Online Supplement

A genome-wide association study of severe asthma exacerbations in Latino children and adolescents

Qi Yan, PhD^{1#}, Erick Forno, MD, MPH^{1#}, Esther Herrera-Luis, PhD^{2#}, Maria Pino-Yanes, PhD^{2,3}, Cancan Qi, MsC^{4,5}, Raimon Rios, MSc⁶, Yueh-Ying Han, PhD¹, Soyeon Kim, PhD¹, Sam Oh, PhD⁷, Edna Acosta-Pérez, PhD⁸, Rong Zhang, PhD¹, Donglei Hu, PhD⁷, Celeste Eng⁷, Scott Huntsman, MS⁷, Lydiana Avila, MD⁹, Nadia Boutaoui, PhD¹, Michelle M. Cloutier, MD¹⁰, Manuel E. Soto-Quiros, MD, PhD⁹, Cheng-jian Xu, PhD^{11,12}, Scott T. Weiss, MD, MS¹³, Jessica Lasky-Su, DSc¹³, Megan R. Kiedrowski¹⁴, Camila Figueiredo, PhD⁶, Jennifer Bomberger, PhD¹⁴, Mauricio L. Barreto, MD, PhD¹⁵, Glorisa Canino, PhD⁸, Wei Chen, PhD¹, Gerard H. Koppelman, MD PhD^{4,5}, Esteban G. Burchard, MD, MPH^{7^}, Juan C. Celedón, MD, DrPH, ATSF^{1,*}

¹Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA. ²Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Santa Cruz de Tenerife, Spain. ³CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain. ⁴University of Groningen, University Medical Center Groningen, Dept. of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, and ⁵University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands. ⁶Instituto de Ciências da Saúde, Universidade Federal da Bahia, Vale do Canela, Salvador, Bahia, Brazil. ⁷Department of Medicine, University of California San Francisco, San Francisco, CA, USA. ⁸Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico. ⁹Department of Pediatrics, Hospital Nacional de Niños, San José, Costa Rica. ¹⁰Department of Pediatrics, University of Connecticut, Farmington, CT, USA. ¹¹CiiM and TWINCORE, joint ventures between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany. ¹²Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands. ¹³Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. ¹⁴Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA. ¹⁵Instituto de Saúde Coletiva, Federal University of Bahia, Salvador, Brazil.

*Shared first authors. ^Shared senior authors.

*Corresponding author: Juan C. Celedón, MD, DrPH, ATSF Division of Pulmonary Medicine UPMC Children's Hospital of Pittsburgh 4401 Penn Avenue, Pittsburgh, PA 15224 Phone: 412.692.8429; Fax 412.692.7636; Email: juan.celedon@chp.edu

METHODS

Study populations included in the meta-analysis of GWAS of severe exacerbations

Hartford-Puerto Rico study (HPR): From September 2003 to June 2010, children with and without asthma were recruited in Hartford, (CT) and San Juan (PR), as reported elsewhere [1]; only children with asthma (n=618) were considered for the current analysis. All participants were 6 to 14 years old and had four Puerto Rican grandparents, and asthma was defined as physiciandiagnosed asthma and ≥1 episode of wheeze in the prior year. Genome-wide genotyping was conducted using the HumanOmni2.5 BeadChip platform (Illumina Inc., San Diego, CA), as previously described [2]. Genotype imputation was performed with the Michigan Imputation Server [3], using the Haplotype Reference Consortium (HRC) r1.1 2016 [4] as the reference panel. Genotyped or imputed SNPs with imputation quality r²<0.3 or Hardy-Weinberg equilibrium (HWE) $P < 1 \times 10^{-4}$ or minor allele frequency MAF <0.05 were excluded from the analysis. Written parental consent was obtained for participating children, from whom written assent was also obtained. The study was approved by the Institutional Review Boards of the University of Puerto Rico (San Juan, PR), Brigham and Women's Hospital (Boston, MA) and the University of Pittsburgh (Pittsburgh, PA).

<u>The Genetics of Asthma in Latino Americans study (GALA II)</u>: Subjects were recruited using a combination of community and clinic-based approaches from centers throughout the U.S. (Chicago [IL], Bronx [NY], Houston [TX], San Francisco Bay Area [CA] and Puerto Rico). Subjects were eligible if they were aged 8 to 21 years, had <10 pack-years of smoking history and were not current smokers, and had four grandparents of Hispanic or Latino ethnicity. Asthma was defined based on a physician's diagnosis and self-reported symptoms and medication use for asthma within the last two years. Genotyping was conducted with the Axiom[®] LAT1 array (World Array 4, Affymetrix, Santa Clara, CA), and QC was performed as previously described [5].

Imputation was performed using the Michigan Imputation Server [3], using HRC r1.1 2016 [4] as reference, and only SNPs with MAF \geq 0.05 and imputation quality r² \geq 0.3 were kept. The study was approved by the Institutional Review Boards of UCSF and at each participating center. All subjects and their parents provided written informed assent and written informed consent, respectively.

The Genetics of Asthma in Costa Rica Study (GACRS): Subject recruitment and study procedures in the GACRS have been described elsewhere [6, 7]. In brief, Costa Rican children ages 6 to 14 years were recruited from February 2001 to July 2011. Children were included in the study if they had asthma (defined as physician-diagnosed asthma and at least two respiratory symptoms [wheezing, cough, or dyspnea] or a history of asthma attacks in the previous year) and a high probability of having at least 6 great-grandparents born in the Central Valley of Costa Rica. Genome-wide genotyping was conducted using the HumanOmniExpress-12v1_A chip [6]. Genotype imputation was performed with the Michigan Imputation Server [3], using the Haplotype Reference Consortium (HRC) r1.1 2016 [4] as the reference panel, with QC measures as in the HPR study. In addition, since the original data were for nuclear families, SNPs with Mendelian error rate ≥0.01 were excluded from the analysis. The study was approved by the Institutional Review Boards of the Hospital Nacional de Niños (San Jose, Costa Rica) and Brigham and Women's Hospital (Boston, Mass).

