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ABSTRACT Pulmonary hypertension is a condition with limited effective treatment options. Chronic
thromboembolic pulmonary hypertension (CTEPH) is a notable exception, with pulmonary endarterectomy
(PEA) often proving curative. This study investigated the plasma metabolome of CTEPH patients, estimated
reversibility to an effective treatment and explored the source of metabolic perturbations.

We performed untargeted analysis of plasma metabolites in CTEPH patients compared to healthy
controls and disease comparators. Changes in metabolic profile were evaluated in response to PEA.
A subset of patients were sampled at three anatomical locations and plasma metabolite gradients calculated.

We defined and validated altered plasma metabolite profiles in patients with CTEPH. 12 metabolites were
confirmed by receiver operating characteristic analysis to distinguish CTEPH and both healthy (area under
the curve (AUC) 0.64-0.94, all p<2><10_5) and disease controls (AUC 0.58-0.77, all p<0.05). Many of the
metabolic changes were notably similar to those observed in idiopathic pulmonary arterial hypertension
(IPAH). Only five metabolites (5-methylthioadenosine, NI1-methyladenosine, NI1-methylinosine,
7-methylguanine, N-formylmethionine) distinguished CTEPH from chronic thromboembolic disease or
IPAH. Significant corrections (15-100% of perturbation) in response to PEA were observed in some, but not
all metabolites. Anatomical sampling identified 188 plasma metabolites, with significant gradients in
tryptophan, sphingomyelin, methionine and Krebs cycle metabolites. In addition, metabolites associated with
CTEPH and gradients showed significant associations with clinical measures of disease severity.

We identified a specific metabolic profile that distinguishes CTEPH from controls and disease
comparators, despite the observation that most metabolic changes were common to both CTEPH and
IPAH patients. Plasma metabolite gradients implicate cardiopulmonary tissue metabolism of metabolites
associated with pulmonary hypertension and metabolites that respond to PEA surgery could be a suitable
noninvasive marker for evaluating future targeted therapeutic interventions.
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Introduction

Pulmonary hypertension (PH) is defined by persistent elevation of resting mean pulmonary artery
pressure and is associated with an increased risk of right heart failure and premature death [1]. Progress in
medical therapies for PH has been limited to pulmonary arterial hypertension (PAH) and chronic
thromboembolic pulmonary hypertension (CTEPH). Moreover, this has not been related to discovery of
new disease mechanisms, but to improvements in targeting known pathways responsible for vasodilation
and strategies related to early combination and escalation of treatments. CTEPH remains the only class of
PH for which a potential cure exists, by means of a pulmonary endarterectomy (PEA) which commonly
normalises haemodynamics [2, 3]. This provides an invaluable opportunity to study pathobiology and
response to treatment [4].

Metabolomics allows high-dimensional molecular mapping of disease presentations and the potential to
define endophenotypes. We and others have previously reported the plasma metabolomic profiles of
patients with idiopathic and heritable pulmonary arterial hypertension (IPAH/HPAH) [5]. Here we
compare the plasma metabolomic profiles of patients with CTEPH with those of other disease and healthy
controls and patients with IPAH/HPAH and seek to establish whether metabolic alterations are corrected
by PEA. In addition, we use plasma metabolome gradients between superior vena cava (SVC), pulmonary
artery (PA) and radial artery (ART) to investigate the tissue of origin of any perturbation.

Methods

Study participants and sample collection

Patients attending the National Pulmonary Hypertension Service at Hammersmith Hospital (London, UK)
and Royal Papworth Hospital (Cambridge, UK) donated blood samples with informed consent and
approval of local research ethics committees (reference numbers 17/LO/0563 and 15/EE/0201). Total
samples collected in the main cohorts and analysis plan are detailed in table 1 and figure 1, respectively.

Patients were recruited at Hammersmith Hospital (December 10, 2002 to May 20, 2019) and Papworth
Hospital (September 30, 2015 to January 10, 2019) with diagnoses of CTEPH, IPAH or HPAH. Control
samples were obtained from healthy volunteers, patients with chronic thromboembolic disease (CTED) [6]
and disease control individuals; the latter presented as symptomatic patients who were subsequently found
not to have pulmonary hypertension [5]. Additional IPAH/HPAH patients were included as a comparator
group and sampled between February 19, 2014 and June 24, 2015 from other expert centres in the UK as
part of the National Cohort Study of Idiopathic and Heritable Pulmonary Arterial Hypertension
(ClinicalTrials.gov NCT01907295). Venous blood samples were drawn from the antecubital fossa in to
EDTA Vacutainer tubes (BD, Oxford, UK), immediately inverted eight to 10 times, put on ice, centrifuged
(1300xg, 15 min at 4°C) within 30 min, and plasma stored at —80°C until required.

Initially, a discovery cohort of 108 consecutive CTEPH patients was compared to 58 healthy controls and
the results replicated in a second cohort of 92 CTEPH patients compared to a distinct healthy control
group (n=63) (figure 1). Similar proportions were deemed operable for PEA surgery (59 out of 108 and 48
out of 92) in the two CTEPH cohorts. To understand the specificity of any differences for CTEPH,
metabolite profiles were compared with disease control individuals (n=132), patients with CTED (n=63)
and IPAH/HPAH (n=433) (table 1 and figure 1).

