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Appendix 1. Details of our exposure GWAS conducted in UK BioBank 

 

UKBiobank population and recruitment has been described in detail elsewhere.[2, 3]  

 

We used all individuals with valid genotype and results for the traits of interest. We did not 

look for or exclude those with specific underlying diseases. Interstitial lung disease is very 

unlikely to affect these results. Interstitial lung diseases are rare affecting <0.01% of UK 

adults (https://statistics.blf.org.uk/lung-disease-uk-big-picture). Within UKBiobank only 108 

people are known to have idiopathic pulmonary fibrosis, of which 61 are receiving treatment. 

1,768 people in UKBiobank report doctor diagnosed COPD, of which 1,277 are on treatment. 

As our sample size was >300,000 such small numbers will not skew the results. 

 
 

Although not specifically tested, we do not believe there is any cross over between our 

exposure and outcome populations. All analysis was performed using BOLT LMM using the 

IEU GWAS pipeline. This uses a linear mixed model (LMM) to account for both relatedness 

and population stratification, therefore allowing a wider range of individuals to be included. 

Only participants of European ancestry are used. A subset of 143,006 SNPs included in the 

model are directly genotyped. SNPs included are all meet the criteria: 

 

Mean Allele Frequency >0.01 

Genotyping rate >0.015 

Hardy-Weinberg equilibrium p-value<0.0001 

R2 threshold of 0.1 

 

For full details please see references.[4-6] 
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Forced Expiratory Volume in one second (FEV1) 

 

GWAS performed on 345,590 participants. 

Quantitative trait that was measured as litres to three decimal places. 

Mean FEV1 = 2.853 (std = 0.780) 

Estimated proportion of variance explained using inf model: 0.036 

 

12,321,875 imputed SNPs in GWAS 

44,522 SNPs reached significance at threshold of P_BOLT_LMM_INF <5x10-8 

360 SNPs remained after LD-clumping 

 

When using for CAD; 

41 proxies used 

1 SNP removed due to incompatible alleles 

7 SNPs removed as palindromic with intermediate allele frequencies 

22 SNPs removed due to Steiger filtering 

Leaving 307 SNPs available for analysis 

 

When using for ischaemic stroke; 

1 SNP removed for incompatible alleles 

5 SNPs removed for being palindromic with intermediate allele frequencies 

22 SNPs removed due Steiger filtering 

Leaving 297 SNPs available for analysis 

 

 

 

Forced Vital Capacity (FVC) 

 

GWAS performed on 345,590 participants 

Quantitative trait that was measured as litres to three decimal places. 

Mean FVC = 3.782 (std = 0.985) 

Estimated proportion of variance explained using inf model: 0.048 

 

12,321,875 SNPs imputed SNPs in GWAS 

58,873 SNPs reached significance at threshold of P_BOLT_LMM_INF <5x10-8 

464 SNPs remained after LD-clumping 

 

When using for CAD; 

60 Proxy SNPs found 

15 SNPs removed for being palindromic with intermediate allele frequencies 

14 SNPs removed due Steiger filtering 

Leaving 406 SNPs available for analysis 

 

When using for ischaemic stroke; 

12 SNPs removed for being palindromic with intermediate allele frequencies 

11 SNPs removed due Steiger filtering 

Leaving 396 SNPs available for analysis 

 

FEV1/FVC <0.7 
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Binary trait that was measured the result of the ratio of FEV1 and FVC. Recorded to two 

decimal places. 