<u>The Social Changes, Asthma and Allergy in Latin America study (SCAALA) – Bahia, Brazil:</u> Children ages 5 to 12 years were recruited in 2005. Subject recruitment and the study protocol have been described in detail [8]. Genotyping was carried out using the Illumina HumanOmni2.5-8v1 Kit BeadChip (Illumina, San Diego, CA) platform. QC measures for the genotypic data were similar to those in the HPR study. Written informed consent was obtained from the legal guardian

of each subject. The study was approved by the ethics committees at the Federal University of Bahia and National Council for Ethics in Research.

Study populations included in molecular quantitative trait analyses in nasal epithelium

The Epigenetic Variation and childhood Asthma in Puerto Rico study (EVA-PR): In EVA-PR, children with and without asthma (aged 9-20 years) were recruited in San Juan (PR) from February 2014 to May 2017, using a similar approach to that used in the HPR study [9]. DNA and RNA were extracted from nasal specimens collected from the inferior turbinate, as reported elsewhere [9]. For whole-genome methylation QC, the R package ENmix was used to filter CpG probes with obvious multimodal distributions [10]. Cross-reactive and SNP-containing probes [11], sex chromosomal probes, and low-quality probes (>10% of samples with detection p-values >0.01) were removed. We further removed CpG probes with mean β -value <0.1 or >0.9 [12]. Methylation β -values were calculated as a percentage: $\beta = M/(M+U+\alpha)$, where M and U represent methylated and unmethylated signal intensities, respectively, and α is an arbitrary offset to stabilize β -values where fluorescent intensities are low. β -values were then transformed to M-values as $\log_2(\beta/(1-\beta))$ β)). For RNA-Seq QC, FastQC was used to check read quality in raw fastq files [13]. Low quality reads and 3' adapters were trimmed with Trim Galore! and Cutadapt [14, 15]. Saved reads were aligned to reference human genome (hg19) with STAR [16] and TPM (Transcripts Per Kilobase Million) was used as proxy for gene expression level. Samples with low alignment percentage were removed from downstream analyses. Furthermore, low expressed genes with mean TPM <0.5 were removed. The study was approved by the institutional review boards of the University of Puerto Rico (San Juan, PR) and the University of Pittsburgh (Pittsburgh, PA). Written parental consent and assent were obtained from participants <18 years old, and consent was obtained from participants \geq 18 years old.

<u>*PIAMA*</u>: Details of the study design and protocol have been previously published [17, 18]. The Medical Ethical Committees of the participating institutes approved the study, and the parents and legal guardians of all participants, as well as the participants themselves, gave written informed consent. At the age of 16 years, nasal epithelial cells were collected at two study centers (Groningen and Utrecht) [19] by brushing the lateral area underneath the right inferior turbinate. DNA methylation data were pre-processed with Bioconductor package *minfi* [20], using the original IDAT files from the HiScanSQ scanner. Samples with call rate <99% were removed. 65 SNP probes were used to check for concordance between paired DNA samples (nasal and blood DNA samples from the same subjects were hybridized in the same experiments); paired samples with Pearson correlation coefficient <0.9 were excluded, as were probes on sex chromosomes, probes that mapped to multiple loci, 65 SNP-probes, and probes containing SNPs at the target CpG sites with a MAF>0.05 [11]. "DASEN" [21] was used to perform signal correction and normalization. After QC, 455 samples and 436 824 probes remained, and 432 samples had matched genotype data.

Meta-analysis of GWAS of SAEs

METAL [22] takes *P*-values across independent studies as input, with MAF, sample size and effect direction considered. After the test allele was determined, a Z-score was calculated in each study:

$$Z_i = \Phi^{-1} \left(1 - \frac{P_i}{2} \right) \times \operatorname{sign}(\Delta_i),$$

where Z_i is the Z-score for study *i*, P_i is the *P*-value for study *i*, Δ_i is the direction of effect for study *i*, and Φ^{-1} gives the percentile of a standard normal distribution. Then, the meta Z-score and *P*-value can be calculated,

$$Z = \frac{\sum_i Z_i w_i}{\sqrt{\sum_i w_i^2}}, \qquad P = 2\Phi(|-Z|)$$

where Z is the meta Z-score, P is the meta P-value, and w_i is the weight for study i,

$$w_i = \frac{MAF_i(1 - MAF_i)N_i^{cas}N_i^{con}}{(N_i^{cas} + N_i^{con})}$$

where MAF_i is the minor allele frequency for study *i*, N_i^{cas} is the number of cases for study *i* and N_i^{con} is the number of controls for study *i*. This weighting is intended to assign larger weights to studies with larger sample size, more balanced case-control numbers and higher MAF [23]. Summary odds ratios (ORs) were calculated by averaging the study-specific log-odds ratios, with weights reflecting the standard errors from the study-specific ORs. Specifically,

$$OR = exp\left(\sum_{i} \frac{log(OR_i)}{(SE_i)^2} / \sum_{i} \frac{1}{(SE_i)^2}\right)$$

where SE_i is the standard error of log(OR) for study *i*.

Higgin's & Thompson's *P*

We first need to calculate Cochran's Q-statistic, which is calculated as the weighted sum of squared differences between individual study effects and the pooled effect across studies, with the weights being those used in the pooling method.

$$Q = \sum_{i} \frac{1}{(\mathrm{SE}_{i})^{2}} \left(\log(\mathrm{OR}_{i}) - \sum_{i} \frac{\log(\mathrm{OR}_{i})}{(\mathrm{SE}_{i})^{2}} / \sum_{i} \frac{1}{(\mathrm{SE}_{i})^{2}} \right)^{2}$$

where SE_i is the standard error of log(OR) for study *i*. We then calculated l^2 by using

$$I^2 = max\left\{0, \quad \frac{Q - (K - 1)}{Q}\right\}$$

where *K* is the number of studies, which is 4.

REFERENCES

1. Brehm JM, Acosta-Perez E, Klei L, *et al.* African ancestry and lung function in Puerto Rican children. *J Allergy Clin Immunol* 2012: 129(6): 1484-1490 e1486.

2. Brehm JM, Acosta-Perez E, Klei L, *et al.* Vitamin D insufficiency and severe asthma exacerbations in Puerto Rican children. *Am J Respir Crit Care Med* 2012: 186(2): 140-146.

3. Das S, Forer L, Schonherr S, *et al.* Next-generation genotype imputation service and methods. *Nat Genet* 2016: 48(10): 1284-1287.

