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Only 6.4% of those with genotype-defined alpha-1 antitrypsin deficiency had been diagnosed with this
serious disease in UK Biobank. Genotype-guided diagnosis could help to identify the thousands of
people in the UK with this partially preventable disease. https://bit.ly/3dMu5Ng
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ABSTRACT Alpha-1 antitrypsin deficiency (AATD), mainly due to the PI*ZZ genotype in SERPINA1, is
one of the most common inherited diseases. Since it is associated with a high disease burden and partially
prevented by smoking cessation, identification of PI*ZZ individuals through genotyping could improve
health outcomes.

We examined the frequency of the PI*ZZ genotype in individuals with and without diagnosed AATD
from UK Biobank, and assessed the associations of the genotypes with clinical outcomes and mortality. A
phenome-wide association study (PheWAS) was conducted to reveal disease associations with genotypes.
A polygenic risk score (PRS) for forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ratio
was used to evaluate variable penetrance of PI*ZZ.

Among 458164 European-ancestry participants in UK Biobank, 140 had the PI*ZZ genotype and only
nine (6.4%, 95% CI 3.4–11.7%) of them were diagnosed with AATD. Those with PI*ZZ had a substantially
higher odds of COPD (OR 8.8, 95% CI 5.8–13.3), asthma (OR 2.0, 95% CI 1.4–3.0), bronchiectasis (OR
7.3, 95%CI 3.2–16.8), pneumonia (OR 2.7, 95% CI 1.5–4.9) and cirrhosis (OR 7.8, 95% CI 2.5–24.6)
diagnoses and a higher hazard of mortality (2.4, 95% CI 1.2–4.6), compared to PI*MM (wildtype) (n=398
424). These associations were stronger among smokers. PheWAS demonstrated associations with increased
odds of empyema, pneumothorax, cachexia, polycythaemia, aneurysm and pancreatitis. Polygenic risk
score and PI*ZZ were independently associated with FEV1/FVC <0.7 (OR 1.4 per 1-SD change, 95% CI
1.4–1.5 and OR 4.5, 95% CI 3.0–6.9, respectively).

The important underdiagnosis of AATD, whose outcomes are partially preventable through smoking
cession, could be improved through genotype-guided diagnosis.

Copyright ©ERS 2020. This version is distributed under the terms of the Creative Commons Attribution Non-
Commercial Licence 4.0.
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Introduction
Alpha-1 antitrypsin deficiency (AATD) is one of the most common inherited respiratory diseases in
people of European descent [1]. Alpha-1 antitrypsin (AAT) is an inhibitor of the proteolytic enzyme
elastase and a severe deficiency of AAT enhances the burden of neutrophil elastase in the lungs, leading to
emphysema [2]. In addition, intrahepatic accumulation of nonsecreted AAT predisposes to liver diseases
[2].

AATD is caused by mutations in the SERPINA1 gene that result in changes in the electrophoretic mobility
of the protein predispose to AATD with incomplete penetrance [3, 4]. The most common
disease-associated mutation is denoted PI*Z (p.Glu342Lys) and PI*ZZ homozygotes account for the most
common phenotype of AATD [2]. The compound heterozygous genotype PI*SZ, where PI*S is another
missense mutation (p.Val264Glu), is associated with a more mildly increased risk of emphysema in
smokers [5]. PI*MM refers to homozygosity for wild-type alleles.

AATD is often clinically diagnosed after the identification of COPD or liver disease in individuals with a
family history, and the average age at diagnosis is ∼45 years [6]. A previous report, using estimates of
allele frequencies from the literature [7], but without direct genotyping, estimated that only 1068 of
expected 305009 PI*ZZ and PI*SZ individuals had been included in an international AATD registry [8].

