

Effective control of *Staphylococcus aureus* lung infection despite tertiary lymphoid structure disorganisation

Lucile Regard^{1,2}, Clémence Martin ^{1,2}, Jean-Luc Teillaud^{3,4}, Hélène Lafoeste^{1,2}, Hugues Vicaire^{1,2}, Maha Zohra Ladjemi¹, Emilie Ollame-Omvane⁵, Sophie Sibéril^{5,6} and Pierre-Régis Burgel ^{1,2,6}

Affiliations: ¹Institut Cochin and Université de Paris, INSERM U1016, Paris, France. ²Service de Pneumologie, Hôpital Cochin, AP-HP, Paris, France. ³Laboratory "Immune Microenvironment and Immunotherapy", Centre d'Immunologie et des Maladies Infectieuses (CIMI), Paris, France. ⁴INSERM UMRS 1135, Faculté de Médecine, Sorbonne Université, Paris, France. ⁵Centre de Recherche des Cordeliers, INSERM, Sorbonne Université de Paris, Paris, France. ⁶These authors contributed equally to this work.

Correspondence: Pierre-Régis Burgel, 27, rue du Faubourg Saint Jacques, 75014 Paris, France. E-mail: pierre-regis.burgel@aphp.fr

@ERSpublications

Disorganisation of peribronchial lymphoid follicles did not result in increased bacterial load nor in decreased survival in a mouse model of persistent lung infection. Lymphoid follicles may not be essential for controlling lung bacterial infection. https://bit.ly/3lOgNEG

Cite this article as: Regard L, Martin C, Teillaud J-L, *et al.* Effective control of *Staphylococcus aureus* lung infection despite tertiary lymphoid structure disorganisation. *Eur Respir J* 2021; 57: 2000768 [https://doi.org/10.1183/13993003.00768-2020].

This single-page version can be shared freely online.

ABSTRACT

Background: Tertiary lymphoid structures (TLS) are triggered by persistent bronchopulmonary infection with *Staphylococcus aureus*, but their roles remain elusive. The present study sought to examine the effects of B- and/or T-cell depletion on *S. aureus* infection and TLS development (lymphoid neogenesis) in mice. **Methods:** C57Bl/6 mice were pre-treated with 1) an anti-CD20 monoclonal antibody (mAb) (B-cell depletion) or 2) an anti-CD4 and/or an anti-CD8 mAb (T-cell depletion) or 3) a combination of anti-CD20, anti-CD4 and anti-CD8 mAbs (combined B- and T-cell depletion) or 4) isotype control mAbs. After lymphocyte depletion, mice were infected by intratracheal instillation of agarose beads containing *S. aureus* (10⁶ CFU per mouse). 14 days later, bacterial load and lung inflammatory cell infiltration were assessed by cultures and immunohistochemistry, respectively.

Results: 14 days after *S. aureus*-bead instillation, lung bacterial load was comparable between control and lymphocyte-depleted mice. While TLS were observed in the lungs of infected mice pre-treated with control mAbs, these structures were disorganised or abolished in the lungs of lymphocyte-depleted mice. The absence of CD20⁺ B-lymphocytes had no effect on CD3⁺ T-lymphocyte infiltration, whereas CD4⁺/CD8⁺ T-cell depletion markedly reduced CD20⁺ B-cell infiltration. Depletion of CD4⁺ or CD8⁺ T-cells separately had limited effect on B-cell infiltration, but led to the absence of germinal centres.

Conclusion: TLS disorganisation is not associated with loss of infection control in mice persistently infected with *S. aureus*.