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Abstract
Background Despite increased interest in mesenchymal stromal cell (MSC)-based cell therapies for acute
respiratory distress syndrome (ARDS), clinical investigations have not yet been successful and our
understanding of the potential in vivo mechanisms of MSC actions in ARDS remains limited. ARDS is
driven by an acute severe innate immune dysregulation, often characterised by inflammation, coagulation and
cell injury. How this inflammatory microenvironment influences MSC functions remains to be determined.
Aim The aim of this study was to comparatively assess how the inflammatory environment present in
ARDS lungs versus the lung environment present in healthy volunteers alters MSC behaviour.
Methods Clinical-grade human bone marrow-derived MSCs (hMSCs) were exposed to bronchoalveolar
lavage fluid (BALF) samples obtained from ARDS patients or from healthy volunteers. Following
exposure, hMSCs and their conditioned media were evaluated for a broad panel of relevant properties,
including viability, levels of expression of inflammatory cytokines, gene expression, cell surface human
leukocyte antigen expression, and activation of coagulation and complement pathways.
Results Pro-inflammatory, pro-coagulant and major histocompatibility complex (self-recognition) related gene
expression was markedly upregulated in hMSCs exposed ex vivo to BALF obtained from healthy volunteers.
These changes were less apparent and often opposite in hMSCs exposed to ARDS BALF samples.
Conclusion These data provide new insights into how hMSCs behave in healthy versus inflamed lung
environments, and strongly suggest that the inflamed environment in ARDS induces hMSC responses that
are potentially beneficial for cell survival and actions. This further highlights the need to understand how
different disease environments affect hMSC functions.

Introduction
Mesenchymal stromal cells (MSCs) are being increasingly investigated as a cell-based therapy to suppress
excessive inflammation in acute respiratory distress syndrome (ARDS) [1, 2]. However, results of clinical
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investigations of MSCs in ARDS, while uniformly demonstrating safety, have not as yet demonstrated
efficacy [3–5]. While a number of factors may be responsible for the lack of improved outcome, there
remains a fundamental lack of knowledge as to the fate and actions of the administered MSCs in vivo in
the diseased human lung microenvironment (reviewed in [6]). This raises the possibility that the
inflammatory environment encountered may significantly alter potential MSC efficacy and potency.

A growing number of studies, including our own, have found that MSC functions, and thus potential
therapeutic actions, differ depending on the inflammatory environment encountered [7–13]. Ex vivo
exposure to bronchoalveolar lavage fluid (BALF) or serum samples from ARDS patients has a significant
impact on MSC functions, including the profile of secreted mediators and downstream effects on
macrophage functions, often enhancing anti-inflammatory actions [8–12]. For example, BALF from cystic
fibrosis patients with pulmonary Aspergillus infection is rapidly toxic to MSCs, in part related to the
fungal product gliotoxin [13]. This raises the possibility that certain inflammatory lung environments have
deleterious effects on MSCs, with implications for potential therapeutic use. Moreover, contrary to
previously held beliefs, systemically administered allogeneic MSCs rapidly undergo clearance and/or
inactivation [14–17]. This may be related to a phenomenon known as the instant blood-mediated
inflammatory reaction (IBMIR), an immediate inflammatory response to systemically administered
allogeneic MSCs [18–20].

Thus, to investigate the effects of the ARDS inflammatory lung environment on MSC viability and
function, clinical-grade human bone marrow-derived MSCs obtained from healthy volunteers (hMSCs)
were exposed ex vivo to individual BALF samples obtained from ARDS patients and from healthy controls
(HCs) for comparison. Unexpectedly, hMSCs exposed to HC BALF developed an inflammatory response
as well as increased gene and protein expression associated with self- versus non-self-recognition, notably
increased class II human leukocyte antigen (HLA) expression and increased complement expression. These
results suggest that an otherwise non-inflamed normal lung environment stimulates mechanisms for
clearance of allogeneic hMSCs. In contrast, changes in gene and protein expression associated with self-
versus non-self-recognition were either mitigated, absent or opposite in hMSCs exposed to BALF from
ARDS patients. These findings provide evidence of the plasticity of hMSC responses in different clinically
relevant lung environments and shed new light on the potential mechanisms of action of MSC-based cell
therapy for ARDS.