4. McCarthy S, Das S, Kretzschmar W, *et al.* A reference panel of 64,976 haplotypes for genotype imputation. *Nat Genet* 2016: 48(10): 1279-1283.

5. Pino-Yanes M, Thakur N, Gignoux CR, *et al.* Genetic ancestry influences asthma susceptibility and lung function among Latinos. *J Allergy Clin Immunol* 2015: 135(1): 228-235.

6. Hunninghake GM, Soto-Quiros ME, Avila L, *et al.* Polymorphisms in IL13, total IgE, eosinophilia, and asthma exacerbations in childhood. *J Allergy Clin Immunol* 2007: 120(1): 84-90.

7. Hunninghake GM, Soto-Quiros ME, Avila L, *et al.* Sensitization to Ascaris lumbricoides and severity of childhood asthma in Costa Rica. *J Allergy Clin Immunol* 2007: 119(3): 654-661.

8. Barreto ML, Cunha SS, Alcantara-Neves N, *et al.* Risk factors and immunological pathways for asthma and other allergic diseases in children: background and methodology of a longitudinal study in a large urban center in Northeastern Brazil (Salvador-SCAALA study). *BMC Pulm Med* 2006: 6: 15.

9. Forno E, Wang T, Qi C, *et al.* DNA methylation in nasal epithelium, atopy, and atopic asthma in children: a genome-wide study. *Lancet Respir Med* 2019: 7(4): 336-346.

10. Xu Z, Niu L, Li L, *et al.* ENmix: a novel background correction method for Illumina HumanMethylation450 BeadChip. *Nucleic Acids Res* 2016: 44(3): e20.

11. Chen YA, Lemire M, Choufani S, *et al.* Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. *Epigenetics* 2013: 8(2): 203-209.

12. Chen W, Wang T, Pino-Yanes M, *et al.* An epigenome-wide association study of total serum IgE in Hispanic children. *J Allergy Clin Immunol* 2017: 140(2): 571-577.

13. Bioinformatics B. FastQC A quality control tool for high throughput sequence data. *Cambridge, UK: Babraham Institute* 2011.

14. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet journal* 2011: 17(1): pp. 10-12.

15. Krueger F. Trim Galore!: A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. 2015.

16. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 2013: 29(1): 15-21.

17. Brunekreef B, Smit J, de Jongste J, *et al.* The prevention and incidence of asthma and mite allergy (PIAMA) birth cohort study: design and first results. *Pediatr Allergy Immunol* 2002: 13(s15): 55-60.

18. Wijga A, Smit HA, Brunekreef B, *et al.* Are children at high familial risk of developing allergy born into a low risk environment? The PIAMA Birth Cohort Study. Prevention and Incidence of Asthma and Mite Allergy. *Clin Exp Allergy* 2001: 31(4): 576-581.

19. Xu CJ, Soderhall C, Bustamante M, et al. DNA methylation in childhood asthma: an epigenome-wide meta-analysis. *Lancet Respir Med* 2018: 6(5): 379-388.

20. Aryee MJ, Jaffe AE, Corrada-Bravo H, *et al.* Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. *Bioinformatics* 2014: 30(10): 1363-1369.

21. Pidsley R, CC YW, Volta M, *et al.* A data-driven approach to preprocessing Illumina 450K methylation array data. *BMC Genomics* 2013: 14: 293.

22. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. *Bioinformatics* 2010: 26(17): 2190-2191.

23. Yan Q, Brehm J, Pino-Yanes M, *et al.* A meta-analysis of genome-wide association studies of asthma in Puerto Ricans. *Eur Respir J* 2017: 49(5).

<u>Supplementary Figure S1</u> – The omics data distribution from the EVA-PR cohort Expression and methylation in nasal airway epithelial cells

<u>Supplementary Figure S2</u> – Manhattan plot of meta-analysis results using 1000 Genome AMR as the imputation reference panel: Manhattan plot showing the summary meta-analysis results of HPR, GALA II, GACRS, and SCAALA. HPR, GALA II and GACRS were re-imputed using 1000 Genome AMR as the reference panel. SCAALA was not imputed.

<u>Supplementary Table S1</u>: Meta-analysis of GWAS of asthma exacerbation, for SNPs associated with asthma in two previous meta-analyses of multi-ancestry population and UK Biobank

