



Macrophage-derived IL-6 trans-signalling as a novel target in the pathogenesis of bronchopulmonary dysplasia

Dharmesh Hirani^{1,2}, Cristina M. Alvira³, Soula Danopoulos⁴, Carlos Milla³, Michele Donato⁵, Lu Tian⁶, Jasmine Mohr^{1,2}, Katharina Dinger^{1,2}, Christina Vohlen^{1,7}, Jaco Selle¹, Silke v. Koningsbruggen-Rietschel⁷, Verena Barbarino⁸, Christian Pallasch⁸, Stefan Rose-John⁹, Margarete Odenthal¹⁰, Gloria S. Pryhuber ¹¹, Siavash Mansouri¹², Rajkumar Savai ^{12,13}, Werner Seeger ^{12,13}, Purvesh Khatri⁵, Denise Al Alam ⁴, Jörg Dötsch⁷ and Miguel A. Alejandre Alcazar^{1,2,13,14}

¹University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Dept of Pediatric and Adolescent Medicine, Cologne, Germany. ²University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany. ³Dept of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA. ⁴Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA. ⁵Biomedical Informatics Research-Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA. ⁶Dept of Biomedical Data Science, Stanford University, Stanford, CA, USA. ⁷University of Cologne, Faculty of Medicine and University Hospital Cologne, Dept of Pediatric and Adolescent Medicine, Cologne, Germany. ⁸Dept I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, University of Cologne, Faculty of Medicine and University Kiel, Kiel, Germany. ¹⁰University of Cologne, Faculty of Pediatrics, University Kiel, Kiel, Germany. ¹¹Division of Neonatology, Dep of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA. ¹²Dept of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany. ¹³Institute for Lung Health (ILH), University of Cologne, Faculty of Medicine and University of Medicine and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany. ¹⁴University of Cologne, Faculty of Medicine and University Hospital Cologne, Celogne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany.

Corresponding author: Miguel Alejandre Alcázar (miguel.alejandre-alcazar@uk-koeln.de)

biomarkers that identify infants receiving oxygen at increased risk of developing BPD. Moreover, macrophage-derived *IL6* and active STAT3 were related to loss of epithelial cells in BPD lungs.

Conclusion We present a novel IL-6-mediated mechanism by which hyperoxia activates macrophages in immature lungs, impairs ATII homeostasis and disrupts elastic fibre formation, thereby inhibiting lung growth. The data provide evidence that IL-6 trans-signalling could offer an innovative pharmacological target to enable lung growth in severe neonatal chronic lung disease.