 

GWAS performed on 55,907 cases of FEV1/FVC <0.7 with 297,408 controls (FEV1/FVC 

≥0.7) 

Mean FEV1/FVC 0.64 of cases. (SD 0.065) 

Controls had mean ratio 0.77 (SD 0.03) 

Estimated proportion of pseudo-variance explained using inf model: 0.009 

 

12,321,875 SNPs imputed in GWAS 

16,036 SNPs reached significance at threshold of P_BOLT_LMM_INF <5x10-8 

154 SNPs remained after LD-clumping 

Range beta: -0.0188677 to  0.0270580 

 

When using for CAD; 

18 proxies found 

4 SNPs removed as palindromic with intermediate allele frequencies 

88 removed due Steiger filtering 

Leaving 52 SNPs available for analysis 

 

When using for ischaemic stroke; 

3 SNPs removed for being palindromic with intermediate allele frequencies 

56 removed due Steiger filtering 

Leaving 40 SNPs available for analysis 

 

Appendix 2. Details of the UK BioBank GWAS we used for covariates 

 

All covariate GWAS were conducted by our colleagues at the IEU prior to this analysis being 

conducted. All are freely available on MRBase and at the IEU repository.[7, 8] Although not 

specifically tested, we do not believe there is any cross over between our exposure and 

outcome populations. 

 

Height 

 

Standing height of 461950 UKBiobank participants was used. The GWAS was performed in 

2018.[8] 

Quantitative trait recorded as centimetres. 

9851866 SNPs imputed in GWAS 

241226 reached significance at threshold of P_BOLT_LMM_INF <5x10-8 

990 SNPs remained after LD-clumping and removing a duplicate 

 

When using for outcome CAD; 

26 SNP proxies were found. 

20 SNPs were removed for being palindromic with intermediate allele frequencies. 

45 SNPs were removed due Steiger filtering for CAD. 

908 SNPs available for analysis 

per 1 SD decrease in height IVW OR: 1·19; 95% CI: 1·11-1·28, of CAD. 
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When using for outcome ischaemic stroke; 

17 SNPs removed for being palindromic with intermediate allele frequencies. 

62 SNPs were removed due Steiger filtering for ischaemic stroke. 

892 SNPS available for analysis  

per 1 SD decrease in height IVW OR: 1·02; 95% CI: 0·94-1·09, of ischaemic stroke. 

 

BMI 

 

BMI of 461460 UKBiobank participants was used. The GWAS was performed in 2018.[8] 

Quantitative trait recorded as Kg/m2 

9851866 SNPs imputed in GWAS 

68945 SNPs reached significance at threshold of P_BOLT_LMM_INF <5x10-8 

799 SNPs remained after LD-clumping 

 

When using for outcome CAD; 

32 SNPs were removed for being palindromic with intermediate allele frequencies. 

8 SNPs were removed due Steiger filtering. 

760 SNPs available for analysis 

per 1 SD decrease in BMI IVW OR: 0·66; 95% CI: 0·62-0·71, risk CAD. 

 

When using for outcome ischaemic stroke; 

28 SNPs removed for being palindromic with intermediate allele frequencies. 

6 SNPs were removed due Steiger filtering. 

770 SNPS available for analysis 

per 1 SD decrease in BMI IVW OR: 0·83; 95% CI: 0·78-0·89, risk ischaemic stroke. 

 

Current Smoking 

Current smoking of 462434 UKBiobank participants was used. The GWAS was performed in 

2018.[8] 

Ordered categorical trait. We do not know exactly how many cases and controls this involved, 

but more recent UKBIOBANK figures show that there are 55666 current smokers, 197787 

previous smokers, and 317645 never smokers. The GWAS we used is highly likely to reflect 

very similar proportions. 

 

9851867 SNPs imputed in GWAS 

1949 SNPs reached significance at threshold of P_BOLT_LMM_INF <5x10-8 

37 SNPs remained after LD-clumping 

 

When using for CAD; 

1 SNP removed for being palindromic with intermediate allele frequencies. 

18 SNPs were removed due Steiger filtering. 

17 SNPs available for analysis 

per 1 SD decrease in current smoking IVW OR: 0·61; 95% CI: 0·30-1·23, risk CAD. 