CNID			Bof	In Cited papers		HPR			GACRS			GALA II		SCAALA			Meta	Nearby gapag	
SNF	CRK. DF	AIL	Rei	OR [*]	P#	AAF	OR	Р	AAF	OR	Р	AAF	OR	Р	AAF	OR	Р	Р	Nearby genes
Loci reported	by Demenais, F. et a	al. Nat G	enet 201	18; 50: 42-	53														
rs7705042	5: 141 492 419	С	Α	0.92	7.90E-09	0.31	1.18	0.22	0.33	0.98	0.89	0.31	1.02	0.79	NA	NA	NA	0.51	NDFIP1,GNDPA1,SPRY4
rs1233578	6: 28 712 247	G	A	1.09	5.90E-07	0.24	0.94	0.69	0.15	0.99	0.95	0.19	1.13	0.18	0.30	0.81	0.30	0.38	GPX5,TRIM27
rs2325291	6: 90 986 686	A	G	0.91	2.20E-12	0.24	0.96	0.78	0.25	1.09	0.53	0.26	1.06	0.41	NA	NA	NA	0.42	BACH2,GJA10,MAP3K7
rs167769	12: 57 503 775	Т	С	1.08	3.90E-09	0.33	1.02	0.87	0.40	0.96	0.72	0.39	1.04	0.62	NA	NA	NA	0.75	STAT6,NAB2,LRP1
rs17637472	17: 47 461 433	A	G	1.08	6.60E-09	0.29	0.86	0.30	0.25	1.08	0.60	0.23	1.05	0.57	NA	NA	NA	0.83	ZNF652,PHB
rs2855812	6: 31 472 720	Т	G	1.10	8.90E-12	0.19	1.08	0.63	0.12	1.02	0.91	0.17	1	1.00	0.18	0.83	0.48	0.81	MICB,HCP5,MCCD1
rs2589561	10: 9 046 645	A	G	1.10	3.50E-09	0.13	1.02	0.92	0.11	1.14	0.52	0.12	1.13	0.26	0.18	1.17	0.48	0.23	GATA3,CELF2
rs12543811	8: 81 278 885	G	Α	1.09	1.10E-10	0.42	1.01	0.96	0.45	1.05	0.68	0.47	1.13	0.07	NA	NA	NA	0.10	TPD52,ZBTB10
rs17806299	16: 11 199 980	A	G	0.91	2.70E-10	0.16	0.74	0.09	0.16	0.98	0.91	0.12	1.03	0.79	0.08	0.95	0.87	0.57	CLEC16A,DEXI,SOCS1
rs1420101	2: 102 957 716	Т	С	1.12	3.90E-21	0.33	1.15	0.31	0.31	1.17	0.24	0.30	1.04	0.57	0.35	1.27	0.24	0.17	IL1RL1,IL1RL2,IL18R1
rs10455025	5: 110 404 999	С	Α	1.15	9.40E-26	0.28	0.98	0.90	0.32	1.09	0.51	0.26	1.06	0.46	0.18	1.29	0.30	0.40	SLC25A46,TSLP
rs20541	5: 131 995 964	Α	G	1.12	5.00E-16	0.23	0.92	0.58	0.31	0.85	0.23	0.36	1	0.98	0.20	1.24	0.33	0.47	IL13,RAD50,IL4
rs9272346	6: 32 604 372	G	Α	0.86	5.70E-24	0.39	1.02	0.89	0.37	0.94	0.62	0.33	0.91	0.19	NA	NA	NA	0.23	HLA-DRB1,HLA-DQA1
rs992969	9:6 209 697	A	G	0.86	7.20E-20	0.28	1.00	0.99	0.22	1.12	0.44	0.24	0.99	0.92	0.31	0.84	0.40	0.81	RANBP6,IL33
rs7927894	11: 76 301 316	Т	С	1.10	2.20E-14	0.37	0.79	0.08	0.30	1.30	0.06	0.29	1	0.96	NA	NA	NA	0.99	EMSY,LRRC32
rs11071558	15: 61 069 421	G	Α	0.89	1.30E-09	0.23	1.07	0.64	NA	NA	NA	0.18	1.06	0.51	NA	NA	NA	0.42	RORA,NARG2,VPS13C
rs2033784	15: 67 449 660	G	Α	1.10	7.40E-15	0.37	0.98	0.87	0.39	0.58	1.19E-5	0.37	1	0.97	0.39	0.99	0.96	0.05	SMAD3,SMAD6,AAGAB
rs2952156	17: 37 876 835	A	G	1.15	2.20E-30	0.45	1.23	0.09	0.52	1.02	0.85	0.44	1.02	0.78	0.42	1.28	0.17	0.32	ERBB2,PGAP3,MIEN1
Loci reported	by Zhu, Z. et al. Nat	Genet 2	018; 50:	857-864															
rs7936070	11: 76 293 527	Т	G	1.08	2.81E-28	0.47	0.92	0.53	0.42	1.23	0.09	0.45	1	0.98	NA	NA	NA	0.64	C11orf30,LOC100506127,PRKRIR
rs72823641	2: 102 936 159	А	Т	0.89	1.58E-27	0.11	0.79	0.27	0.08	0.94	0.77	0.08	1.1	0.45	NA	NA	NA	0.98	IL1R1,IL1RL1,IL1RL2,IL18R1,IL18RAP,MIR4772,SLC9A2, SLC9A4
rs56062135	15: 67 455 630	Т	С	1.16	1.56E-22	0.18	1.20	0.26	0.18	0.61	0.0005	0.15	1.21	0.04	0.11	1.16	0.62	0.58	SMAD3
