

Endothelial eNAMPT amplifies pre-clinical acute lung injury: efficacy of an eNAMPT-neutralising monoclonal antibody

Hector Quijada^{1,9}, Tadeo Bermudez^{1,9}, Carrie L. Kempf¹, Daniel G. Valera¹, Alexander N. Garcia², Sara M. Camp¹, Jin H. Song¹, Evelyn Franco¹, Jessica K. Burt¹, Belinda Sun³, Joseph B. Mascarenhas¹, Kimberlie Burns¹, Amir Gaber¹, Radu C. Oita¹, Vivian Reyes Hernon¹, Christy Barber⁴, Liliana Moreno-Vinasco¹, Xiaoguang Sun¹, Anne E. Cress⁵, Diego Martin⁶, Zhonglin Liu⁴, Ankit A. Desai⁷, Viswanathan Natarajan⁸, Jeffrey R. Jacobson⁸, Steven M. Dudek⁸, Christian Bime¹, Saad Sammani^{1,10} and Joe G.N. Garcia^{1,10}

Affiliations: ¹Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA. ²Dept of Radiation Oncology, University of Arizona Health Sciences, Tucson, AZ, USA. ³Dept of Pathology, University of Arizona Health Sciences, Tucson, AZ, USA. ⁴Dept of Medical Imaging, University of Arizona Health Sciences, Tucson, AZ, USA. ⁵Dept of Cellular and Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ, USA. ⁶Houston Methodist Hospital Research Institute, Houston, TX, USA. ⁷Dept of Medicine, Indiana University, Indianapolis IN, USA. ⁸Dept of Medicine, University of Illinois Chicago, Chicago, IL, USA. ⁹Co-first authors. ¹⁰Co-senior authors.

Correspondence: Joe G.N. Garcia, University of Arizona Health Sciences, 1295 N Martin Ave, Suite A274, Tucson, AZ 85721, USA. E-mail: skipgarcia@email.arizona.edu

@ERSpublications

Underscoring the therapeutic potential for targeting the eNAMPT/TLR4 pathway in ARDS/VILI, a humanised eNAMPT-neutralising monoclonal antibody (mAb) was highly effective in reducing the severity of ARDS in these dual complementary pre-clinical ARDS models https://bit.ly/3ljEhBD

Cite this article as: Quijada H, Bermudez T, Kempf CL, *et al*. Endothelial eNAMPT amplifies pre-clinical acute lung injury: efficacy of an eNAMPT-neutralising monoclonal antibody. *Eur Respir J* 2021; 57: 2002536 [https://doi.org/10.1183/13993003.02536-2020].

This single-page version can be shared freely online.

ABSTRACT

Rationale: The severe acute respiratory syndrome coronavirus 2/coronavirus disease 2019 pandemic has highlighted the serious unmet need for effective therapies that reduce acute respiratory distress syndrome (ARDS) mortality. We explored whether extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a ligand for Toll-like receptor (TLR)4 and a master regulator of innate immunity and inflammation, is a potential ARDS therapeutic target.

Methods: Wild-type C57BL/6J or endothelial cell (EC)- $cNAMPT^{-/-}$ knockout mice (targeted EC NAMPT deletion) were exposed to either a lipopolysaccharide (LPS)-induced ("one-hit") or a combined LPS/ ventilator ("two-hit")-induced acute inflammatory lung injury model. A NAMPT-specific monoclonal antibody (mAb) imaging probe (^{99m}Tc-ProNamptor) was used to detect NAMPT expression in lung tissues. Either an eNAMPT-neutralising goat polyclonal antibody (pAb) or a humanised monoclonal antibody (ALT-100 mAb) were used *in vitro* and *in vivo*.

Results: Immunohistochemical, biochemical and imaging studies validated time-dependent increases in NAMPT lung tissue expression in both pre-clinical ARDS models. Intravenous delivery of either eNAMPT-neutralising pAb or mAb significantly attenuated inflammatory lung injury (haematoxylin and eosin staining, bronchoalveolar lavage (BAL) protein, BAL polymorphonuclear cells, plasma interleukin-6) in both pre-clinical models. *In vitro* human lung EC studies demonstrated eNAMPT-neutralising antibodies (pAb,

Copyright @ERS 2021. This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0.

mAb) to strongly abrogate eNAMPT-induced TLR4 pathway activation and EC barrier disruption. *In vivo* studies in wild-type and EC-c $NAMPT^{-/-}$ mice confirmed a highly significant contribution of EC-derived NAMPT to the severity of inflammatory lung injury in both pre-clinical ARDS models.

Conclusions: These findings highlight both the role of EC-derived eNAMPT and the potential for biologic targeting of the eNAMPT/TLR4 inflammatory pathway. In combination with predictive eNAMPT biomarker and *NAMPT* genotyping assays, this offers the opportunity to identify high-risk ARDS subjects for delivery of personalised medicine.