
Inhaled corticosteroids downregulate SARS-CoV-2-related genes
in COPD: results from a randomised controlled trial

To the Editor:

Observational studies show that COPD is associated with increased coronavirus disease 2019 (COVID-19)
severity and mortality [1]. Inhaled corticosteroids (ICS), which are commonly used to treat COPD, have
been associated with increased risk of bacterial pneumonia in COPD and impaired immune response to
viruses. Whether this class of medication affects the airway expression of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) receptors and cofactors (changes which may modify COVID-19
susceptibility and outcomes) is currently unclear. Therefore, we examined the effects of ICS treatment on
SARS-CoV-2-related gene expression in lower airway bronchial epithelial cells (BECs) in a randomised
controlled trial of COPD patients.

We conducted the DISARM trial (recruitment October 2015–June 2019; clinicaltrials.gov identifier
NCT02833480; University of British Columbia/Providence Health Care ethics approval H14-02277) to
examine the effects of two long-acting β2-agonist (LABA)/ICS combinations on the airway microbiome in
people with COPD. After a 4-week formoterol (FOR) run-in, we randomised participants to receive
ongoing FOR 12 μg, formoterol/budesonide (FOR/BUD) 12/400 μg, or salmeterol/fluticasone propionate
(SAL/FLU) 25/250 μg, twice daily for 12 weeks. We collected bronchial brush specimens according to a
standard protocol (sixth- to eighth-generation airways, right upper lobe) before and after treatment, and
measured BEC gene expression by RNA-sequencing as described previously [2]. The co-primary outcomes
(change in total bacterial population and diversity at 12 weeks) are yet to be reported. However, in
response to the urgency of the COVID-19 pandemic, we performed an ad hoc analysis of genes encoding
SARS-CoV-2 entry receptors (ACE2, BSG) and host co-factors (TMPRSS2, ADAM17, FURIN).

63 participants (median age 64 years, 83% male, 46% current smokers, mean forced expiratory volume in
1 s 61.36% predicted) were randomised. There were no differences between the treatment groups with
regard to demographics, lung function, comorbidities or recent ICS use (Kruskal–Wallis and Fisher’s exact
tests p>0.05). Principal component analysis of overall pre-treatment gene expression showed no differences
between the treatment groups, or between pre-enrolment ICS users and non-users. 54 participants had both
pre- and post-treatment gene expression data available (seven participants failed to attend the
post-treatment bronchoscopy, and two had insufficient pre-treatment RNA). After 12 weeks of treatment,
the FOR/BUD and SAL/FLU arms both showed significantly lower changes in ACE2 expression relative to
FOR monotherapy (Wilcoxon rank sum test p=0.049 and p=0.041, respectively), and the FOR/BUD arm
showed significantly lower changes in ADAM17 expression relative to FOR monotherapy (Wilcoxon rank
sum test p=1.36×10−4) (figure 1a). This suggests that ICS have a suppressive effect on the transcription of
these genes. There was no effect of ICS treatment on BEC expression of BSG, TMPRSS2 or FURIN. When
stratified by baseline smoking status, the results were similar for ADAM17 (FOR/BUD versus FOR p=0.01
in former smokers and p=0.002 in current smokers), but were not significant for ACE2.

In addition, we qualitatively explored how ICS treatment affects transcriptome-wide BEC gene expression
in COPD using a clustered heat map (figure 1b). LABA-only and LABA/ICS treatment had modest but
opposite effects on gene expression: upregulation in the FOR arm was met with downregulation in the
FOR/BUD and SAL/FLU arms, and vice versa, suggesting an ICS class effect. Overall, FOR/BUD
appeared to have a greater effect on gene expression than SAL/FLU despite similar doses
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(in beclomethasone-equivalents). The reason for this is unknown, but may be due to the greater relative
retention of BUD in airway epithelial cells [3].

Next, we determined how genes that were co-expressed with each of the key SARS-CoV-2-related genes
(determined by a weighted gene correlation network analysis [4]) changed with ICS treatment. ACE2 was
contained in a module of 444 genes; using Gene Ontology and Kyoto Encyclopedia of Genes and
Genomes annotations, this module was highly enriched for genes related to type I interferons (IFN-I) and
viral infections. ADAM17 and FURIN were in the same module of 1900 genes, which was enriched for
genes related to the regulation of innate immunity, cytokine production and infectious and autoimmune
diseases. BSG and TMPRSS2 were each contained in modules of 788 and 985 genes, respectively, both of
which were enriched for genes related to intracellular processes. We then annotated the clustered heat map
according to each gene’s co-expression module membership. ACE2 and ADAM17/FURIN module genes
were clustered in areas of the heat map where genes were downregulated by FOR/BUD and SAL/FLU
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FIGURE 1 Bronchial epithelial cell (BEC) gene expression in the DISARM study. Gene expression in BECs collected during bronchoscopy before and
after treatment was determined by RNA-sequencing (Illumina NextSeq 500; Illumina, San Diego, CA, USA) with paired-end 42×42 bp reads).
Sequencing data were aligned to GENCODE genome reference assembly GRCh37 release 31 using Salmon. Low-abundance genes (log2 counts per
million (log2CPM) <1 or transcripts per million (TPM) <2 in >80% of the samples) were filtered out, leaving a total of 15667 genes. a) Box plots
showing pre- to post-treatment change in expression (Δlog2CPM) of ACE2 (encodes the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) receptor) and ADAM17 (encodes a metalloproteinase that cleaves the angiotensin-converting enzyme (ACE)2 protein and facilitates
endocytosis of the ACE2–SARS-CoV-2 complex). Only participants with both pre- and post-treatment gene expression data available are shown (54
out of 63 randomised participants). Between-group comparisons were by Wilcoxon rank-sum test. *: p<0.05, ***: p<0.001. b) Heat map of pre- to
post-treatment change in gene expression (median Δlog2CPM) of genes with at least one significant between-group Wilcoxon rank-sum test at false
discovery rate (FDR) <0.1 (977 out of the 15667 total genes). Columns represent single genes, and are arranged using hierarchical clustering
(“aheatmap” function in the NMF packing in R). Treatment with formoterol (FOR)/budesonide (BUD) and salmeterol (SAL)/fluticasone (FLU) tended
to have the opposite direction of effect on gene expression compared to treatment with FOR, suggesting a class effect of inhaled corticosteroids
(ICS) on the expression of these genes. Additionally, each plotted gene was annotated according to its membership of a SARS-CoV-2-related gene
co-expression module determined by weighted gene correlation network analysis (WGCNA) of pre-treatment expression (as log2(TPM+1), soft
threshold power β=6, minimum module size 50 genes). ICS treatment tended to decrease the expression of genes that are co-expressed with ACE2
and ADAM17/FURIN, whereas genes co-expressed with TMPRSS2 and BSG tended to be upregulated by ICS treatment. NS: nonsignificant.
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treatment, suggesting that ICS downregulate genes that are highly connected to these key
SARS-CoV-2-related genes.