Methods
BALF samples
BALF samples from ARDS patients without sepsis were collected prospectively as part of an unrelated
clinical investigation conducted by the National Heart, Lung, and Blood Institute (NHLBI) ARDS
Network (ARDSNet) (ClinicalTrials.gov NCT0011216) [21]. ARDS BALF samples were obtained by
mini-BAL from a phase 2 National Institutes of Health (NIH) trial conducted by the ARDSNet (Prevention
and Treatment of Acute Lung Injury (PETAL) trial) [21]. A standard 40 mL mini-BAL was performed
using sterile saline in intubated ARDS patients. BALF samples were subsequently centrifuged and stored
at −80°C. The healthy volunteers underwent standard fibre-optic bronchoscopy of the right middle lobe at
Dartmouth under appropriate institutional review board protocols, using 20 cm3 of sterile saline. Samples
were comparably centrifuged and supernatants stored at −70°C. These samples were more recent, having
been obtained between January and July 2018. Healthy volunteers were excluded if they had any history of
cardiopulmonary disease, if they smoked or vaped regularly or if they were taking any immunomodulatory
medication.

Ex vivo exposure of hMSCs
hMSCs were obtained from the NHLBI’s Production Assistance for Cellular Therapies (PACT) programme
and routinely cultured. The hMSCs utilised were obtained from a single volunteer (a second donor was
also used in the complement and flow cytometry experiments) and were the same as those utilised in the
recent Stem Cells for ARDS Treatment (START) trial [3, 4]. Cells at passage 3–5 were used. hMSCs were
exposed to individual ARDS or HC BALF samples diluted into serum-free media (20% BALF as
delineated in prior studies [11, 13]) for 24 h. Serum-free media only or with 20% PBS was added to
control and unstimulated hMSCs, respectively. After 24 h incubation, cells and conditioned media (CM)
was collected.

RNA-sequencing analysis
Total RNA was extracted using standard Trizol extraction followed by a cleaning step using RNeasy spin
columns (Qiagen). RNA was quality assessed on an Agilent fragment analyser instrument and quantified
on a Qubit fluorometer (Thermo Fisher Scientific). RNA-sequencing analyses were performed on RNA
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extracted from hMSCs exposed to PBS (n=4), ARDS BALF (n=5) and HC samples (n=5) and were
aligned to human genes using salmon [22]. Transcript-level information from salmon was imported into R
using tximport [23], normalised in edgeR based on library size to create counts per million (CPM) for each
gene and differential gene expression assessed. Pathway analysis genes that differed significantly from
unstimulated control samples were identified using Ingenuity Pathway Analysis (www.ingenuity.com).

Statistical analyses
A Mann–Whitney test was used to assess differences between two groups. Kruskal–Wallis tests (Dunn’s
post hoc test) or one-way ANOVA (Dunnett’s post hoc test) were used to assess differences between three
or more groups. Statistical analyses were performed using GraphPad Prism software. p-values ⩽0.05 were
considered significant, except in the case of RNA-sequencing data analysed in edgeR, where a multiple
hypothesis corrected false discovery rate (FDR) <0.05 was considered significant. Spearman correlations
were calculated in base R, using the t distribution to calculate p-values in those cases that included ties in
rank. Additional detailed descriptions of these and other methods used in this study are provided in the
supplementary material.

Results
ARDS BALF contains elevated inflammatory mediators compared to HC BALF
To initially determine if the BALF samples differed between the HC and ARDS patient lungs,
inflammatory mediators in clinical BALF samples were assessed using a Human Magnetic Luminex Assay
kit (R&D Systems). The BALF samples used for each assay in the overall study are depicted in
supplementary table S1. Although there were variations between the different clinical isolates, the levels of
total protein, double-stranded DNA (dsDNA) and a range of inflammatory mediators were significantly
elevated in ARDS compared to HC BALF samples (supplementary table S2). There were no significant
differences between ARDS and HC BALF in the levels of anti-inflammatory and T-helper 2 (Th2)
mediators such as interleukin (IL)-10, IL-4 and IL-13.

