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Shareable abstract (@ERSpublications)
Topological data analysis of 396 primary ciliary dyskinesia patients shows genetic mutations of
worse (CCDC39), variable (DNAH5) and milder (DNAH11) effects on lung function, offering the
potential for more accurately targeted disease management https://bit.ly/3oL5r64
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Abstract
Background Primary ciliary dyskinesia (PCD) is a heterogeneous inherited disorder caused by mutations
in approximately 50 cilia-related genes. PCD genotype–phenotype relationships have mostly arisen from

Copyright ©The authors 2021. For
reproduction rights and
permissions contact
permissions@ersnet.org

Link to published version: https://doi.org/10.1183/13993003.02359-2020 Eur Respir J 2021; 58: 2002359

EUROPEAN RESPIRATORY JOURNAL
ORIGINAL RESEARCH ARTICLE

A. SHOEMARK ET AL.

https://orcid.org/0000-0001-7360-6060
https://orcid.org/0000-0002-1629-8601
https://orcid.org/0000-0003-2178-0846
https://orcid.org/0000-0003-0903-9828
https://orcid.org/0000-0003-0580-2478
https://orcid.org/0000-0003-0188-2554
https://orcid.org/0000-0003-0528-5458
https://orcid.org/0000-0001-8701-9975
mailto:jlucas1@soton.ac.uk
https://crossmark.crossref.org/dialog/?doi=10.1183/13993003.02359-2020&domain=pdf&date_stamp=
https://doi.org/10.1183/13993003.02359-2020
mailto:permissions@ersnet.org


small case series because existing statistical approaches to investigating relationships have been unsuitable
for rare diseases.
Methods We applied a topological data analysis (TDA) approach to investigate genotype–phenotype
relationships in PCD. Data from separate training and validation cohorts included 396 genetically defined
individuals carrying pathogenic variants in PCD genes. To develop the TDA models, 12 clinical and
diagnostic variables were included. TDA-driven hypotheses were subsequently tested using traditional
statistics.
Results Disease severity at diagnosis, measured by forced expiratory volume in 1 s (FEV1) z-score, was
significantly worse in individuals with CCDC39 mutations (compared to other gene mutations) and better
in those with DNAH11 mutations; the latter also reported less neonatal respiratory distress. Patients without
neonatal respiratory distress had better preserved FEV1 at diagnosis. Individuals with DNAH5 mutations
were phenotypically diverse. Cilia ultrastructure and beat pattern defects correlated closely to specific
causative gene groups, confirming these tests can be used to support a genetic diagnosis.
Conclusions This large scale, multi-national study presents PCD as a syndrome with overlapping
symptoms and variations in phenotype according to genotype. TDA modelling confirmed genotype–
phenotype relationships reported by smaller studies (e.g. FEV1 worse with CCDC39 mutation) and
identified new relationships, including FEV1 preservation with DNAH11 mutations and diversity of
severity with DNAH5 mutations.
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