rs36045143	16: 11 224 966	G	Α	0.93	1.83E-21	0.20	0.82	0.20	0.18	0.93	0.62	0.16	0.96	0.67				0.27	CLEC16A,DEXI
rs1837253	5: 110 401 872	Т	С	0.93	4.38E-21	0.23	0.90	0.50	0.23	0.99	0.96	0.27	0.89	0.14	0.24	0.90	0.62	0.13	TSLP
rs7705653	5: 110 142 816	G	Α	1.14	1.12E-19	0.26	0.83	0.19	0.21	1.16	0.34	0.25	0.92	0.33	NA	NA	NA	0.34	SLC25A46,TMEM232
rs28393318	4: 38 784 267	G	Α	0.92	2.14E-19	0.39	0.88	0.32	0.25	1.00	0.98	0.28	1	0.95	NA	NA	NA	0.69	FAM114A1,MIR574,TLR1,TLR6,TLR10
rs869402	17: 38 068 043	Т	С	0.89	4.15E-17	0.29	0.66	0.003	0.34	1.01	0.96	0.31	0.96	0.59	NA	NA	NA	0.11	ERBB2,GRB7,GSDMA,GSDMB,IKZF3,LRRC3C,MIEN1, MIR4728,ORMDL3,PGAP3,PNMT,STARD3,TCAP,ZPBP2
rs34290285	2: 242 698 640	Α	G	0.93	5.17E-17	0.26	1.16	0.33	NA	NA	NA	0.21	0.92	0.30	NA	NA	NA	0.66	D2HGDH,GAL3ST2
rs10174949	2:8 442 248	Α	G	0.94	1.70E-16	0.24	1.11	0.46	0.23	0.89	0.41	0.26	0.93	0.37	NA	NA	NA	0.44	LINC00299
rs9911533	17: 3 877 5476	С	Т	0.92	9.70E-16	0.33	1.09	0.55	0.35	1.11	0.42	0.31	0.95	0.52	NA	NA	NA	0.94	KRT24,KRT222,SMARCE1
rs12413578	10: 9 049 253	Т	С	0.91	1.09E-14	0.10	0.72	0.15	0.10	0.99	0.96	0.07	1.02	0.88	NA	NA	NA	0.58	HV745896
rs6881270	5: 35 879 095	т	С	0.91	1.53E-14	0.18	0.97	0.87	0.17	0.93	0.63	0.18	1.05	0.58	NA	NA	NA	0.85	CAPSL,IL7R,LOC100506406,SPEF2,UGT3A1
rs10876864	12: 56 401 085	G	A	1.05	1.41E-13	0.50	0.96	0.73	0.33	1.25	0.09	0.37	1.07	0.37	0.60	0.95	0.77	0.20	CDK2,ERBB3,IKZF4,PA2G4,RAB5B,RPL41,RPS26,SUOX, ZC3H10
rs1059513	12: 57 489 709	С	т	0.92	7.65E-13	0.11	0.98	0.93	0.08	1.06	0.79	0.09	1.16	0.23	0.10	0.72	0.27	0.30	GPR182,MYO1A,NAB2,RDH16,SDR9C7,STAT6,TAC3, TMEM194A ZBTB39
rs56267605	4.123 363 109	C	Δ	1.05	2 56E-12	0.30	1.02	0.90	0 44	0.89	0.33	0.37	0.94	0.42	NΔ	ΝΔ	ΝΔ	0.31	ADAD1 2 21 21-4\$1 KIAA1109
rs61839660	10: 6.094.697	т	<u> </u>	1.00	2 30E-11	0.00	1.02	0.67	NA	NΔ	NA	NΔ	0.3 4 ΝΔ	NΔ	NΔ	NΔ	NΔ	0.51	II 2RA RBM17
rs2706362	5: 131 025 187	Ċ	т	1.06	3 75E-11	0.00	0.95	0.07	0.10	1 10	0.27	0.26	1.04	0.60	NΔ	NΔ	NΔ	0.07	IL 13 RAD50
rs121/1508	1: 167 /26 /2/	Δ	G	0.95	5.14E-11	0.32	1.26	0.10	0.13	1.13	0.27	0.20	1.04	0.00	NA	NA	NA	0.45	CD247
rs659529	11: 11 143 6896	т	A	0.95	6.03E-11	0.42	1.13	0.36	0.27	1.12	0.40	0.31	1.06	0.43	NA	NA	NA	0.10	ALG9,BTG4,C11orf1,C11orf88,FDXACB1,LAYN,MIR34B, MIR34C,PPP2R1B.SIK2
rs2766664	20: 52 171 241	А	G	1.08	8.07E-11	0.20	0.94	0.68	0.23	1.03	0.85	0.22	0.83	0.02	0.26	0.92	0.71	0.05	LOC101927770.ZNF217
rs2169282	9.6350235	A	Ğ	1.09	1.80E-10	0.49	0.97	0.80	0.40	1 13	0.34	0.41	1	0.97	NA NA	NA	NA	0.80	GLDC UHRE2
rs10414065	19:33 721 455	Т	č	0.91	2.63E-10	0.05	0.96	0.90	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.90	SI C7A10
rs6/61502	7:20 560 006	Ċ	т	0.91	3 10E-10	0.00	0.00	0.00	0.37	0.01	0.45	0.44	1.02	0.80	0.61	0.77	0.14	0.30	ITG88
130-01303	1.20 000 000	0		0.35	0.102-10	0.73	0.33	0.00	0.01	0.01	0.70	0.77	1.02	0.00	0.01	0.11	0.17	0.03	11020