BALF from both ARDS and HC patients is non-toxic to hMSCs
To determine if BALF samples from ARDS and HC lungs were associated with increased cell death,
hMSCs were exposed ex vivo to individual clinical BALF samples. There was no significant difference in
toxicity between hMSCs exposed to ARDS or HC BALF samples as determined by light microscopy
(figure 1a–c) and by lactate dehydrogenase (LDH) release (figure 1d). To further determine toxicity,
mitochondrial respiration in hMSCs exposed to different BALFs was assessed. Neither HC nor ARDS
BALF significantly altered hMSC basal respiration rate, maximal respiration rate, spare respiratory capacity
or other mitochondrial functions compared to PBS-exposed hMSCs (figure 1e–g, supplementary figure
S1). Interestingly, a significant reduction in spare respiratory capacity was similarly observed in ARDS and
HC BALF-exposed hMSCs compared to control hMSCs (serum-free media) (p=0.030 and p=0.034,
respectively, figure 1g). However, this reduction was also observed in PBS-exposed hMSCs compared to
control hMSCs (p=0.059).

ARDS and HC BALF activate hMSCs to release a spectrum of mediators
In comparison to that of PBS-exposed hMSCs, hMSC-CM exposed to HC or ARDS BALF samples had
increased levels of IL-6 (p=0.0034 and p=0.0257, respectively) and other pro-inflammatory mediators such
as IL-8 (p=0.0008 and p=0.0084, respectively) and IL-18 (p=0.0591 and p=0.0157, respectively) (figure
2a–c, table 1). Moreover, significantly increased levels of CD44 (p=0.0041 and p=0.0342, respectively)
and surfactant protein D (p=0.0162 and p=0.0055, respectively) were comparably observed in hMSCs
exposed to both ARDS and HC BALF compared to PBS-exposed hMSCs (figure 2d, e, table 1). hMSCs
exposed to ARDS but not HC BALF samples induced significantly higher levels of hepatocyte growth
factor (p=0.0180) and, in particular, matrix metalloproteinase-3 (MMP3) (p=0.0041) compared to controls
(figure 2f, g). In contrast, hMSCs exposed to HC but not ARDS BALF induced significantly higher
chemokine (C-C motif ) ligand 2 (CCL2) levels (p=0.0208) compared to controls (figure 2h). These data
suggest that hMSCs can acquire both pro- and anti-inflammatory phenotypes in response to specific
mediators present or absent in the BALF.

BALF IL-1β predicts hMSC cytokine secretion
We next determined whether specific BALF cytokines correlated (Spearman correlations) with hMSC
inflammatory mediator production. Notably, IL-1β in both ARDS and HC BALF samples was predictive
of the presence of several inflammatory and apoptosis-inducing mediators in hMSC-CM, including IL-6
(p=0.0173), IL-36 (p=0.0334), IL-2 (p=0.0340), MMP-3 (p=0.0034), Fas cell surface death receptor
(FAS) (p=0.0427) and IL-8 (p=0.0346) (figure 3a, supplementary table S3, supplementary figure S2). As
shown in figure 3b, expression of IL-1β was not correlated with other cytokines measured in BALF
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samples. However, there was frequent correlation between the expression of different cytokines detected in
CM (figure 3c). None of the cytokines measured in CM was co-expressed with FAS (figure 3c). These
data suggest that the presence of higher concentrations of IL-1β in BALF may be used to predict the
presence of pro-inflammatory mediators.