 

When using for ischaemic stroke; 

1 SNP removed for being palindromic with intermediate allele frequencies 

22 SNPs were removed due Steiger filtering. 
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13 SNPs available for analysis 

per 1 SD decrease in current smoking IVW OR: 1·00; 95% CI: 0·42-2·39, risk ischaemic 

stroke. 
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Appendix 3. Details of methods; F-statistic calculation, Steiger filtering, Palindromic 

SNPs and harmonisation. MR assumptions and explanation of sensitivity test 

 

Details of method 

For all exposure traits Cragg-Donald overall F-statistic was calculated.[9] The higher the F-

statistic the lower the chance of weak instrument bias.[9] SNPs in close proximity may 

represent the same signal. Therefore, Linkage Disequilibrium-clumping (LD-clumping) was 

performed on all exposure SNPs. This retains the SNP with the most significant association at 

each locus (kb = 10000, r2 0.001). Steiger filtering was performed to remove variants that 

caused more variance of the outcome than the exposure. [10] Steiger filtering estimates each 

SNP’s rsq.exposure and rsq.outcome in the outcome population.[10] Those SNPs that explain 

more variance in the outcome than exposure are excluded, as they could led to a reverse 

causal relationship. SNPs were removed if they explained more variance of the outcome than 

the exposure. 

 

For MVMR the LD-clumped and Steiger filtered SNPs for each lung function trait were 

combined with the LD-clumped and Steiger filtered SNPs for each covariate. The combined 

SNPs were then LD-clumped and duplicates removed. All SNPs had their beta effect 

extracted from both the lung function GWAS and the covariate GWAS to enable covariate 

conditioning.  

 

For both the Shrine et al analysis and MVMR palindromic SNPs (i.e. A/T and C/G SNPs) 

with intermediate allele frequencies were excluded. The remaining SNPs were harmonised so 

that SNP-exposure and SNP-outcome effects corresponded to the same allele.[11] Proxies 

were identified for SNPs not found in outcome GWAS (r2 = 0.8) for CAD, although this was 

not possible for stroke.  

 

We assume that our instrumental variables (IV’s) are associated with the exposure of interest. 

This assumption can be tested. We believe our IV’s are strongly associated with the exposure 

given the stringent p-value threshold for significance. The Shrine et al [1] SNPs have gone 

through further testing in replication populations and have been tested via a polygenic risk 

score in multiple ancestry groups. The GWAS’s for lung function traits that we performed 

ourselves showed they are responsible for a reasonable variation in the population. Our 

covariate GWAS’s were performed to stringent p-value thresholds. F statistics for all 

exposures were above 10, reducing the chance of weak instrument bias. 

Our second assumption is that our IV’s influence our outcome only through the exposure. Our 

third assumption is that the IV’s must not associate with measured or unmeasured 

confounding. These two hypotheses cannot be directly tested. However, we performed a 

number of tests in the 2SMR and MVMR models to reduce the risk the assumptions are 

violated. To account for the possibility of horizontal pleiotropy (IVs influence exposure and 

outcome through independent pathways) in our 2S-MR analysis, we performed MR Egger. 

MR-Egger is similar to IVW except the y intercept is unconstrained. If the y intercept of the 

MR-Egger is not equal to zero then either there is unbalanced horizontal pleiotropy (the 

average pleiotropic effect differs from zero) or the pleiotropic effects are independent from 

the genetic association with the risk factor, or both.[12]  Although power is lower compared 
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to IVW, the gradient of the MR-Egger gives a causal estimate of the dose–response 

relationship between the genetic associations with the risk factor and those with the outcome, 

providing additional evidence for causal affect. MR-Egger method assumes that the 

Instrument Strength is Independent of the Direct Effect (InSIDE assumption), meaning that 

the SNPs pleiotropic effects are independent of their phenotypic effects.[13] For these reasons 

MR Egger is used as a sensitivity test rather than the main analysis. We used weighted 

median and mode MR methods to minimise the effect of unbalanced instruments on an 

overall estimate of the mean. A weighted median MR gives a consistent estimate of the causal 

effect when at least 50% of the weight comes from valid IVs, giving a greater robustness with 

strongly outlying causal estimates.[14] A weighted mode MR calculates an estimate based on 

the set of SNPs that form the largest homogenous cluster, which attempts to avoid the impact 

of invalid instruments.[15] As discussed in main paper results were consistent across 

sensitivity analyses demonstrating there is unlikely to be violation of assumptions. 