In the second arm of the study, we evaluated the metabolite profiles of CTEPH patients before and after
PEA surgery (figure 1). We compared metabolite levels in CTEPH patients deemed suitable for PEA
surgery (pre-PEA, n=64) with matched (based on clinical characteristics) patients sampled after PEA
surgery (post-PEA, n=82; supplementary table S1), and then analysed differences in a separate group of
43 patients who were sampled both before and after PEA surgery. All post-PEA samples were obtained
after full recovery from surgery, at median 37 months for unpaired and 5.8 months for paired samples,
and both groups exhibited similar reductions in mean pulmonary artery pressures and pulmonary vascular
resistance (supplementary table S1).

A further set of patients with diagnoses of CTEPH (n=68) or IPAH/HPAH (n=18) at Papworth Hospital
were sampled during elective right heart catheterisation between 2015 and 2017, allowing simultaneous
sample collection from the superior vena cava, proximal portion of pulmonary artery and radial artery and
haemodynamic measurements. Exclusion criteria included left ventricular systolic and or diastolic
dysfunction, significant valvular heart disease, chronic kidney disease stage 4 or 5, chronic liver disease,
liver failure or alcohol abuse, current illicit substance use, active infection and peripheral arterial vascular
disease. Patients were sampled between 09:30 h and 12:30 h.

Metabolomic analysis
Metabolomic profiling by ultra-performance liquid chromatography mass spectrometry (LC-MS) was
conducted on the Discovery HD4TM Global Metabolomics platform by Metabolon, Inc. (Durham, NC,
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TABLE 1 Main cohort characteristics

HC DC CTED IPAH/HPAH CTEPH-discovery CTEPH-replication Patients sampled
at three locations
Subjects 121 132 63 433 108 92 86
Demographics
Age at sampling years 51 (37-57) 59 (43-69) 60 (45-70) 54 (41-67) 68 (56-76) 66 (53-77) 64 (50-71)
Female 78 (64) 90 (68) 27 (43) 305 (70) 41 (38) 56 (61) 42 (49)
Ethnicity: European 66 (55) 57 (43) 33 (66) 358 (83) 82 (76) 68 (74) 74 (86)
BMI kg-m~2 25 (24-30) 27 (24-30) 30 (26-34) 28 (24-32) 27 (24-30) 28 (25-32) 29 (25-34)
WHO functional class

| ND ND 4017 28 (7) 2(2) 71(9) 5 (6)

Il ND ND 12 (52) 105 (26) 23 (22) 13 (16) 30 (35)

I ND ND 7 (30) 238 (58) 73 (69) 53 (67) 48 (56)

\% ND ND 0 (0) 38 (9) 8 (8) 6 (8 3(3)
6-min walk distance m ND ND 387 (312-452) 336 (187-420) 282 (146-384) 218 (96-352) 352 (260-436)
Creatinine mmol-L™" ND 71 (63-89) 78 (72-86) 83 (69-104) 84 (70-106) 88 (74-103) 88 (72-103)
Bilirubin umol-L_1 ND 9 (7-14) 9 (7-13) 11 (8-17) 12 (9-19) 12 (9-20) 11 (8-14)
Albumin g-L’1 ND 40 (38-42) 40 (39-42) 40 (37-44) 38 (35-40) 38 (36-40) 38 (36-40)
CRP mg-L_1 ND 3 (1-6) 2 (1-3) 4 (2-7) 3(2-7) 5(3-11) 2 (1-7)

Haemodynamics at diagnosis
mRAP mmHg ND 6 (4-9) 6 (4-8) 9 (6-13) 9 (6-12) 9 (6-13) 8 (5-11)
mPAP mmHg ND 20 (16-23) 20 (17-22) 53 (44-62) 41 (33-54) 45 (34-54) 38 (33-44)
mPAWP mmHg ND 11 (9-14) 10 (8-13) 10 (7-13) 12 (9-14) 11 (8-13) 10 (8-13)
PVR WU ND 1.7 (1.1-2.5) 1.8 (1.2-2.3) 11.1 (6.8-15.7) 8.0 (4.9-11.3) 7.9 (4.8-11.6) 5.5 (4.0-8.1)
Cardiac output L-min~" ND 4.8 (3.7-5.9) 5.2 (4.5-6.0) 3.8 (3.0-4.8) 3.9 (3.3-4.6) 4.0 (3.0-4.8) 4.6 (4.1-5.7)