HC BALF-exposed hMSCs demonstrate increased overall gene expression compared to ARDS
BALF-exposed hMSCs
To further probe BALF exposure effects on hMSC functions, BALF-exposed hMSCs were analysed by RNA
sequencing and compared to PBS-exposed hMSCs. A heat map demonstrates the cytokine profiles of the
individual BALF samples utilised for hMSC exposures prior to RNA-sequencing analyses (figure 4a). These
data demonstrate that both the HC and ARDS BALF samples utilised were representative of the full set of
BALF samples analysed (supplementary table S2). Despite high levels of inflammatory mediators in ARDS
BALF samples, RNA sequencing demonstrated that HC BALF samples were more potent overall in inducing
increased hMSC gene expression whereas ARDS BALF decreased gene expression compared to control PBS
exposure (figure 4b). Notably, many of the genes that had increased expression with HC BALF exposure had
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FIGURE 1 Exposure to bronchoalveolar lavage fluid (BALF) from acute respiratory distress syndrome (ARDS)
patients and healthy controls (HCs) are non-toxic to human mesenchymal stromal cells (hMSCs).
a–c) Representative phase contrast photomicrographs (×10) of PBS-exposed (20%) control hMSCs (a) and
hMSCs exposed for 24 h to 20% BALF samples obtained from HCs (b) and ARDS patients (c). Scale bar: 400 μm.
Photomicrographs have been brightness/contrast adjusted. d) Cytotoxicity was evaluated in conditioned
medium using a standard lactate dehydrogenase assay following 24 h exposure (ARDS: n=8; HC: n=10). Data are
presented as median (interquartile range) of % cytotoxicity. e–g) Impact of ARDS (n=9) and HC (n=8) BALF
samples on hMSC mitochondrial function. Basal respiration (e), maximal respiration (f ) and spare respiration
capacity (g) were measured in pre-exposed hMSCs (24 h) using an XF-96e Extracellular Flux Analyser and
compared to PBS-exposed (n=3) and unstimulated (serum-free media only, n=3) hMSCs. Data are presented as
mean±SD, and statistical analysis was performed by Shapiro–Wilk test, followed by a one-way ANOVA with
Dunnett’s post hoc test. UNS: unstimulated (serum-free media only). *: p⩽0.05.
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decreased expression with ARDS BALF exposure (figure 4b). Interestingly, the severe acute respiratory
syndrome coronavirus 2 binding and entry receptors angiotensin converting enzyme 2 (ACE2) and
transmembrane serine protease 2 (TMPRSS2) were expressed in the hMSCs, although only at minimal levels
and with no differences observed between the BALF exposure groups (supplementary table S4).

Exposure to HC but not ARDS BALF increases pro-inflammatory cytokine genes
hMSCs exposed to HC BALF samples demonstrated an overall increased expression of genes involved in
multiple immune-regulatory pathways compared to PBS-exposed hMSCs, including tumour necrosis factor
(TNF), intercellular adhesion molecule 1 (ICAM1), chemokine (C-X-C motif ) ligand 10 (CXCL10), CCL2,
CCL8 and interferon-β1 (IFN-B1) (figure 5a). In striking contrast, ARDS BALF-exposed hMSCs
demonstrated expression of the majority of those genes at levels similar to those observed in PBS-exposed
hMSCs. However, ARDS BALF-exposed hMSCs demonstrated increased expression of cytokines known
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FIGURE 2 Acute respiratory distress syndrome (ARDS) bronchoalveolar lavage fluid (BALF) and healthy control (HC) BALF exposure activates human
mesenchymal stromal cells (hMSCs) to release a spectrum of mostly pro- but some anti-inflammatory mediators. To assess if the secretome
profiles of hMSCs exposed to ARDS BALF (n=7) samples differed from those of BALF-exposed hMSCs (n=10) and PBS-exposed hMSCs (n=7),
conditioned media after BALF or PBS exposure was assessed for a range of inflammatory and other mediators including a) interleukin (IL)-6,
b) IL-8, c) IL-18, d) CD44 molecule/hyaluronate receptor (CD44), e) surfactant protein D (SP-D), f ) hepatocyte growth factor (HGF), g) matrix
metalloproteinase-3 (MMP3) and h) chemokine (C-C motif ) ligand 2/monocyte chemoattractant protein 1 (CCL2). Data are presented as median
(interquartile range) of log2 normalised values, and statistical analysis was performed by Shapiro–Wilk test, followed by Kruskal–Wallis followed by
Dunn’s post hoc test by comparing to the unstimulated control group. *: p⩽0.05; **: p⩽0.01.
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to be involved in neutrophil trafficking, including CXCL1, CXCL2 (macrophage inflammatory protein 2α),
CXCL3, CXCL8/IL8 and IL6 (figure 5a). However, these genes were expressed at levels lower than those
observed following exposure to HC BALF.

