

Automated lung sound analysis using the LungPass platform: a sensitive and specific tool for identifying lower respiratory tract involvement in COVID-19

Elena A. Lapteva¹, Olga N. Kharevich¹, Victoria V. Khatsko², Natalia A. Voronova³, Maksim V. Chamko², Irina V. Bezruchko⁴, Elena I. Katibnikova¹, Elena I. Loban⁵, Mostafa M. Mouawie⁶, Helena Binetskaya⁶, Sergey Aleshkevich⁶, Aleksey Karankevich⁶, Vitaly Dubinetski⁶, Jørgen Vestbo ^{17,8} and Alexander G. Mathioudakis ^{7,8}

¹Belarusian State Medical Academy of Postgraduate Education, Minsk, Belarus. ²5th City Clinical Hospital, Minsk, Belarus. ³Minsk Regional Tuberculosis Dispensary, Minsk Region, Belarus. ⁴Minsk Regional Pediatric Clinical Hospital, Minsk Region, Belarus. ⁵Minsk Clinical Center of Phthisiopulmonology, Minsk, Belarus. ⁶Healthy Networks OU, Tallinn, Estonia. ⁷Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK. ⁸The North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK.

Corresponding author: Alexander G. Mathioudakis (a.mathioudakis@nhs.net)

Check for updates	Shareable abstract (@ERSpublications) Automated lung sound analysis using the #LungPass platform is a sensitive and specific tool for identifying lower respiratory tract involvement in COVID-19 https://bit.ly/3tyAgOD Cite this article as: Lapteva EA, Kharevich ON, Khatsko VV, <i>et al.</i> Automated lung sound analysis using the LungPass platform: a sensitive and specific tool for identifying lower respiratory tract involvement in COVID-19. <i>Eur Respir J</i> 2021; 58: 2101907 [DOI: 10.1183/13993003.01907-2021].
	This single-page version can be shared freely online.
Copyright ©The authors 2021.	To the Editor:
This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org Received: 7 July 2021 Accepted: 5 Sept 2021	Lower respiratory tract (LRT) involvement, observed in about 20% of patients suffering from coronavirus disease 2019 (COVID-19), is associated with a more severe clinical course, adverse outcomes and long-term sequelae [1, 2]. By pointing out people at risk of deterioration, early identification of LRT involvement could facilitate targeted and timely administration of treatments that could alter short- and long-term disease outcomes [3]. While imaging represents the gold standard diagnostic test for LRT involvement, it is associated with a potentially avoidable radiation burden and may not be easily accessible in some treatment settings, such as primary care [4]. Alternatively, oxygen desaturation appears to be a specific, but not sensitive marker, since ground glass changes or consolidation are often observed in the absence of hypoxia [5–7]. The sensitivity of chest auscultation in identifying LRT involvement has been evaluated in limited populations and varies [8, 9], possibly to some extent due to variable skill among the assessors.