Comorbidities and medication
COPD 0 (0) 20 (15) 4 (6) 65 (15) 8(7) 12 (13) 8(9)
Diabetes 0 (0) 15 (11) 5(8) 82 (19) 11 (10) 8(9) 9 (10)
Atherosclerosis 0(0) 14 (11) 2 (4) 59 (14) 32 (37) 17 (18) 20 (23)
Atrial arrhythmia 0(0) 22 (17) 3(5) 57 (13) 20 (19) 22 (24) 8(9)
Hypertension 0(0) 39 (30) 12 (19) 103 (24) 36 (33) 26 (28) 29 (34)
Dyslipidaemia 0(0) 16 (12) 13 (21) 44 (10) 22 (20) 14 (15) 25 (29)
PDE-b5i 0 (0) 0 (0) 1(2) 283 (65) 40 (39) 34 (37) 27 (31)
ERA 0(0) 0(0) 0(0) 232 (54) 28 (27) 21 (23) 15 (17)
Riociguat 0 (0) 0 (0) 0 (0) 0 (0] 0 (0) 0 (0] 3(3)
Prostanoid 0(0) 0(0) 0(0) 78 (18) 2(2) 1(1) 4 (5)
Anticoagulation 0(0) 44 (33) 27 (84) 291 (67) 104 (96) 87 (95) Stopped for RHC
Loop diuretic 0(0) 24.(18) 5 (8) 228 (53) 47 (44) 46 (50) 46 (53)
Potassium-sparing diuretic 0(0) 6 (5) 2(3) 104 (24) 24.(22) 26 (28) 17 (20
Statin 0 (0) 40 (30) 11 (22) 112 (26) 38 (42) 35 (38) 25 (29)
CCB 0(0) 22 (17) 5(8) 75 (17) 4 (4) 9 (10) 12 (14)
Digoxin 0(0) 11(8) 1(2) 68 (16) 7 (6) 8(9) 3(3)
Antidiabetic drugs 0(0) 13 (10 4.(9) 62 (14) 11 (13) 89 9 (10)
Iron supplementation 0(0) 7 (5) 11(2) 50 (12) 8 (10] 6 (7) 7 (8)
ACEi 0 (0) 44 (33) 11 017) 100 (23) 30 (28) 26 (28) 12 (14)

Data are presented as n, median (interquartile range) or n (%), unless otherwise stated. Ethnicity is shown for subjects who self-declared. A further group of 82 CTEPH patients sampled
only after pulmonary endartectomy surgery are detailed in supplementary table S1. HC: healthy controls; DC: disease controls; CTED: chronic thromboembolic disease; IPAH/HPAH:
idiopathic and heritable pulmonary arterial hypertension; CTEPH: chronic thromboembolic pulmonary hypertension; BMI: body mass index; WHO: World Health Organization; CRP:
C-reactive protein; mRAP: mean right atrial pressure; mPAP: mean pulmonary artery pressure; mPAWP: mean pulmonary artery wedge pressure; PVR: pulmonary vascular resistance;
WU: Wood unit; PDE-5i: phosphodiesterase-5 inhibitor; ERA: endothelin receptor antagonist; CCB: calcium channel blocker; ACEi: angiotensin-converting enzyme inhibitor; ND: not
determined; RHC: right-heart catheterisation.
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FIGURE 1 Main analyses study flowchart and overlap of metabolites identified in the main analyses. Individuals analysed consisted of patients with
chronic thromboembolic pulmonary hypertension (CTEPH), healthy controls (HC), disease comparators (DC; referrals found not to have pulmonary
hypertension (PH) or those with chronic thromboembolic disease (CTED) but not PH) and patients with idiopathic (IPAH) or hereditary pulmonary
arterial hypertension (HPAH). Patients with inoperable CTEPH or those sampled before pulmonary endarterectomy (PEA) were used in the main
analyses. Additionally, 43 patients were sampled after PEA, while a further 82 patients consented for sampling only post-PEA. Venn diagram
depicts overlap in metabolites identified by comparisons of CTEPH compared to healthy controls, CTEPH patients analysed before and after PEA
surgery, and plasma gradients across tissue vascular beds relevant to PH, specifically the pulmonary artery (PA) to radial artery (ART) and
superior vena cava (SVC) to PA gradients. BMI: body mass index; FDR: false discovery rate. #: PA-ART gradient; T: SVC-PA gradient;
*: metabolites which also differed in the analysis of CTEPH against IPAH patients; 8, probable metabolite identity, but unconfirmed (see methods).

USA) [7]; data were provided as semi-quantitative metabolite levels, annotated with pathways, as described
previously [5]. Glycerophospholipid groups are abbreviated as follows. Glycerophosphorylcholine: GPC;
glycerophosphoethanolamine: GPE; glycerophosphatidylinositol: GPIL; glycerophosphatidylserine: GPS.

Statistical analysis

We pre-processed metabolite data as described previously [5]. Briefly, metabolites were normalised by
Box-Cox transformations [5] and samples where metabolites were undetected were imputed with the
minimum detected level for the metabolite. Only 324 nonxenobiotic metabolites detected in >95% of
samples were included. All data were z-score transformed based on healthy control data for ease of
interpretation. In order to account for any between batch variability a quantile normalisation approach
was utilised, which sets the distribution of metabolite levels in each sample to the average distribution of
all samples, making them directly comparable [8]. Previously, this has been used in metabolomics LC-MS
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data to minimise experimental variation due to a variety of causes, including experiments being conducted
at different times [8], using more than one instrument and different sample processing procedures [9].

Initial group comparisons between controls and patients were performed using nonparametric Mann-
Whitney U-tests (as transformations did not eliminate skew). Comparisons before and after PEA surgery
in paired samples was conducted using the Wilcoxon signed-rank test. Comparisons of demographic
features between study groups were conducted using the Kruskal-Wallis (continuous data) or Chi-squared
(categorical data) tests.

To assess the relationships between metabolite levels, diagnoses and potential confounders, regression
models included preserved renal function defined as creatinine <75 pmol-L™, and liver function as
bilirubin <21 ymol-L™" [5]. In the healthy control group, preserved renal and hepatic function was
assumed as clinical assay data was unavailable.