Further evaluations were undertaken to assess the effect of BALF exposure on hMSC expression of other
inter-related genes associated with prominent inflammatory markers and other mediators that had increased
gene (figure 3b, f ) and protein expression (figure 2a, supplementary figure S3) after BALF exposure,
specifically IL-6, IL-8 and FAS. HC BALF exposure significantly induced a range of IL-6 interacting
genes whereas ARDS BALF exposure resulted in similar expression to that observed in PBS-exposed
hMSCs, with only a significant increase in IL-6 gene expression itself. Both HC and ARDS BALF
exposure had an inhibitory effect on secretion of the anti-inflammatory cytokine IL-27 compared to PBS
exposure (figure 5b). Similarly, a marked induction of a wide range of FAS interacting genes was only
observed in hMSCs exposed to HC BALF samples (figure 5c).

A similar pattern was observed for the pro-inflammatory cytokine IL-8, for which hMSC gene but not
protein expression was increased after BALF exposure. There was increased expression of a range of IL-8
interacting genes after HC BALF exposure, with ARDS BALF exposure increasing expression of only a
few genes (figure 5d). Taken together, these data suggest that HC BALF exposure induces increased
expression of genes involved in multiple immune-regulatory pathways. However, this is not seen in ARDS
BALF-exposed hMSCs except for a few genes, some of which are involved in neutrophil trafficking.

TABLE 1 Cytokines detected in CM from hMSCs exposed to ARDS and HC BALF samples

Cytokine Cytokines in CM pg·mL−1 Kruskal–Wallis with
Dunn’s compared to

UNS

UNS HC ARDS HC ARDS
Mean±SD Mean±SD Mean±SD p-value p-value

ADAMTS13 1.0±0.0 1.0±0.0 1.0±0.0 NA NA
CXCL8/IL-8 20.9±15.9 1227.8±2307.8 2583.7±4101.4 0.0084** 0.0008***
FAS ligand 1.0±0.0 1.3±1.0 1.0±0.0 0.3019 >0.9999
GM-CSF 1.8±1.0 2.5±2.4 5.7±9.3 >0.9999 0.3280
IL-10 1.0±0.0 1.2±0.6 1.0±0.0 0.6403 >0.9999
IL-13 1.0±0.0 1.0±0.0 1.0±0.0 NA NA
IL-2 1.0±0.0 10.7±22.5 23.7±39.7 0.6189 0.2913
IL-4 1.0±0.0 6.2±7.3 10.8±10.6 0.2390 0.0457*
Leptin 1.0±0.0 1.0±0.0 1.0±0.0 NA NA
MIF 2056.0±2742.6 20575.8±30710.7 14619.7±34703.7 0.2957 0.3239
CCL4 1.0±0.0 1.0±0.0 96.6±166.5 >0.9999 0.1171
Osteopontin 7638.4±937.2 9799.8±3483.3 9289.5±3196.5 0.4702 0.6699
TNF-α 1.0±0.0 1.0±0.0 1.0±0.0 NA NA
CD44 121.7±46.4 1508.0±3486.9 1786.9±3101.3 0.0342* 0.0041**
FAS 1.0±0.0 47.3±79.6 260.2±493.0 0.1293 0.0477*
G-CSF 1.0±0.0 1.0±0.0 10.1±24.0 >0.9999 0.3809
HGF 15.8±23.4 41.7±45.7 68.0±47.0 0.2356 0.0180*
IL-1β 1.0±0.0 4.1±9.8 32.0±74.2 >0.9999 0.2291
IL-12 p70 11.9±10.9 16.8±29.4 8.7±13.2 >0.9999 >0.9999
IL-18 3.5±4.4 49.9±42.0 44.4±45.5 0.0157* 0.0591
IL-36β 1.0±0.0 1.3±0.7 2.3±2.3 >0.9999 0.3667
IL-6 140.0±108.4 2202.3±4080.5 4179.4±7296.9 0.0257* 0.0034**
CCL2 1268.4±716.0 6290.1±6588.2 4377.0±5283.3 0.0208* 0.0903
CCL3 1.0±0.0 38.8±67.3 47.6±80.6 0.3145 0.3667
MMP-3 1.0±0.0 58.8±117.8 372.4±681.0 0.4444 0.0041**
SP-D 1.0±0.0 163.8±176.5 682.3±13344.2 0.0055** 0.0162*
IFN-γ# 0.07±0.14 1.5±2.2 0±0 0.9276 >0.9999