Ref: reference allele; Alt: alternative allele; AAF: alternative allele frequency; OR: odds ratio. Human Genome version: hg19.

*: This column is odds ratio from multi-ancestry meta-analysis in Demenais, F. et al. Nat Genet 2018; 50: 42-53 and from asthma/allergy meta-analysis in Zhu, Z. et al. Nat Genet 2018; 50: 857-864.

[#]: This column is *P*-value from multi-ancestry meta-analysis in Demenais, F. *et al. Nat Genet* 2018; 50: 42-53 and from asthma/allergy meta-analysis in Zhu, Z. *et al. Nat Genet* 2018; 50: 857-864.

<u>Supplementary Table S2</u>: Analysis of association between previously published SNPs for asthma exacerbations or hospitalizations and severe asthma exacerbations in the current meta-analysis of GWAS

SNP	CHR: BP	Gene	Alt	Ref		HPR		GACRS				GALA I		SCAALA			Meta	Ref
					AAF	OR	Р	AAF	OR	Р	AAF	OR	Р	AAF	OR	Р	Р	
rs1800925	5: 131 992 809	IL13	Т	С	0.28	0.86	0.31	0.20	0.98	0.88	0.28	1.03	0.71	NA	NA	NA	0.86	1
rs1805011	16: 27 373 872	IL4RA	С	Α	0.24	1.00	1.00	0.15	0.81	0.22	0.20	1.01	0.89	NA	NA	NA	0.73	2
rs1801275	16: 27 374 400	IL4RA	G	А	0.37	0.91	0.50	0.29	0.91	0.46	0.35	1.05	0.50	0.51	1.02	0.92	0.99	2
rs4950928	1: 203 155 882	CHI3L1	G	С	0.18	0.73	0.08	0.17	0.92	0.60	0.17	1.09	0.35	NA	NA	NA	0.09	3
rs7216389	17: 38 069 949	ORMDL3	С	Т	0.30	0.63	1.6E-3	0.34	0.99	0.97	0.31	1.04	0.59	0.28	0.84	0.38	0.06	4
rs6967330	7: 105 658 451	CDHR3	Α	G	0.26	1.20	0.21	0.16	1.13	0.49	0.23	1.06	0.49	0.26	0.98	0.92	0.20	5
rs1099729	12: 97 251 586	CTNNA3	С	Т	0.06	1.11	0.69	NA	NA	NA	0.06	1.16	0.30	NA	NA	NA	0.46	6
rs9587342	13: 107 936 790	FAM155A	Α	G	0.41	0.93	0.59	0.47	0.97	0.82	0.45	0.99	0.84	0.40	1.33	0.13	0.95	7*
rs6426881	1: 164 816 726	PBX1	Т	С	0.11	1.20	0.36	0.12	0.99	0.96	0.13	0.94	0.55	0.09	1.06	0.86	0.92	7
rs1074119	7: 3 196 333	CARD11	Т	С	0.44	0.99	0.92	0.41	1.07	0.58	0.44	0.95	0.48	NA	NA	NA	0.44	7
rs858928	2: 50 892 009	NRXN1	Α	С	0.18	0.96	0.80	0.15	1.28	0.18	0.18	1.03	0.77	NA	NA	NA	0.51	7
rs12201938	6: 7 026 562	RREB1	Α	G	0.09	0.82	0.40	0.08	0.64	0.03	0.08	1.09	0.52	0.05	1.09	0.83	0.52	7
rs9325122	5:148 202 936	ADRβ2	С	Т	0.28	0.98	0.92	0.23	1.07	0.66	0.22	0.92	0.32	NA	NA	NA	0.51	8
rs1432622	5:148203762	ADRβ2	Т	С	0.37	1.09	0.53	0.26	1.09	0.54	0.30	0.92	0.26	NA	NA	NA	0.70	8
rs1432623	5:148204008	ADRβ2	С	Т	0.37	1.09	0.53	0.26	1.09	0.54	0.30	0.92	0.26	NA	NA	NA	0.70	8
rs11168068	5:148204121	ADRβ2	С	Т	0.37	1.09	0.53	0.26	1.09	0.54	0.30	0.92	0.26	NA	NA	NA	0.70	8
rs17778257	5:148204577	ADRβ2	Т	А	0.37	1.18	0.20	0.42	1.05	0.70	0.37	1.03	0.66	NA	NA	NA	0.29	8
rs2400706	5:148204864	ADRβ2	Т	С	0.26	0.72	0.03	0.31	0.88	0.32	0.32	1.04	0.55	NA	NA	NA	0.43	8
rs2895795	5:148204966	ADRβ2	Α	Т	0.26	0.72	0.03	0.31	0.88	0.32	0.33	1.05	0.54	NA	NA	NA	0.45	8
rs2400707	5:148205052	ADRβ2	Α	G	0.37	1.10	0.49	0.26	1.09	0.54	0.29	0.92	0.27	NA	NA	NA	0.73	8
rs2053044	5:148205372	ADRβ2	Α	G	0.37	1.10	0.49	0.26	1.09	0.52	0.29	0.92	0.25	NA	NA	NA	0.71	8
rs12654778	5:148205741	ADRβ2	Α	G	0.37	1.18	0.20	0.42	1.04	0.72	0.37	1.02	0.74	0.31	0.65	0.02	0.75	8
rs11168070	5:148205927	ADRβ2	G	С	0.28	0.98	0.89	0.23	1.06	0.70	0.22	0.92	0.30	NA	NA	NA	0.47	8
rs11959427	5:148206028	ADRβ2	С	Т	0.29	0.97	0.86	0.23	1.06	0.70	0.22	0.92	0.30	NA	NA	NA	0.46	8
rs1801704	5:148206375	ADRβ2	С	Т	0.29	0.98	0.90	0.23	1.04	0.78	0.22	0.92	0.27	0.23	1.17	0.45	0.56	8
rs1042713	5:148206440	ADRβ2	Α	G	0.45	1.29	0.05	0.46	1.07	0.58	0.44	1.01	0.92	0.46	0.89	0.52	0.36	8
rs1042714	5:148206473	ADRβ2	G	С	0.29	0.97	0.86	0.23	1.04	0.78	0.22	0.92	0.27	0.23	1.16	0.48	0.53	8
rs1042717	5:148206646	ADRβ2	Α	G	0.26	0.70	0.02	0.31	0.90	0.39	0.33	1.06	0.43	0.31	0.97	0.89	0.54	8
rs1042718	5:148206917	ADRβ2	Α	С	0.24	0.67	0.01	0.28	0.88	0.36	0.31	1.12	0.13	0.29	1.01	0.97	0.91	8
rs1042720	5:148207633	ADRβ2	Α	G	0.43	0.79	0.06	NA	NA	NA	0.46	1.00	0.98	0.46	1.25	0.22	0.69	8

Ref: reference allele; Alt: alternative allele; AAF: alternative allele frequency; OR: odds ratio. Human Genome version: hg19. * Top 5 out of 160 SNPs used in asthma exacerbations prediction in 7 are shown.

- 1. Hunninghake GM, Soto-Quiros ME, Avila L, Su J, Murphy A, Demeo DL, et al. Polymorphisms in IL13, total IgE, eosinophilia, and asthma exacerbations in childhood. J Allergy Clin Immunol 2007; 120:84-90.
- 2. Wenzel SE, Balzar S, Ampleford E, Hawkins GA, Busse WW, Calhoun WJ, et al. IL4R alpha mutations are associated with asthma exacerbations and mast cell/IgE expression. Am J Respir Crit Care Med 2007; 175:570-6.
- 3. Cunningham J, Basu K, Tavendale R, Palmer CN, Smith H, Mukhopadhyay S. The CHI3L1 rs4950928 polymorphism is associated with asthmarelated hospital admissions in children and young adults. Ann Allergy Asthma Immunol 2011; 106:381-6.
- 4. Bisgaard H, Bonnelykke K, Sleiman PM, Brasholt M, Chawes B, Kreiner-Moller E, et al. Chromosome 17q21 gene variants are associated with asthma and exacerbations but not atopy in early childhood. Am J Respir Crit Care Med 2009; 179:179-85.
- 5. Bonnelykke K, Sleiman P, Nielsen K, Kreiner-Moller E, Mercader JM, Belgrave D, et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet 2014; 46:51-5.
- 6. McGeachie MJ, Wu AC, Tse SM, Clemmer GL, Sordillo J, Himes BE, et al. CTNNA3 and SEMA3D: Promising loci for asthma exacerbation identified through multiple genome-wide association studies. J Allergy Clin Immunol 2015; 136:1503-10.
- 7. Xu M, Tantisira KG, Wu A, Litonjua AA, Chu JH, Himes BE, et al. Genome Wide Association Study to predict severe asthma exacerbations in children using random forests classifiers. BMC Med Genet 2011; 12:90.
- 8. Hawkins GA, Tantisira K, Meyers DA, Ampleford EJ, Moore WC, Klanderman B, et al. Sequence, Haplotype, and Association Analysis of ADRβ2 in a Multiethnic Asthma Case-Control Study. Am J Respir Crit Care Med 2006; 174:1101–9.

