

Mycoplasma pneumoniae carriage evades induction of protective mucosal antibodies

Ruben Cornelis Anthonie de Groot ¹, Silvia Cristina Estevão¹, Patrick Michael Meyer Sauteur ², Aditya Perkasa¹, Theo Hoogenboezem³, Emiel Benny Margriet Spuesens¹, Lilly Maria Verhagen⁴, Anna Maria Christiane van Rossum⁵ and Wendy Wilhelmina Josephina Unger¹

¹Dept of Pediatrics, Laboratory of Pediatrics, Erasmus MC University Medical Centre Rotterdam – Sophia Children's Hospital, Rotterdam, The Netherlands. ²Division of Infectious Diseases and Hospital Epidemiology, University Children's Hospital Zurich, Zurich, Switzerland. ³Dept of Pediatrics, Van Weel Bethesda Hospital, Dirksland, The Netherlands. ⁴Dept of Pediatrics, Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands. ⁵Dept of Pediatrics, Division of Paediatric Infectious Diseases and Immunology, Erasmus MC University Medical Centre Rotterdam – Sophia Children's Hospital, Rotterdam, The Netherlands.

Corresponding author: Wendy W.J. Unger (w.unger@erasmusmc.nl)

Shareable abstract (@ERSpublications)

Antibodies against *M. pneumoniae*, the most common bacterial cause of pneumonia in children, are able to prevent adhesion of *M. pneumoniae* to epithelial cells, but are only induced during infection and not during asymptomatic carriage https://bit.ly/3CNdAhM

Cite this article as: de Groot RCA, Estevão SC, Meyer Sauteur PM, *et al. Mycoplasma pneumoniae* carriage evades induction of protective mucosal antibodies. *Eur Respir J* 2022; 59: 2100129 [DOI: 10.1183/13993003.00129-2021].

This single-page version can be shared freely online.

Copyright ©The authors 2022.

This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org

Received: 14 Jan 2021 Accepted: 5 Aug 2021

Abstract

Background Mycoplasma pneumoniae is the most common bacterial cause of pneumonia in children hospitalised for community-acquired pneumonia (CAP). Prevention of infection by vaccines may be an important strategy in the presence of emerging macrolide-resistant *M. pneumoniae*. However, knowledge of immune responses to *M. pneumoniae* is limited, complicating vaccine design.

Methods We studied the antibody response during *M. pneumoniae* respiratory tract infection and asymptomatic carriage in two different cohorts.

Results In a nested case—control study (n=80) of *M. pneumoniae* carriers and matched controls we observed that carriage by *M. pneumoniae* does not lead to a rise in either mucosal or systemic *M. pneumoniae*-specific antibodies, even after months of persistent carriage. We replicated this finding in a second cohort (n=69) and also found that during *M. pneumoniae* CAP, mucosal levels of *M. pneumoniae*-specific IgA and IgG did increase significantly. *In vitro* adhesion assays revealed that high levels of *M. pneumoniae*-specific antibodies in nasal secretions of paediatric patients prevented the adhesion of *M. pneumoniae* to respiratory epithelial cells.

Conclusions Our study demonstrates that *M. pneumoniae*-specific mucosal antibodies protect against bacterial adhesion to respiratory epithelial cells, and are induced only during *M. pneumoniae* infection and not during asymptomatic carriage. This is strikingly different from carriage with bacteria such as *Streptococcus pneumoniae* where mucosal antibodies are induced by bacterial carriage.