Cytokines detected in CM from hMSCs exposed to ARDS BALF samples (n=7), HC BALF samples (n=10) and PBS
(n=7) were analysed using a 27-plex Luminex assay with plates. Data are presented as mean±SD of extrapolated
values. Values out of range below were set to 1.0. CM: conditioned media; hMSCs: human mesenchymal stromal
cells; ARDS: acute respiratory distress syndrome; HC: healthy controls; BALF: bronchoalveolar lavage fluid;
UNS: unstimulated; NA: not available. #: IFN-γ was measured on a separate ELISA on CM from hMSCs exposed
to ARDS BALF (n=3), HC BALF (n=5) or PBS (n=4). *: p⩽0.05; **: p⩽0.01; ***: p⩽0.001.
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Exposure to HC but not ARDS BALF increases complement gene and protein expression but not tissue
factor or other coagulation cascade gene expression
hMSCs exposed to HC BALF samples demonstrated increased gene expression of complements C3b and
C4a as well as the C3A complement receptor (C3AR) compared to PBS-exposed hMSCs (figure 6a).
In contrast, ARDS BALF-exposed hMSCs demonstrated an increase in C3b expression only, with other
complement cascade genes expressed at levels similar to those observed in PBS-exposed hMSCs (figure
6a). Direct comparison of ARDS versus HC BALF-exposed hMSCs demonstrated a respective decrease in
C4a and C3AR as well as C2a and BFb gene expression. Assessment of the CM from BALF- and
PBS-exposed hMSCs obtained from two different donors demonstrated no detectable complement (C3)
production by either HC BALF- or PBS-exposed hMSCs (figure 6b, c). However, low but detectable
levels of complement were seen in some of the CM from hMSCs exposed to ARDS BALF (figure 6b, c).

Parallel assessment of coagulation-associated gene expression demonstrated no changes in tissue factor
pathway inhibitor (TFP1) expression in hMSCs exposed to either HC or ARDS BALF as compared to
PBS-exposed cells (figure 6d). An isolated increase in gene expression of kininogen 1a, part of the
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intrinsic coagulation cascade, was observed in HC-exposed hMSCs whereas an isolated increase in
SERPIN A1 (plasminogen activator-1) gene expression was observed in ARDS BALF-exposed hMSCs
(figure 6d). These results suggest that although complement-related gene and protein expression is
increased following BALF exposure, unlike IBMIR, there is no increase in tissue factor and only isolated
changes in other coagulation cascade gene expression.