Our analysis extends our previous findings that ACE2 gene and protein expression was increased in BECs
[2] and lung tissue [5] of people with COPD, by showing that ACE2 was downregulated by ICS treatment.
Our data, which are from a randomised controlled trial of ICS/LABA therapy, confirm a recent study that
indicated a downregulatory effect of ICS on ACE2 expression in the sputum of COPD patients (BUD and
FLU) and in mouse lungs (BUD, FLU and beclomethasone) [6]. In this study, in concordance with our
results, ICS did not affect the expression of BSG or TMPRSS2 [6]. Another group has recently conducted a
post hoc analysis [7] of the Groningen and Leiden Universities study of Corticosteroids in Obstructive
Lung Disease (GLUCOLD) trial, showing that ACE2 expression in airway biopsy specimens was
downregulated following treatment with FLU in patients with COPD. Our data complement these results
by showing that ACE2 downregulation is probably the result of an ICS class effect, and can occur more
acutely (after only 12 weeks of treatment, compared to 26 weeks in the GLUCOLD study).

The relative importance of differences in ACE2 expression for COVID-19 is debated. Increased availability
of ACE2 protein in the airways may increase COVID-19 susceptibility and severity; in theory, the
ICS-mediated downregulation of ACE2 reported here and by others [6, 7] could therefore be protective.
Conversely, since ACE2 is a critical negative regulator of the renin–angiotensin system, its downregulation
could predispose to lung injury [8]. Our gene network analysis showed that ACE2 was co-expressed with
genes related to the innate immune response to viruses, particularly IFN-I, and that genes in this module
tended to be suppressed by ICS therapy. Animal models suggest that a delayed IFN-I response to
SARS-CoV infection may lead to excessive inflammation and death [9]. Indeed, COPD patients already
have impaired IFN-I responses following viral infection [10]. Therefore, ACE2 expression in COVID-19 may
represent a double-edged sword, but any interaction between COPD and ICS treatment in COVID-19
is likely to be more complex than can be explained by alterations in ACE2 expression alone.

A novel, truncated isoform of ACE2 that is transcriptionally independent and highly expressed in lung
epithelium has been reported recently [11]. This isoform does not have an extracellular domain and does
not bind SARS-CoV-2 spike protein, meaning that changes in its expression may have no effect on
COVID-19 risk. This important finding challenges the notion that functional ACE2 is an IFN-stimulated
gene, since it appears to be only the truncated isoform that is induced by IFN-I. We attempted exon-level
analysis to quantify this isoform, but our sequencing depth was insufficient to produce reliable results.
Future investigation of this novel isoform will be critical to understand the implications of our current findings.

To our knowledge, our finding that ICS therapy downregulates ADAM17 expression in human BECs is
novel. The SARS-CoV-2 spike protein induces ADAM17-dependent shedding of the ACE2 ectodomain,
creating the soluble form of ACE2 and facilitating fusion of the viral and cell membranes [12]. Inhibition
of ADAM17 at least partially blocks SARS-CoV entry in cultured epithelial cells [12, 13]. In addition,
ADAM17 plays a crucial role in interleukin (IL)-6 signalling, which is activated in severe COVID-19 [14];
it has been described as a “master switch” between the pro-inflammatory trans- and anti-inflammatory
classical- (i.e. via membrane-bound IL-6 receptor) IL-6 signalling pathways [15]. However, any impact the
ICS-mediated downregulation of ADAM17 may have on COVID-19 susceptibility or outcomes would be
speculative at this stage.

Despite the limitations (including relatively small sample size, short follow-up period and lack of
accompanying protein expression or functional data), our results show that ICS modifies lower-airway
BEC expression of genes relevant to SARS-CoV-2 and COVID-19 biology. The relative importance of
upper (nasal) versus lower (bronchial) expression of these genes for SARS-CoV-2 transmission needs
further study. However, our results provide potential mechanistic support for the results of the Steroids in
COVID-19 (STOIC) trial (clinicaltrials.gov identifier NCT04416399), which showed a reduction in urgent
care/hospitalisation in early-stage COVID-19 with inhaled BUD [16]. The trial results require confirmation
in a COPD population, which has increased BEC ACE2 expression, before the clinical relevance of our
findings can be determined. In the absence of any epidemiological evidence that ICS therapy increases
COVID-19 severity or mortality [17], we agree with the international consensus that ICS treatment in
COPD patients should be continued if clinically indicated until further evidence is available.
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