Paired Wilcoxon signed-rank test was used for comparisons of metabolites abundance between sampling
sites. False discovery rate correction was used to minimise false positive rate. Baseline clinical
characteristics were expressed as numbers and percentages for categorical variables and mean#sp or
median (interquartile range) for continuous variables according to data distribution. Comparisons of
clinical characteristics between study groups were performed with parametric and nonparametric tests as
per data distribution. Data were analysed and visualised using R (www.R-project.org/)

Pathway enrichment analysis on metabolites showing tissue gradients was performed with Fisher’s exact
test with all detected metabolites in each pathway as background. Undirected relevance network analysis
[10] was performed to investigate the inter-relationship between metabolites that showed gradients across
sampling sites; highly correlated metabolites (Spearman’s p>0.9) were visualised using the tidygraph R
package. Additionally, Spearman’s correlation was performed to assess relationships between
discriminatory metabolites and normalised clinically relevant (diagnostic or prognostic) variables. The
results were visualised using ggplot2, ggpubr, pROC, ggdendro and egg R packages.

Results

Study participants

Baseline characteristics and laboratory data are shown in table 1 and supplementary table S1. Patients with
PH show altered haemodynamics and impaired exercise capacity and an overview of the main comparison
groups is given in figure 1 with details in table 1.

Altered plasma metabolite profiles in CTEPH patients

First, we compared plasma metabolite levels in two sets of samples from pre-PEA or inoperable CTEPH
patients and healthy control subjects (figure 1). Plasma levels of 55 metabolites distinguished CTEPH
patients from healthy controls in both discovery and replication analyses following Bonferroni correction
(mean differences to controls ranging —0.33— —1.53 sp and +0.84-2 sp, p<1.54x10™% supplementary table
S2). Of these, 35 metabolites distinguished CTEPH from healthy controls after correcting for potential
confounders such as age, sex, ethnicity, body mass index, creatinine, bilirubin and drug therapies (p<0.05;
supplementary table S2). Age affected 17 of these metabolites, but the average effect of CTEPH was ~50-
100 times greater; and sex affected 11 out of 35 metabolites, with the effect of CTEPH being 1.5-3.2 times
the effect of sex (supplementary table S3 and supplementary figure S1).

Of the 35 discriminating metabolites, a subset of 19 also distinguished CTEPH patients from disease
controls after correcting for potential confounders (p<0.05; figure 2); 10 were increased, including modified
nucleosides (e.g. N2,N2-dimethylguanosine), monohydroxy-fatty acids and metabolites of polyamine and
methionine metabolism; and nine, including phosphatidylcholines, oxalate, y-glutamyl-e-lysine and several
sphingomyelins, were decreased (supplementary table S2). In addition, 12 metabolites were significantly
different between CTEPH and CTED patients (p<0.05), the latter group being included as a control for
underlying chronic thromboembolism without pulmonary hypertension and anticoagulation therapy
(table 2, supplementary table S2). These 12 metabolites were confirmed by receiver operating characteristic
analysis to distinguish CTEPH and both healthy (area under the curve (AUC) 0.64-0.94, all p<2x10~°) and
disease controls (AUC 0.58-0.77, all p<0.05; figure 3). Sensitivities and specificities of the best cut-offs
reached 57-92% and 35-94% (supplementary table S4). Finally, five metabolites significantly distinguished
CTEPH from the PH comparator group of IPAH patients with the most marked difference being in
5-methylthioadenosine (figures 2 and 4a, table 2, supplementary table S2).

Metabolite changes associated with PEA surgery in CTEPH patients

We hypothesised that plasma levels of some metabolites relate directly to the consequences of raised
pulmonary vascular resistance and associated right ventricle strain; if so, PEA surgery would be expected
to correct a subset of altered metabolite levels in CTEPH patients.
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FIGURE 2 Heatmap of 35 metabolites that distinguish chronic thromboembolic pulmonary hypertension (CTEPH) patients from healthy controls
(HC) and disease comparators (DC) independent of confounders. Metabolites a) distinguishing CTEPH from all other groups; b) distinguishing
CTEPH from HC, DC and chronic thromboembolic disease (CTED); c) distinguishing CTEPH from HC and DC independent of confounders; and
d) distinguishing CTEPH from HC independent of confounders. #. probable metabolite identity, but unconfirmed (see methods).
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TABLE 2 Metabolites distinguishing chronic thromboembolic pulmonary hypertension (CTEPH) from healthy (HC) and disease controls (DC)