We used a funnel plot to assess for horizontal pleiotropy by plotting the effect against its 

precision (beta against standard error).[7] A leave-one-out analysis was performed to ensure 

the results were not due to outliers with a large effect, by re-estimating the total effect after 

sequentially excluding one SNP at a time. Additionally, we performed a single-SNP analysis, 

where the effect of each SNP was individually assessed via IVW analysis and represented in a 

forest plot. 

Heterogeneity (the variability in causal estimates obtained for each SNP) is an indication of 

potential violation of assumptions. This was calculated and assessed with a Q statistic. 

Appendix 4. MVMR, conditioning for all covariates 

 

We modelled effects of FEV1 and FVC conditioning on all covariates. LD-clumped and 

Steiger filtered SNPs for every exposure trait were combined. The beta effect for each SNP 

was extracted from all exposure GWAS. SNPs not found in any of the exposure GWAS were 

removed. SNPs were LD-clumped (kb = 10000, r2 0.001) and duplicates were removed. SNPs 

were extracted from outcome GWAS (proxies, r2 = 0.8, used if not found for CAD). SNPs 

were harmonised and IVW effect estimate determined. As can be seen in Table S1, 

conditioning on all covariates shows similar results for FEV1 and FVC effect on risk of 

ischaemic stroke. The estimated effect for FVC on risk of CAD (OR: 1.44 per SD; 95% CI: 

1.18-1·76) and FEV1 on CAD (OR: 1·28 per SD; 95% CI: 1.02-1·61) are in the same 

direction but higher than the estimate when just conditioning with height. This is likely due to 

weak covariate instruments for two reasons. Firstly, the covariates are conditioned by each 

other in the model. Secondly, there are less covariate SNPs available for analysis due to 

removal of duplicates, LD-clumping and SNPs not being found in other covariate GWAS. 

Table E1. Multivariable MR results of and FEV1 and FVC on Coronary Artery Disease and 

Ischaemic Stroke conditioning with all covariates  

 

Lung 
function 
trait 

Condition  
No. SNPs 

(LF/Hight/BMI/ 
Smoking) 

OR (95% CI)* for 
Coronary Artery 

Disease  

No. SNPs 
(LF/condition) 

OR (95% CI)* for 
Ischaemic Stroke 
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FEV1 Height/BMI/Smoking 80/432/391/4 1·28 (1·02, 1·61) 85/440/413/3 1·18 (0·94, 1·48) 

FVC Height/BMI/Smoking 105/406/388/4 1·44 (1·18, 1·76) 102/408/399/3 1·05 (0·86, 1·29) 

 

Appendix 5. Results from 2S-MR using Shrine et al[1] 

 

Shrine et al analysis 

F-statistic for Shrine et al [1] exposures were; All traits=111, FEV1=69, FVC=70, 

FEV1/FVC=148, making weak instrument bias unlikely. Results for effects on CAD are 

reported in Table 1. Effects are per SD decrease in lung function trait. 

Shrine et al lung function SNPs as exposure, CAD as outcome 

IVW showed no consistent effect of decreasing lung function traits on risk of CAD. As can be 

seen in Table 1 the direction of effect differs between the lung function traits assessed and the 

evidence is weak with almost all confidence intervals crossing one. IVW showed decreasing 

FEV1/FVC had a protective effect on CAD (OR: 0·90 per SD; 95% CI: 0·82-0·99), although 

evidence was weaker in the sensitivity analysis. This may indicate the importance of 

decreased FVC compared FEV1 on risk of CAD. There was strong evidence of heterogeneity 

of effects based on the Q p-value, however visual inspection of graphs used for sensitivity 

testing did not show that the effect was driven by any outliers. See supplementary 

information, appendix 6. 