<u>Supplementary Table S3</u>: Top 20 eQTLs for rs2253681 in EVA-PR nasal epithelial cells and replication results from PIAMA

Cana	Chr	Stort	End		EVA-PR		PI	АМА	Meta-analysis		
Gene	Chr	Start	Ena	Effect	P-value	FDR [*]	Effect	P-value	Effect	P-value	
SRF	6	43 139 032	43 149 244	-0.0723	5.84×10 ⁻⁴	1.00	-0.0921	8.26×10 ⁻³	-0.0776	1.64×10⁻⁵	
OR2A20P	7	143 947 766	143 948 696	-0.1858	6.27×10 ⁻⁴	1.00	NA	NA	NA	NA	
RASIP1	19	49 223 841	49 243 970	-0.1083	9.93×10 ⁻⁴	1.00	-0.1064	1.40×10 ⁻¹	-0.1080	3.08×10 ⁻⁴	
LOC100128398	19	58 514 261	58 518 574	-0.0845	1.56×10⁻³	1.00	NA	NA	NA	NA	
SNORA53	12	98 993 412	98 993 662	0.2324	1.56×10⁻³	1.00	NA	NA	NA	NA	
HPGDS	4	95 219 706	95 264 027	0.1359	2.14×10 ⁻³	1.00	0.0868	7.27×10 ⁻¹	0.1344	2.05×10 ⁻³	
NPTXR	22	39 214 455	39 240 017	-0.0864	2.41×10 ⁻³	1.00	-0.1737	5.39×10 ⁻²	-0.0943	5.13×10 ⁻⁴	
ASCC1	10	73 855 789	73 975 867	0.0352	2.42×10 ⁻³	1.00	0.0562	1.44×10 ⁻¹	0.0369	8.83×10 ⁻⁴	
SOX4	6	21 593 971	21 598 849	-0.0840	2.59×10⁻³	1.00	-0.0367	3.78×10 ⁻¹	-0.0694	2.76×10 ⁻³	
ZNF675	19	23 835 707	23 870 017	0.0674	2.82×10⁻³	1.00	-0.0524	4.63×10 ⁻¹	0.0565	8.62×10 ⁻³	
PPIP5K1	15	43 825 659	43 877 090	-0.0356	2.85×10 ⁻³	1.00	0.0207	4.89×10 ⁻¹	-0.0279	1.19×10 ⁻²	
TCF7L2	10	114 710 008	114 927 436	-0.0598	3.05×10 ⁻³	1.00	-0.0266	4.01×10 ⁻¹	-0.0502	3.19×10 ⁻³	
SSR4P1	21	46 490 869	46 493 126	0.0693	3.27×10 ⁻³	1.00	0.0078	9.56×10 ⁻¹	0.0676	3.63×10 ⁻³	
SNORD17	20	17 943 352	17 943 589	0.1407	3.34×10 ⁻³	1.00	NA	NA	NA	NA	
LOC100130691	2	178 148 235	178 257 419	0.0726	3.41×10 ⁻³	1.00	NA	NA	NA	NA	
TNNI3	19	55 663 135	55 669 100	-0.1318	3.49×10 ⁻³	1.00	NA	NA	NA	NA	
ARHGEF5	7	144 052 488	144 077 725	-0.0946	3.61×10⁻³	1.00	-0.0399	3.49×10 ⁻¹	-0.0745	3.94×10 ⁻³	
LOC100132077	9	97 094 757	97 123 230	0.1005	4.04×10 ⁻³	1.00	NA	NA	NA	NA	
HACE1	6	105 175 967	105 307 794	0.0405	4.08×10 ⁻³	1.00	0.0634	1.92×10 ⁻¹	0.0423	1.79×10 ⁻³	
NDUFS6	5	1 801 495	1 816 167	-0.0441	4.12×10 ⁻³	1.00	0.0262	5.71×10 ⁻¹	-0.0371	1.09×10 ⁻²	

* FDR is adjusted for the whole genome in EVA-PR

Supplementary Table S4: Nominally significant pathways associated with severe asthma exacerbations with genes in the *FLJ22447* locus

Gene [*]	Pathway	P-value
PRKCH	REACTOME SIGNALING BY GPCR	0.0084
PRKCH	REACTOME PLATELET ACTIVATION SIGNALING AND AGGREGATION	0.0168
PRKCH	REACTOME GPCR DOWNSTREAM SIGNALING	0.0315
PRKCH	GO REGULATION OF IMMUNE SYSTEM PROCESS	0.0004
PRKCH	GO REGULATION OF EPITHELIAL CELL DIFFERENTIATION	0.0024
PRKCH	GO REGULATION OF CELL PROLIFERATION	0.0035
PRKCH	GO POSITIVE REGULATION OF CELL PROLIFERATION	0.0055
PRKCH	GO PROTEIN PHOSPHORY ATION	0.0153
PRKCH	GO ENZYME BINDING	0.0158
PRKCH	GO POSITIVE REGULATION OF GLIOGENESIS	0.0193
PRKCH		0.0205
PRKCH	GO POSITIVE REGULATION OF EPITHELIAL CELL DIFFERENTIATION	0.0209
PRKCH	GO PLATELET ACTIVATION	0.0255
PRKCH	GO POSITIVE REGULATION OF DEVELOPMENTAL PROCESS	0.0303
PRKCH		0.0340
PRKCH	GO POSITIVE REGULATION OF EPIDERMAL CELL DIFFERENTIATION	0.0384
PRKCH	GO RAL GTPASE BINDING	0.0398
PRKCH	GO REGULATION OF CELL DIFFERENTIATION	0.0000
PRKCH	GO TRANSFERASE ACTIVITY TRANSFERRING PHOSPHORUS CONTAINING GROUPS	0.0448
PRKCH	GO POSITIVE REGULATION OF IMMUNE SYSTEM PROCESS	0.0460
PRKCH		0.0483
SNAPC1	GO NUCLEAR TRANSCRIPTION FACTOR COMPLEX	0.0403
SNAPC2		0.0020
		0.0200
		0.0041
		0.0004
		0.0003
		0.0011
		0.0012
	GO_CELLULAR_RESPONSE_IO_INTERLEURIN_I	0.0010
		0.0020
		0.0028
	GO_NUCLEAR_IKANSCRIPTION_FACTOR_COMPLEX	0.0028
		0.0029
HIF1A		0.0035
HIF1A		0.0045
HIF1A		0.0054
HIF1A	GO_POSITIVE_REGULATION_OF_CELL_PROLIFERATION	0.0055
HIF1A	GO_CYTOPLASMIC_REGION	0.0055
HIF1A		0.0068
HIF1A	GO_CYTOSKELETON_DEPENDENT_INTRACELLULAR_TRANSPORT	0.0079
HIF1A	GO_EMBRYONIC_HEARI_IUBE_MORPHOGENESIS	0.0085
HIF1A	GO_CELL_PROJECTION_CYTOPLASM	0.0104
HIF1A	GO_HEART_MORPHOGENESIS	0.0108
HIF1A	GO_UBIQUITIN_LIKE_PROTEIN_LIGASE_BINDING	0.0117
HIF1A	GO_MORPHOGENESIS_OF_AN_EPITHELIUM	0.0127
HIF1A	GO_POSITIVE_REGULATION_OF_HEMOPOIESIS	0.0128
HIF1A	GO_ACUTE_INFLAMMATORY_RESPONSE	0.0138
HIF1A	GO_RECEPTOR_BINDING	0.0145
HIF1A	GO_RNA_POLYMERASE_II_TRANSCRIPTION_FACTOR_COMPLEX	0.0148
HIF1A	GO_REGULATION_OF_VASCULAR_ENDOTHELIAL_GROWTH_FACTOR_RECEPTOR_SIGNALING_PATHWAY	0.0154
HIF1A	GO_ENZYME_BINDING	0.0158
HIF1A	GO_TISSUE_MORPHOGENESIS	0.0160
HIF1A	GO_COLUMNAR_CUBOIDAL_EPITHELIAL_CELL_DIFFERENTIATION	0.0170
HIF1A	GO_REGULATION_OF_VASCULAR_ENDOTHELIAL_GROWTH_FACTOR_PRODUCTION	0.0177
HIF1A	GO_AXON_PART	0.0186
HIF1A	GO_DIGESTIVE_SYSTEM_DEVELOPMENT	0.0195
HIF1A	GO_REGULATION_OF_EPITHELIAL_CELL_PROLIFERATION	0.0196
HIF1A	GO AXO DENDRITIC TRANSPORT	0.0201
HIF1A	GO REGULATION OF MULTICELLULAR ORGANISMAL DEVELOPMENT	0.0205
HIF1A	GO REGULATION OF TRANSCRIPTION FROM RNA POLYMERASE II PROMOTER	0.0217
HIF1A	GO POSITIVE REGULATION OF NUCLEOTIDE METABOLIC PROCESS	0.0225
_ · · · · ·		