Metabolic pathway Discovery Replication Linear regression with Comparator groups
confounders p-value
CTEPH HC p-value CTEPH HC p-value HC versus DCversus CTED p-value IPAH/ p-value
CTEPH CTEPH HPAH
Significant in all analyses
5-MTA Polyamine metabolism 172 0.07 5.00x10~'7 155 032 6.95x107'? 5.21x107% 0.0009 1.34  0.0019 086 3.75x10"3
+0.84 +1.22 091 £1.12 +0.73 +1.26
N1-Methyladenosine Purine metabolism, 158  0.03 3.02x107'7 167 0.4%1.18.10x10™"* 4.55x107%° 0.0105 091 2.07x107% 121 1.56x107%
adenine-containing +0.78  +1.01 +0.61 +1.08 +0.93
N1-Methylinosine Purine metabolism, (hypo) 1.64  0£1.1 1.51x107'2 191 041 8.70x10™"° 7.20x107°° 2.35x107%° 159  0.0406 1.65 0.008
xanthine/inosine-containing +1.54 +1.45  +£1.06 +1.11 £1.11
7-Methylguanine Purine metabolism, 1.23 0.01 8.47x107'° 1.27 0.45 0.0001 0.0007 0.0099 0.54 4.18x107% 0.95 0.019
guanine-containing +1.09  1.16 £1.25  +1.19 +1.08 +1.28
N-Formylmethionine Methionine, cysteine, SAM and 1.45 0.05 6.10x107" 151 036 4.27x107" 0.0024 0.0042 1.22 0.014 1.31 0.0406
taurine metabolism +0.88 +1.02 +0.78 +1.11 +0.78 +0.86
Significant versus HC, DC and
CTED
Sphingomyelin (d18:1/20:0, Sphingomyelins -091 03 2.52x107"° —0.71 0.1 7.45x1077 9.64x107%° 0.0402 —-0.28 7.81x107% _0.93  0.0655
d16:1/22:0)% +0.75  £1.19 +0.7  £1.06 +0.96 +0.91
1-Stearoyl-2-arachidonoyl- Phosphatidylcholine —0.69 0.14 3.28x107% _053 026 4.62x107°  0.002 0.0007 -0.25 0.0005 048  0.0989
GPC (18:0/20:4) +0.62  £1.19 +0.69  £1.16 +0.75 +0.85
N2,N2-Dimethylguanosine Purine metabolism, 2:0.69 0.15 8.50x1072' 1.9:0.79 028 5.02x107"° 4.73x107%  1.10x107% 135 6.44x107%7 1.81:0.9 0.1246
guanine-containing +0.99 +1.18 +0.82
Sphingomyelin —-0.87 036 8.60x10~"" —056 0.17 1.53x107% 1.25x107% 0.0161 -0.15 0.0032 -0.77  0.3203
(d18:1/21:0, d17:1/22:0, Sphingomyelins 0.9 £1.18 £0.74  +1.03 +1.32 +0.76
d16:1/23:0)*
N-Acetylmethionine Methionine, cysteine, 117 018 1.42x107'° 1.16 021 1.00x107°®  0.0286 0.031 0.44 7.22x107°8 1.12:0.7 0.3691
SAM and taurine metabolism +0.76  +1.09 +0.75  +1.16 +1.03
1-Linoleoyl-2-arachidonoyl- Phosphatidylcholine —-0.78 0.13 1.87x107%° —054 032 2.20x10~'° 0.001 0.0116 -0.3 9.38x107%° 0.7 0.5379
GPC (18:2/20:4n6)* +0.63  £1.2 +0.55  +1.22 +0.66 +0.92
Pseudouridine Pyrimidine metabolism, 1.63  0.19 8.02x107'7 167 026 2.29x107'*  0.0018 0.0425 1.28  0.0024 1.57 0.8223
uracil-containing +0.78  +0.97 +0.63  £1.26 +0.82 +1.01

Data are presented as meanzsp, unless otherwise stated. The data are scaled to the HC group. Metabolites that are significantly different in CTEPH compared with both HC and DC,
independent of confounders and significantly different in CTEPH compared to chronic thromboembolic disease (without pulmonary hypertension) (CTED). Bold type represents statistical

significance. IPAH/HPAH: idiopathic and heritable pulmonary arterial hypertension; MTA: methylthioadenosine; GPC: glycerophosphocholine; SAM: S-adenosyl methionine.

metabolite identity, but unconfirmed (see methods).

#. probable
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C]Test result variable(s) CTEPH versus HC (n=200/121) o-value CTEPH versus DC (n=200/132) o-value
AUC (95% Cl) AUC (95% ClI)
7-meythlguanine 0.812 (0.766-0.858)  7.94x1072 0.718 (0.663-0.774)  1.63x107"
N-formylmethionine 0.878 (0.84-0.916) 8.1x10-%0 0.746 (0.689-0.803)  2.96x107"%
N1-methyladenosine 0.909 (0.875-0.943)  1.12x1073 0.76 (0.706-0.815) 1x1071®
N1-methylinosine 0.871 (0.831-0.911)  7.68x107% 0.731 (0.674-0.787)  1.14x107"?
5-methylthioadenosine (MTA) 0.904 (0.87-0.937) 7.99x10734 0.732 (0.675-0.79)  7.63x10°"°
1-stearoyl-2-arachidonoyl-GPC (18:0/20:4) 0.356 (0.291-0.421) 1.5x107 0.349 (0.286-0.411)  3.1x1070¢
1-linoleoyl-2-arachidonoyl-GPC (18:2/20:4né)* 0.291 (0.229-0.354) 3.8x10710 0.384 (0.319-0.449) ~ 0.000333
sphingomyelin (d18:1/21:0, d17:1/22:0, d16:1/23:0)# 031 (0.251-0.369)  1.17x10°%8 0.417 (0.353-0.481) ~ 0.010438
sphingomyelin (d18:1/20:0, d16:1/22:0)* 0.308 (0.248-0.368)  7.73x10°%7 0.416 (0.351-0.481)  0.009658
N-acetylmethionine 0.864 (0.825-0.904)  7.01x10728 0.739 (0.682-0.795)  1.74x107"3
pseudouridine 0.92 (0.89-0.95) 1.6x10736 0.73 (0.67-0.789)  1.45x107'2
N2,N2-dimethylguanosine 0.936 (0.908-0.963)  4.03x107%7 0.769 (0.713-0.825)  1.16x107"¢

FIGURE 3 Receiver operating characteristic (ROC) analysis of key metabolites distinguishing chronic thromboembolic pulmonary hypertension
(CTEPH) from healthy controls (HC] and disease controls (DC). ROC curves demonstrate ability of metabolites to distinguish CTEPH from a)] HC
and b) DC; ¢) areas under the curve (AUC) (95% Cl). #: probable metabolite identity, but unconfirmed (see methods).

