risk of extubation failure in the medical ICU: a tertiary center, randomized, controlled trial. Int J Gerontol 2020; 14: 36–41.
- 107. Matsuda W, Hagiwara A, Uemura T, et al. High-flow nasal cannula may not reduce the re-intubation rate after extubation in respiratory failure compared with a largevolume nebulization-based humidifier. Respir Care 2020; 65: 610–617.
- 108. Eaton Turner E, Jenks M. Cost-effectiveness analysis of the use of high-flow oxygen through nasal cannula in intensive care units in NHS England. Expert Rev Pharmacoecon Outcomes Res 2018; 18: 331–337.
- 109. Maggiore SM, Battilana M, Serano L, et al. Ventilatory support after extubation in critically ill patients. Lancet Respir Med 2018; 6: 948–962.

- 110. Theerawit P, Natpobsuk N, Sutherasan Y. The efficacy of the Whispherflow CPAP system versus high flow nasal cannula in patients at high risk for postextubation failure. Intens Care Med Exp 2017; 5: Suppl. 2: 0407.
- 111. Zhang JC, Wu FX, Meng LL, et al. [A study on the effects and safety of sequential humidified high flow nasal cannula oxygenation therapy on the COPD patients after extubation]. Zhonghua Yi Xue Za Zhi 2018; 98: 109–112.
- 112. Jing G, Li J, Hao D, et al. Comparison of high flow nasal cannula with noninvasive ventilation in chronic obstructive pulmonary disease patients with hypercapnia in preventing postextubation respiratory failure: a pilot randomized controlled trial. Res Nurs Health 2019; 42: 217–225.
- 113. Thille AW, Muller G, Gacouin A, et al. Effect of postextubation high-flow nasal oxygen with noninvasive ventilation vs high-flow nasal oxygen alone on reintubation among patients at high risk of extubation failure: a randomized clinical trial. JAMA 2019; 322: 1465–1475.
- 114. Tseng CW, Chao KY, Chiang CE, et al. The efficacy of heated humidifier high-flow nasal cannula compared with noninvasive positive-pressure ventilation in prevention of reintubation in patients with prolonged mechanical ventilation. Eur Respir J 2019; 54: Suppl. 63, RCT5097.
- 115. Tan D, Walline JH, Ling B, et al. High-flow nasal cannula oxygen therapy versus non-invasive ventilation for chronic obstructive pulmonary disease patients after extubation: a multicenter, randomized controlled trial. Crit Care 2020; 24: 489.
- 116. Halbert R, Natoli J, Gano A, et al. Global burden of COPD: systematic review and meta-analysis. Eur Respir J 2006; 28: 523–532.
- 117. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am J Respir Crit Care Med 2017; 195: 557–582.
- Deenen JC, Horlings CG, Verschuuren JJ, et al. The epidemiology of neuromuscular disorders: a comprehensive overview of the literature. J Neuromuscul Dis 2015; 2: 73–85.
- 119. Bruni A, Garofalo E, Cammarota G, et al. High flow through nasal cannula in stable and exacerbated chronic obstructive pulmonary disease patients. Rev Recent Clin Trials 2019; 14: 247–260.
- 120. Papachatzakis I, Velentza L, Kontogiannis S, et al. High flow nasal cannula with warm humidified air versus non-invasive mechanical ventilation in respiratory failure type II. Eur Respir J 2017; 50: Suppl. 61, PA2182.
- 121. Cong L, Zhou L, Liu H, et al. Outcomes of high-flow nasal cannula versus noninvasive positive pressure ventilation for patients with acute exacerbations of chronic obstructive pulmonary disease. Int J Clin Exp Med 2019; 12: 10863–10867.
- Wang JH, Li Q. Randomized controlled study of HFNC and NPPV in the treatment of AECOPD combined with type II respiratory failure. Chin J Integr Med 2019: 39: 945– 948.

- 123. Cortegiani A, Longhini F, Madotto F, et al. High flow nasal therapy versus noninvasive ventilation as initial ventilatory strategy in COPD exacerbation: a multicenter non-inferiority randomized trial. Crit Care 2020; 24: 692.
- 124. Doshi PB, Whittle JS, Dungan G II, et al. The ventilatory effect of high velocity nasal insufflation compared to non-invasive positive-pressure ventilation in the treatment of hypercapneic respiratory failure: a subgroup analysis. Heart Lung 2020; 49: 610–615.
- 125. Sklar MC, Dres M, Ritayamai N, et al. A randomized cross-over physiological study of high flow nasal oxygen cannula versus non-invasive ventilation in adult patients with cystic fibrosis: The HIFEN study. Int Care Med Exp 2017; 5: Suppl. 2, 0674.
- 126. Longhini F, Pisani L, Lungu R, et al. High-flow oxygen therapy after noninvasive ventilation interruption in patients recovering from hypercapnic acute respiratory failure: a physiological crossover trial. Crit Care Med 2019; 47: e506–e511.
- 127. Lee MK, Kim SA, Lee W-Y, et al. The efficacy of high-flow nasal cannulae oxygen therapy in severe acute exacerbation of chronic obstructive pulmonary disease: A randomized controlled trial. Eur Respir J 2016; 48: PA3058.