HIF1A	GO_NEGATIVE_REGULATION_OF_MULTICELLULAR_ORGANISMAL_PROCESS	0.0227
HIF1A	GO_CELL_MORPHOGENESIS_INVOLVED_IN_DIFFERENTIATION	0.0229
HIF1A	GO_HEART_DEVELOPMENT	0.0244
HIF1A	GO_TUBE_MORPHOGENESIS	0.0248
HIF1A	GO_POSITIVE_REGULATION_OF_NEUROBLAST_PROLIFERATION	0.0270
HIF1A	GO_EMBRYONIC_HEART_TUBE_DEVELOPMENT	0.0270
HIF1A	GO_CELLULAR_RESPONSE_TO_OXYGEN_LEVELS	0.0277
HIF1A	GO_TRANSCRIPTION_FACTOR_COMPLEX	0.0295
HIF1A	GO_POSITIVE_REGULATION_OF_DEVELOPMENTAL_PROCESS	0.0303
HIF1A	GO_CELLULAR_RESPONSE_TO_STRESS	0.0321
HIF1A	GO_POSITIVE_REGULATION_OF_CELL_DIFFERENTIATION	0.0340
HIF1A	GO_DOPAMINERGIC_NEURON_DIFFERENTIATION	0.0341
HIF1A	GO_STEM_CELL_DIFFERENTIATION	0.0381
HIF1A	GO_POSITIVE_REGULATION_OF_TRANSCRIPTION_FROM_RNA_POLYMERASE_II_PROMOTER	0.0391
HIF1A	GO_CELLULAR_RESPONSE_TO_CYTOKINE_STIMULUS	0.0399
HIF1A	GO_AXON	0.0416
HIF1A	GO_OUTFLOW_TRACT_MORPHOGENESIS	0.0424
HIF1A	GO_TISSUE_REMODELING	0.0432
HIF1A	GO_REGULATION_OF_CELL_DIFFERENTIATION	0.0444
HIF1A	GO_DEVELOPMENTAL_MATURATION	0.0447
HIF1A	GO_POSITIVE_REGULATION_OF_IMMUNE_SYSTEM_PROCESS	0.0460
HIF1A	GO_REGULATION_OF_SMOOTH_MUSCLE_CELL_PROLIFERATION	0.0467
HIF1A	GO_TRANSCRIPTION_FACTOR_ACTIVITY_RNA_POLYMERASE_II_TRANSCRIPTION_FACTOR_BINDING	0.0471
HIF1A	GO RNA POLYMERASE IL TRANSCRIPTION FACTOR ACTIVITY SEQUENCE SPECIFIC DNA BINDING	0.0480

The genes (*TMEM30B, PRKCH, LOC101927780, HIF1A-AS1, HIF1A-AS2, SNAPC1, FLJ22447* and *HIF1A*) in *FLJ22447* locus and also included in the nominally significant pathways.

Supplementary Table S5: Results for SNP rs2253681 (minor allele = A) and severe asthma exacerbations using different imputation reference panels

Reference panels	(g	HPR enotyp	ed)	(i	GACRS)	(g	GALA I enotyp	l [†] ed)	(g	SCAAL enotyp	Meta		
	MAF	OR	Р	MAF	OR	Р	MAF	OR	Р	MAF	OR	Р	OR	Р
HRC	0.20	1.49	0.013	0.11	1.38	0.12	0.16	1.54	2.3E-5	0.24	1 0 2	3.2E-3	1.55	6.3E-9
1000G AMR	0.20	1.49	0.013	0.11	1.37	0.12	0.16	1.55	1.5E-5		1.92		1.55	4.4E-9

SNP rs2253681 was genotyped in HPR, GALA II and SCAALA, and only imputed in GACRS.

[†]Although rs2253681 was a genotyped SNP in GALA II, there was one sample with missing genotype. This sample had different imputed genotypes for rs2253681 between HRC and 1000G AMR, which caused the small discrepancy in p-values and ORs. *SCAALA data were not imputed. Thus, SCAALA results were not affected by reference panels.