37 metabolites distinguished operable CTEPH patients sampled pre-PEA from those sampled post-PEA
(supplementary table S5). Additionally, 12 of these metabolites showed a nominally significant change in
post-PEA surgery in the paired sample validation analysis (correcting 15-100% of perturbation versus
healthy controls), with seven meeting multiple test corrections including N2,N2-dimethylguanosine and
sphingomyelin-(d18:1/22:1, d18:2/22:0, d16:1/24:1) (supplementary table S5 and figure 4b). Taurine
increased in the unpaired samples, but decreased in the paired samples, suggesting that this may be a false
positive; the other six metabolites showed consistent directions of change.

Cardiopulmonary metabolism

We hypothesised that cardiac and pulmonary metabolic activity would affect the plasma metabolome and
contribute to the metabolic signals observed here in CTEPH and previously in IPAH [5]. We tested this
by analysing metabolite gradients across samples from three anatomical arterial and venous sites from
patients with IPAH and CTEPH: SVC, PA and ART (figure 5). We found 188 metabolites with significant
gradients (p<0.05; supplementary table S6) and the overlap of gradients is depicted in figure 4. Network
analysis revealed functionally related clusters of metabolites with tissue gradients that were closely
correlated (p>0.9) (supplementary figure S2). 21 of the metabolites we have identified as altered in CTEPH
also had significant gradients (table 3), including SVC-PA and PA-ART gradients of o-ketoglutarate
(tricarboxylic acid (TCA) cycle) and modified methionine metabolites; PA-ART gradients of
monohydroxy fatty acids (2-hydroxypalmitate); and SVC-PA gradients of N-formylmethionine and
7-methylguanine (table 3).
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FIGURE 4 Box and dot-plots of plasma levels of key metabolites. a] 5-methylthioadenosine (MTA) in healthy controls (HC), chronic
thromboembolic disease (CTED) patients without pulmonary hypertension, disease controls (DC), idiopathic or heritable pulmonary arterial
hypertension (IPAH/HPAH) and chronic thromboembolic pulmonary hypertension (CTEPH). Levels in CTEPH are significantly different compared to
HC (p=5.2x10"°) and DC (p=9.3x107%) after correcting for confounders and versus CTED (p=1.9x10"°) and IPAH (p=3.8x10""°). b) Boxplot of
sphingomyelin (d18:1/22:1, d18:0/22:0, d16:1/24:1) levels in paired plasma samples from 43 CTEPH patients, taken before and after pulmonary
endarterectomy surgery, compared with HC. #: probable metabolite identity, but unconfirmed (see methods).

In addition, metabolites associated with CTEPH and gradients showed significant associations with clinical
measures of disease severity, with the strongest associations observed between metabolites with SVC-PA
gradients (e.g. N-formylmethionine, N-acetylmethionine and o-ketoglutarate) and measures of adverse
clinical outcome (mean right atrial pressure, cardiac output and 6-min walk distance, effect size estimates
up to +/-0.432; supplementary figure S3).

We performed an enrichment analysis of the metabolite pathways represented by four or more metabolites
(supplementary table S7). TCA cycle metabolites were enriched in both SVC-PA and PA-ART gradients
(p<0.05), whereas nicotinamide, nicotinate, phospholipid and lysoplasmalogen metabolites were enriched
in PA-ART and ART-SVC gradients (p<0.05). Plasmalogens were enriched only in the PA-ART gradient
analysis (p=0.032; supplementary table S7).

Overlap between metabolites associated with CTEPH, response to surgery and plasma gradients
between sampling sites

Overall, we detected several metabolites robustly associated with CTEPH compared to relevant controls
and with response to PEA surgery and explored the association of levels of metabolites with passage of
blood across different vascular beds. 11 metabolites were overlapping from these main analyses, as
summarised in figure 5. In particular, sphingomyelin (d18:1/22:1, d18:2/22:0, d16:1/24:1)* and N2,
N2-dimethylguanosine were associated with CTEPH, and changed post-surgery, suggesting a close
association with disease development and reversal.

Discussion

This comprehensive profile of plasma metabolites has identified circulating metabolites that associate with
CTEPH and a subset of metabolites that change in response to an effective treatment. The metabolic
profile correlates with clinical severity, which together with demonstrating changes in plasma metabolite
levels across the lung and heart, provides biological plausibility. Therefore, metabolic profiling may have
clinical utility as a noninvasive approach to assessing response to PH treatments.