 

Table E1. Two-sample MR results of lung function traits on coronary artery disease using 

Shrine et al [1] and CARDIOGRAMplusC4D et al [16] 

 

  

Lung Function Trait (Exposure) effect on 

Coronary Artery Disease  

    
FEV1, FVC, 

FEV1/FVC, PEF 
FEV1 FVC FEV1/FVC 

No. 

SNPs 

used 

  173 60  67 93 

IVW 

OR per SD  0·95  1·14 1·01  0·90  

(95% CI) (0·88 – 1·04) (0·94 – 1·37) (0·86 – 1·18) (0·82 – 0·99) 

Q_p-value* 3.7×10-17 3.07×10-8  3·12×10-6 1·1×10-6 

Weighted 

Median 

 OR per SD  0·95 1·24   0·98  0·96  

(95% CI) (0·86 – 1·05) (1·01 – 1·53) (0·82 – 1·16) (0·85 – 1·07) 

Weighted 

Mode  

OR per SD  0·92  0.80  0·93  0·96  

(95% CI) (0·78 – 1·08) (0·43 – 1.05) (0·66 – 1·31) (0·81 – 1·15) 

MR-

Egger  

OR per SD  0·90  1·06  0·94  1.10 

(95% CI) (0·72 – 1·12) (0·57 - 1·96) (0·51 – 1·74) (0·86 – 1·42) 

      

* Heterogenity test. If <0.05 it would suggest heterogenity  

OR – Odds ratio; CI – Confidence Interval; IVW – Inverse Variance Weighting  
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Shrine et al lung function SNPs as exposure, ischaemic stroke as outcome 

 

Examining the effect of the Shrine [1] et al. SNPs on the risk of ischaemic stroke showed a 

consistent direction of effect using IVW, weighted median and weighted mode, with all traits 

showing decreased lung function increases risk of ischaemic stroke as shown in Table 2. 

However the evidence is weak given the confidence intervals. There was evidence of 

heterogenity shown by the Q_p-values but plot sensitivity anlysis did not suggest there were 

any outliers requiring removal from analysis. Sensitivity anlysis using MR-Egger showed that 

for FEV1 the direction of effect was showing a protective effect of reduced lung function 

(OR: 0·91 per SD; 95% CI: 0·55-1·49), however this test is of a lower statistical power as 

evidenced by the wide confidence interval. 

 

Table E2. Two-sample MR results of lung function traits on ischaemic stroke using Shrine et 

al [1] and MEGASTROKE [16] 

 

  

Lung Function Trait (Exposure) effect on 

Ischaemic Stroke  

    
FEV1, FVC, 

FEV1/FVC, PEF 
FEV1 FVC FEV1/FVC 

No. 

SNPs 

used 

  171 58  77 93 

IVW 

OR per SD  1·05 1·01  1·04  1·04  

(95% CI) (0·98 – 1·13) (0·87 – 1·18) (0·91 – 1·19) (0·95 – 1·13) 

Q_p-value 2.2×10-5 0.005  0.04 0.01 

Weighted 

Median 

 OR per 

decrease SD  
1·05  1·05   1·11 1·02  

(95% CI) (0.95 – 1·64) (0·87 – 1·28) (0·93 – 1·32) (0·91 – 1·14) 

Weighted 

Mode  

OR per SD  1·08  1·07   1·06  1·02  

(95% CI) (0·93 – 1·26) (0·77 - 1·51) (0·77 – 1·46) (0·85 – 1·12) 

MR-

Egger  

OR per SD  1·13  0·91  1·47  1·05  

(95% CI) (0·93 – 1·36) (0·55 - 1·49) (0·87 – 2·48) (0·84 – 1·31) 

      

OR – Odds ratio; CI – Confidence Interval; IVW – Inverse Variance Weighting 

 

Appendix 6. Figures from 2SMR using Shrine et al [1] 

 

 

Please note, our results in Tables 1-4 in the main article show effect per decrease in FVC. 