Exposure to HC but not ARDS BALF increases hMSC HLA gene and cell surface protein expression
We next assessed BALF exposure effects on the expression of genes and proteins that might result in
recognition of the MSCs by the host immune system, notably HLA expression. HC BALF exposure
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resulted in significantly increased expression of a number of HLA class I and II genes and pseudogenes
when compared to PBS exposure. These included classical (HLA-A, HLA-B, HLA-C) and non-classical
(HLA-E, HLA-F, HLA-G) HLA class I genes and HLA class II genes including HLA-DRA, HLA-DRB1,
HLA-DMA, HLA-DMB and HLA-DPA1 (major class I and II genes depicted in figure 7a with all HLA
genes evaluated depicted in supplementary figure S4). In contrast, exposure to ARDS BALF resulted in a
significant increase in only HLA-C and HLA-F and a significant decrease in HLA-G, with no changes in
HLA-A, HLA-B or HLA-E compared to PBS-exposed hMSCs (figure 7a, supplementary figure S4).
Comparably, exposure to ARDS BALF resulted in a significant increase in only HLA-DMA and a
significant decrease in HLA-DRA, with no changes in any of the other class II genes. Strikingly, a
significant decrease in the expression of genes encoding for HLA class I genes HLA-A, HLA-B and
HLA-G, and HLA class II HLA-DRB1 was observed when comparing ARDS BALF- to HC
BALF-exposed hMSCs (figure 7a).
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To further validate these observations, hMSC HLA-ABC and HLA-DR protein expression was evaluated
by flow cytometry following exposure to HC versus ARDS BALF using two different hMSC donors.
These results demonstrated an upregulation of HLA-DR expression in HC BALF-exposed hMSCs (figure
7c, e). In contrast, exposure to ARDS BALF or to PBS resulted in no upregulation of HLA-DR surface
marker expression (figure 7c, e). No change in HLA-ABC expression compared to control was observed
after exposure to either BALF samples or PBS (figure 7b, d). Scattergrams from these studies are shown in
supplementary figure S4. These results demonstrate that exposure of allogeneic hMSCs to a normal lung
environment upregulates expression of a non-self antigen recognised by the host immune system that will
provoke clearance of the hMSCs. In contrast, hMSCs exposed to inflammatory ARDS BALF appear to be
protected in this regard.

Discussion
There remains a fundamental lack of knowledge as to the fate and actions of MSCs in clinical lung disease
inflammatory environments. Here we found that hMSCs exposed to ARDS BALF behaved quite differently
from the same hMSCs exposed to HC BALF. Exposure to ARDS BALF, compared with exposure to HC
BALF, blunted not only the pro-inflammatory gene response but also the increased expression of genes and
proteins associated with self- versus non-self-recognition. These are novel observations that provide insight
into the potential mechanisms of action of MSC-based cell therapies in ARDS.

Our data support the tantalising hypothesis that a mechanism similar to IBMIR may be responsible for the
aggressive removal of hMSCs in healthy lungs. Similar to the IBMIR literature concerning blood exposure,
stimulating hMSCs with HC BALF resulted in behaviours that provoke an acute innate immune response,
including a marked increase in pro-inflammatory, complement and class II HLA gene and protein expression
[19, 20]. In striking contrast, stimulation of the same hMSCs with BALF from ARDS patients either failed
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to upregulate expression or resulted in comparatively decreased expression of these self-antigen-encoding
genes and proteins. In contrast to IBMIR, exposure of hMSCs to either HC or ARDS BALF did not increase
tissue factor gene expression, an important observation supporting the safety of these cells in clinical practice.
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Notably, a recent study found that allogeneic MSC exposure to blood of trauma patients was less potent in
inducing tissue factor expression than was exposure to healthy volunteer blood [24]. This suggests that IBMIR
can be affected by the patient’s inflammatory status but there are few other data in this regard. hMSCs are not
well recognised as producing complement factors although they do produce antibacterial peptides such as
LL-37 [25]. Paradoxically, some of the ARDS but not HC BALF samples stimulated detectable levels of
complement (C3a) in hMSC-CM. At present, the significance of these findings remains unknown.