Most of the metabolic changes seen in CTEPH were notably similar to those observed in IPAH. This
included increased modified nucleosides, TCA cycle intermediates, monohydroxy fatty acids, tryptophan,
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FIGURE 5 Overlap in metabolites showing significant pulmonary artery (PA)-radial artery (ART), superior vena cava (SVC)-PA and ART-SVC
gradients. Boxplots show data for example metabolites from the SVC-PA- (green outline) and PA-ART- (blue outline) specific results and
o-ketoglutarate, which was significant across all three gradients.

polyamine and arginine metabolites, and decreased sphingomyelin, phosphocholines and steroid
metabolites. Differences in metabolite levels between IPAH and CTEPH were subtle and significant for
only five metabolites: four modified nucleosides (5-methylthioadenosine, NI-methyladenosine,
N1-methylinosine, 7-methylguanine) and N-formylmethionine. Importantly, some of these metabolites
(7-methylguanine, N-formylmethionine) also exhibited plasma gradients from the SVC to the PA, which
will include metabolites draining from the coronary sinus, indicating a potential relevance to cardiac
metabolism, further supported by significant correlations with haemodynamics. RNA modifications are
associated with multiple diseases ranging from various types of cancer and immune disease to
neurodevelopmental disorders [11-14]. The dynamic and reversible nature of nucleoside modifications
identifies these metabolites as candidates to monitor therapeutic response [15], as exemplified by the
change in N2,N2-dimethylguanosine following PEA. While many metabolites are affected by age and sex,
we found the differences associated with CTEPH were much larger and independent of these and other
potential confounders.

The overlap in metabolic disturbance between PAH and CTEPH is understandable, and probably reflects
common changes in cardiopulmonary structure and function [16]. Indeed, similarities between CTEPH
and PAH with pulmonary arterial remodelling and endothelial cell dysfunction, as well as subsequent right
ventricle remodelling are well documented [16, 17]. The implication of this is that future therapeutic
strategies which act by correcting the metabolic dysfunction observed could be investigated not just in
CTEPH, but potentially in all forms of PH that demonstrate similar metabolic disturbances. When
studying CTEPH it is challenging to dissociate the effects of PH and chronic thromboembolism, both of
which can affect metabolism. To mitigate this, we included comparisons with patients with chronic
thromboembolism without PH, and patients with IPAH. While some effects of the severity and duration
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TABLE 3 Metabolites that associate with chronic thromboembolic pulmonary hypertension (CTEPH) and show significant gradients between sampling sites

Subpathway Superpathway Gradients
PA-ART SVC-PA ART-SVC
FC FDR FC FDR FC FDR
p-value p-value p-value
a-Ketoglutarate TCA cycle Energy —0.184 <0.001 —-0.269 <0.001 —0.453 <0.001
N-Acetylmethionine Methionine, cysteine, SAM and taurine Amino acid 0.087 0.038 -0.152 <0.001
metabolism
Oxalate (ethanedioate) Ascorbate and aldarate metabolism Cofactors and —0.288 <0.001 —0.282 <0.001
vitamins
Glycerate Glycolysis, gluconeogenesis and Carbohydrate -0.36 <0.001 —0.403 <0.001
pyruvate metabolism
2-Hydroxypalmitate Fatty acid, monohydroxy Lipid —0.304 0.002 -0.414 <0.001
N-Acetylvaline Leucine, isoleucine and valine Amino acid 0.118 0.003 0.052 0.026
metabolism
N-Formylmethionine Methionine, cysteine, SAM and taurine Amino acid -0.185 <0.001
metabolism
7-Methylguanine Purine metabolism, guanine containing Nucleotide —0.165 <0.001
Sphingomyelin (d18:2/23:0, d18:1/23:1, d17:1/24:1)* Sphingomyelins Lipid 0.119 <0.001
v-Glutamyl-g-lysine v-Glutamyl amino acid Peptide —0.265 0.002
Sphingomyelin (d18:1/21:0, d17:1/22:0, d16:1/23:0) * Sphingomyelins Lipid 0.085 0.005
N-Acetylserine Glycine, serine and threonine Amino acid —-0.108 0.008
metabolism
1,2-Dilinoleoyl-GPC (18:2/18:2) Phosphatidylcholine Lipid 0.1 0.008
Androsterone sulfate Androgenic steroids Lipid 0.067 0.012
1-Stearoyl-2-arachidonoyl-GPC (18:0/20:4) Phosphatidylcholine Lipid 0.145 0.013
Sphingomyelin (d18:1/22:1, d18:2/22:0, d16:1/24:1)* Sphingomyelins Lipid 0.1 0.018
Tryptophan Tryptophan metabolism Amino acid 0.109 0.018
N-Acetylalanine Alanine and aspartate metabolism Amino acid -0.128 0.022
1-Linoleoyl-2-arachidonoyl-GPC (18:2/20:4n6) * Phosphatidylcholine Lipid 0.099 0.03
N-Acetylphenylalanine Phenylalanine metabolism Amino acid 0.092 0.033
Sphingomyelin (d18:1/17:0, d17:1/18:0, d19:1/16:0) Sphingomyelins Lipid 0.083 0.045
1-(1-Enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) * Plasmalogen Lipid 0.068 0.046

PA: pulmonary artery; ART: radial artery; SVC: superior vena cava; FC: fold change; FDR: false discovery rate (corrected p-values displayed); TCA: tricarboxylic acid; SAM: S-adenosyl

methionine. #: probable metabolite identity, but unconfirmed (see methods).
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of thromboembolism in CTEPH patients may remain, the changes we observe are most likely driven by
the haemodynamics of PH and the associated pulmonary vascular remodelling and right heart
dysfunction.