These figures are plotted as per increase in FVC. 
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Figure E1. Funnel plot of heterogeneity of causal effects of FVC using Shrine et al [1] on 

coronary artery disease 

 

 

Each point is a SNP with its beta plotted against its inverse standard error. As the graph is 

funnel shaped, it indicates no heterogeneity. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

11 

 

Figure E2. Scatter plot of the SNP-effect on FVC using Shrine et al [1] and SNP-effect on 

coronary artery disease 

 

 

Each point on the graph represents the SNP-outcome association plotted against the SNP-

exposure association. Bars indicate 95% confidence intervals. Coloured lines represent 

analysis method used. This shows no effect of FVC on coronary artery disease. MR Egger 

intercept is close to zero indicating no unbalanced directional pleiotropy. 
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Figure E3. Leave-one-out analysis of FVC using Shrine et al [1] on coronary artery disease 

 

 

Each point represents the IVW estimate if the SNP on the y axis was left out of total analysis. 

Bars indicate 95% confidence intervals, demostrating that no individual SNP is driving the 

causal effect estimate. 
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Figure E4. Single SNP analysis of FVC using Shrine et al [1] on coronary artery disease 

 

 

Each point represents individual SNP calculated effect size for FVC on the odds of coronary 

artery disease. Bars indicate 95% CI.  
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Figure E5. Funnel plot of heterogeneity of causal effects of FVC using Shrine et al [1] on 

ischaemic stroke 

 

 

 

No evidence heterogeneity shown 
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Figure E6. Scatter plot of the SNP-effect on FVC using Shrine et al [1] and SNP-effect on 

ischaemic stroke 

 

MR Egger line via close to zero, indicating no directional pleiotropy 
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Figure E7. Leave-one-out analysis of FVC using Shrine et al [1] on ischaemic stroke 

 

No individual SNP driving causal estimate 
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Figure E8. Single SNP analysis of FVC using Shrine et al [1] on ischaemic stroke 

 

 

 

Appendix 7. Data sharing 

Shrine et all SNPs are available from the supplementary information of the reference.[1] 

Summary statistics from our lung function GWAS performed in UKBIOBANK will be 

available on MRBase and IEU repository within 1 month of publication of this paper.[7, 8] 

Summary statistics for the covariate GWAS are currently available on MRBase and IEU 

repository.[7, 8] 

Summary statistics for CAD outcome are available on MRBase and from authors.[7, 16] 

Summary statistics for ischaemic stroke are available for download here.[17] 

Please contact the corresponding author for requests for code. 

Appendix 8. Bias due to covariate adjustment in GWAS 

 

Adjustment of covariates in GWAS has been shown to affect the SNP-exposure estimate 

leading to bias in MR studies. Figure E9 and legend explain some possible pathways. 

However, if there is residual confounding, covariate adjustment will bias the MR estimate for 

many different structures between exposure-covariate relationship. This reference explains in 

further detail.[18] 
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Figure E9. Directed acyclic graph demonstrating possible pathways leading to bias 

 

 

 

Height is used in this example, but it would be true of other covariates, such as smoking. 

SNP 1 does not have a direct effect on lung function. However, height and lung function have 

unmeasured common causes. Therefore, height is a collider of the path of SNP 1 and lung 

function (SNP 1 → Height ← Unmeasured common causes → Lung function). Adjusting on 

a collider opens the path on the collider, which means that adjusting for height will wrongly 

identify SNP 1 as having a direct effect on lung function.  

SNP 2 has a direct effect on lung function, but also an indirect effect via height. Adjusting for 

height will cause a biased estimate for the direct effect of SNP 2 on lung function (as it would 

be combination of the true direct effect and the bias from the collider adjustment). 

To eliminate the collider bias induced by the covariable adjustment, the GWAS would need to 

also be adjusted for all unmeasured common causes, but this is impossible as they are 

unmeasured. 
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