Human MSCs generally express low levels of HLA class I molecules and have no constitutive expression of
class II molecules [18, 26, 27], attributes that have long been thought to minimise recognition of systemically
administered allogeneic hMSCs by host immune surveillance mechanisms [28]. However, HLA-ABC and
HLA-DR expression can be induced by exposure to several factors, including IFN-γ, which contributes to
increased immune recognition and clearance of hMSCs [29, 30]. Thus, the observed results demonstrating
increased expression of several class II molecules following exposure to HC but not ARDS BALF further
suggest that an intact normal allogeneic lung environment can activate hMSCs to participate in immune
surveillance activities that may result in their own inactivation and clearance. Importantly, similar results were
observed using hMSCs from two different donors, which strengthens the hypothesis that this is a general
hMSC response. These observations parallel data from the literature showing hMSCs may persist for longer
in inflamed versus non-inflamed lungs, presumably allowing for more opportunity to exert effects on
inflammatory pathways [24, 31, 32]. However, although IFN-γ was detected at low levels in both groups
there was no significant difference. As such, even though exposure to HC BALF samples triggers increased
class II HLA expression, this does not appear to be correlated with BALF IFN-γ. One possible explanation is
that low doses of IFN-γ have less effect on MSC immunosuppressive potency compared to higher doses [33].
Increased expression of the IFN-γ-dependent HLA class II transactivator C2Ta was observed; however, the
significance of this finding remains unknown [34].

Notably, BALF IL-1β was significantly predictive of hMSC production of a range of important
pro-inflammatory mediators. This suggests that IL-1β, commonly elevated in ARDS lungs, can drive hMSC
behaviour and that blocking IL-1β may potentially alter hMSC actions. However, the overall picture is
complex, as demonstrated in figure 3 and supplementary figure S2. This suggests that healthy lung
environments are capable of provoking inflammatory behaviours in allogeneic bone marrow-derived hMSCs.

This study has several strengths. First, the hMSCs utilised are clinically relevant, having also been utilised
in the recent START trial of systemic hMSC administration in ARDS patients [3, 4]. Second, the BALF
samples were assessed individually rather than as pooled samples. Importantly, the current findings are
robust and reproducible across multiple individual healthy or ARDS BALF samples. Further, the effects on
complement and HLA protein expression were observed with two different bone marrow-derived MSC
isolates obtained from different HCs. However, one caveat is that the BALF samples utilised came from a
range of participating institutions and were obtained by different operators. As such, it is not possible to
fully demonstrate uniformity in either bronchoscopy procedures utilised or in any potential sample
dilutions. Further, the BALF samples utilised were obtained using different isolation protocols and stored
differently both at the originating institutions (−80°C for ARDS and −70°C for HC) and also in our
laboratory (−20°C for ARDS and −70°C for HC). As such, although we feel these differences are unlikely
to account for the current observations, further prospective studies will attempt to better control for these
variables. Further, given the US Health Insurance Portability and Accountability Act (HIPAA) limitations,
no clinical data, including microbiological data, on the underlying aetiology of the ARDS patients are
available except for the ARDSNet clinical study under which these samples were obtained, in which
patients with sepsis/septic shock were excluded [21]. Similarly, limited clinical information is available for
the healthy volunteers. One additional significant caveat to this study is that the BALF samples utilised
were cell-free supernatants. As such, we speculate that the absence of direct toxicity following overnight
hMSC exposure to the BALF samples likely reflects the absence of immune effector cells that would then
clear the hMSCs through efferocytosis and possibly other means of clearance and/or inactivation [15].
Further investigations, e.g. with mixed lymphocyte studies utilising BALF-exposed hMSCs or otherwise
adding immune effector cells to the BALF samples, will provide important information on the lung
inflammatory environment effects on hMSC behaviours.

In summary, hMSC exposure to healthy lung environments induces the expression of a range of genes
encoding for inflammation and for recognition as foreign to the host immune system. These changes are
not observed or, in some cases, are opposite after hMSC exposure to inflammatory ARDS lung
environments. Nonetheless, both environments provoke often comparable production and/or release of both
pro- and anti-inflammatory-related mediators by the hMSCs. Further, selected components in the BALF
are correlated with and, in some cases, predictive of hMSC mediator release. These observations provide a
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growing understanding of the complex interplay of inflammatory and other pathways involved in hMSC
actions in the lung and provide important information for developing more effective MSC-based cell
therapies for ARDS and other lung diseases.
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