We explored the metabolites altered in CTEPH patients sampled post-PEA compared to pre-operative
cases and were able to verify correction of six metabolites which report on relevant pathways in patients
sampled both prior to and after full recovery from PEA. This included two sphingomyelins which, through
structural and signalling roles including cell cholesterol and plasma membrane homeostasis, play an
important role in cardiovascular health [18]; here we also show significant inverse correlations with
haemodynamic parameters. Reduced a-tocopherol, a potent antioxidant and cytoprotective agent which
inhibits platelet aggregation and promotes vasodilation [19, 20] and is reduced in the failing right ventricle
[21], was also corrected post-surgery. 3-Ureidopropionate, a pyrimidine breakdown product which can
inhibit complex V of the respiratory complex chain [22] was also decreased back towards normal levels
post-PEA. The modified nucleoside N2,N2-dimethylguanosine, which could reflect stress or
hyperproliferation of vascular cells, was partially corrected by surgery, adding to its utility as a risk marker
already established in PAH [5]. The responsiveness of these markers to successful therapy in CTEPH is
encouraging for their utility in monitoring successful treatment in other forms of PH.

By sampling PH patients at different anatomical locations, we aimed to characterise alterations in the
plasma metabolome across tissues, in particular the heart and lung. In the PA-ART gradients we also saw
enrichment in nicotinamide/nicotinate (1-methylnicotinamide has antithrombotic activity [23]),
phospholipid, lysoplasmalogen and plasmalogen (antioxidants [24] which can be targeted by
hypoxia-induced phospholipases [25]) metabolites, reflecting at least in part, the metabolic activity of the
lung. In gradients from the PA-ART and SVC-PA samples we found enrichment of TCA cycle
metabolites such as a-ketoglutarate, which was also elevated in PH patients. Previous metabolomic [5, 26]
and imaging studies [27] have demonstrated disrupted bioenergetics in IPAH and CTEPH. Accumulation
of TCA cycle intermediates is consistent with reduced mitochondrial glucose oxidation, previously
reported in PAH and a therapeutic target [28]. Mitochondrial dysfunction in pulmonary artery cells [29],
right ventricle [30] and peripheral organs [31] points toward multiorgan energetic reprogramming [32]
and is now considered an important component of the pathophysiology of PAH. Our data suggest that
this may also be an important feature of CTEPH.

During exercise, fit individuals elevate plasma glycerol (lipolysis), fatty acid entry to the TCA cycle
(pantothenate) and expand the TCA cycle intermediate pool [33]. In patients with oxidative
phosphorylation dysfunction (mitochondrial/McArdle disease) these responses to increased demand on
skeletal muscle are not maintained [34]. Equally, disruption of TCA intermediates and purine metabolites
is associated with right ventricular-pulmonary vascular dysfunction in PH [35] and right ventricular fatty
acid metabolism is perturbed [36]. We found that metabolites in these and other (modified nucleosides
and lysophospholipids) pathways were associated with disease severity and exercise performance in
CTEPH patients and further studies such as skeletal muscle biopsy metabolomics may be required to fully
appreciate the tissue specificity of these changes. Similarly, differential metabolic response to
environmental interventions (diet, exercise programmes) can shed new light on the impact on lifestyle
modifications on disease trajectory [37, 38].

While well established in heart failure [39], there is also a growing body of evidence that perturbations in
systemic metabolism are involved in the pathogenesis of PAH and CTEPH [40]. This appears to include a
role for the gut microbiome in PAH [41] with some bacterial taxa enriched in PAH stool samples and
associated microbial metabolite changes in PAH patients [42]. In line with these findings we show here
perturbations and significant systemic gradients of microbial metabolites, including those involved in
tryptophan, sphingomyelins and phosphatidylcholine metabolism.

The strengths of this study include the large sample size, stringent sampling and processing conditions,
inclusion of disease controls, comprehensive clinical assessment, including near normalisation of
pulmonary haemodynamics, and its untargeted approach to assessing a wide range of plasma metabolites.
There were also limitations. Plasma samples were taken at advanced stages of CTEPH, which makes it
difficult to distinguish causative from compensatory changes. The influence of current medical therapies
on metabolic profiles was also not assessed. Sampling directly from the coronary sinus could better
characterise transcardiac metabolism in future studies. Reduced plasma albumin levels in chronic diseases
such as CTEPH more closely represent inflaimmation, and thus have limited utility in estimating
nutritional status. For optimal clinical utility, the effects of diurnal variation and diet, through collection of
accurate nutritional data, on specific metabolic profiles will need to be better understood, but some
confidence can be taken from pilot data from CTEPH patients sampled in a fasting state who
demonstrated several similar perturbations [26].
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Conclusion

We identified a metabolic profile that separates CTEPH from healthy and disease controls, but the overlap
in metabolic disturbance between PAH and CTEPH probably reflects common changes in
cardiopulmonary structure and function. Plasma metabolite gradients implicate cardiopulmonary tissue
metabolism of metabolites associated with PH. Metabolites that respond to surgery with improvement in
pulmonary haemodynamics could be a suitable noninvasive marker for evaluating future targeted
therapeutic interventions in pulmonary hypertension.
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