

Profibrotic function of pulmonary group 2 innate lymphoid cells is controlled by regnase-1

Yoshinari Nakatsuka^{1,2}, Ai Yaku^{2,3}, Tomohiro Handa⁴, Alexis Vandenbon⁵, Yuki Hikichi⁶, Yasutaka Motomura⁷, Ayuko Sato⁸, Masanori Yoshinaga², Kiminobu Tanizawa ⁹⁹, Kizuku Watanabe⁹, Toyohiro Hirai⁹, Kazuo Chin¹, Yutaka Suzuki¹⁰, Takuya Uehata², Takashi Mino², Tohru Tsujimura⁸, Kazuyo Moro^{6,7} and Osamu Takeuchi ¹⁰²

Affiliations: ¹Dept of Respiratory Care and Sleep Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan. ²Dept of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan. ³Dept of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. ⁴Dept of Advanced Medicine for Respiratory Failure, Graduate School of Medicine, Kyoto University, Kyoto, Japan. ⁵Laboratory of Systems Virology, Dept of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan. ⁶Laboratory for Innate Immunology, Osaka University Graduate School of Medicine, Osaka, Japan. ⁷Dept of Microbiology and Immunology, Osaka University Graduate School of Medicine, Graduate School of Respiratory Medicine, Graduate School of Medicine, Kyoto, Japan. ⁹Dept of Respiratory for Inversity, Kyoto, Japan. ⁹Dept of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Graduate School of Medicine, Cyaban. ⁹Dept of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan. ¹⁰Laboratory of Functional Genomics, Dept of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.

Correspondence: Osamu Takeuchi, Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan. E-mail: otake@mfour.med.kyoto-u.ac.jp

@ERSpublications

Regnase-1 controls the proliferation and activation of ILC2, which thereby attenuates lung fibrosis in mice. In humans, lower regnase-1 level correlates with more abundant ILC2 number, which potentially associates with the prognosis of IPF patients. https://bit.ly/3c3GhKo

Cite this article as: Nakatsuka Y, Yaku A, Handa T, *et al.* Profibrotic function of pulmonary group 2 innate lymphoid cells is controlled by regnase-1. *Eur Respir J* 2021; 57: 2000018 [https://doi.org/10.1183/13993003.00018-2020].

This single-page version can be shared freely online.

ABSTRACT Regnase-1 is an RNase critical for post-transcriptional control of pulmonary immune homeostasis in mice by degrading immune-related mRNAs. However, little is known about the cell types Regnase-1 controls in the lung, and its relevance to human pulmonary diseases.

Regnase-1-dependent changes in lung immune cell types were examined by a competitive bone marrow transfer mouse model, and group 2 innate lymphoid cells (ILC2s) were identified. Then the associations between Regnase-1 in ILC2s and human diseases were investigated by transcriptome analysis and a bleomycin-induced pulmonary fibrosis mouse model. The clinical significance of Regnase-1 in ILC2s was further assessed using patient-derived cells.

Regnase-1-deficiency resulted in the spontaneous proliferation and activation of ILC2s in the lung. Intriguingly, genes associated with pulmonary fibrosis were highly upregulated in *Regnase-1*-deficient ILC2s compared with wild-type, and supplementation of *Regnase-1*-deficient ILC2s augmented bleomycin-induced pulmonary fibrosis in mice. Regnase-1 suppresses mRNAs encoding transcription factors *Gata3* and *Egr1*, which are potent to regulate fibrosis-associated genes. Clinically, Regnase-1 protein levels in ILC2 negatively correlated with the ILC2 population in bronchoalveolar lavage fluid. Furthermore, idiopathic pulmonary fibrosis (IPF) patients with ILC2s >1500 cells-mL⁻¹ peripheral blood exhibited poorer prognosis than patients with lower numbers, implying the contribution of Regnase-1 in ILC2s for the progression of IPF.

Copyright ©ERS 2021

Collectively, Regnase-1 was identified as a critical post-transcriptional regulator of the profibrotic function of ILC2s both in mouse and human, suggesting that Regnase-1 may be a novel therapeutic target for IPF.