Given the partial efficacy of AATD-specific therapies [9] and the availability of smoking cessation
counselling, early diagnosis of AATD could promote earlier intervention with smoking cessation therapies
and allow for the identification of family members at high risk. Given recent announcements of UK
ambitions to sequence 5 million individuals [10], there may exist an opportunity to identify individuals
with high-risk genotypes and put in place appropriate diagnostic programmes to reduce the burden of this
disease.

Here we sought to understand the prevalence of SERPINA1 genotype status in UK Biobank and assess the
diagnosis rate of AATD. We next explored the magnitude of association between SERPINA1 genotypes
and respiratory conditions, changes in spirometry results, other extrapulmonary conditions and all-cause
mortality. Taking advantage of the large sample size of UK Biobank, we conducted a phenome-wide
association study (PheWAS) to investigate potential associations of SERPINA1 genotypes with other
outcomes. Lastly, we calculated a polygenic risk score (PRS) for forced expiratory volume in 1 s (FEV1)/
forced vital capacity (FVC) ratio to assess the interactions of SERPINA1 genotypes and common variants
affecting lung function.

Material and methods
UK Biobank study subjects
UK Biobank is a population-based cohort which recruited people aged 40–69 years from across the UK.
We selected 458164 participants of European descent (defined in the supplementary material, figures S1
and S2, table S1) with nonmissing SERPINA1 Z and S genotype information (rs28929474 and rs17580).
Both of these variants were genotyped in UK Biobank, and therefore our study is not reliant upon
imputation. The minor allele frequencies of rs28929474 and rs17580 were 0.020 and 0.048, respectively.
The genotype definition and the quality control metrics of the genotypes are listed in supplementary table
S2. The Z and S allele status of individuals of non-European descent is listed in supplementary table S3.

Ethical compliance
The UK Biobank was approved by the North West Multi-centre Research Ethics Committee and informed
consent was obtained from all participants prior to participation.

Clinical data ascertainment
Prevalent disease was ascertained by self-reported physician-made diagnoses, self-reported recent
medication information for the disease, International Classification of Diseases (ICD)-9 and -10 codes
linked to Hospital Episode Statistics (refer to supplementary table S4 for the specific codes used) available
at their initial visit, as in the previous studies of UK Biobank [11, 12]. We acknowledge that common
diseases such as COPD and asthma were generally managed in primary care settings, and thus we
included self-reported physician-made diagnoses in the disease ascertainment criteria in addition to
Hospital Episode Statistics. The UK Biobank study protocol is available online [13]. The curated diagnoses
were all known complications of AATD (supplementary table S4) [14–17]. ICD-10 codes in UK Biobank
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do not have subclassification of AATD by ICD-10 coding (E88.01), but do provide diagnosis of E88.0,
which represents the combined diagnoses of plasma-protein metabolism disorders and may include
diagnoses, in addition to AATD, such as plasminogen deficiency and bisalbuminaemia. To estimate the
prevalence of AATD diagnosis, we identified individuals reporting a physician-made diagnosis of AATD
and/or the use of medication for AATD; or having an ICD-9 diagnostic code for AATD. The
supplementary material provides the detailed definition of symptoms and the spirometry quality control
(supplementary table S5).

Statistical analysis
Regression models were fitted to assess the associations of SERPINA1 genotypes and clinical outcomes
compared to PI*MM genotype. All the models were adjusted for age, sex, genotyping array, assessment
centre and the first five principal components in order to account for population structure. We
subsequently stratified the participants by smoking status. Within each genotype group, the decrease of
FEV1 by age was estimated by linear regression of FEV1 by age, adjusted for the same covariates as above
and thus these were not derived by the longitudinal data. Survival analysis was performed using univariate
Cox proportional hazard model to estimate the hazard of death. Detailed methods of smoking status
definition and survival analysis are presented in the supplementary material (supplementary table S6).

We estimated the national prevalence of PI*ZZ genotype status in the UK, assuming that the allele
frequency rates were not different between individuals of European ancestry in UK Biobank and the UK
citizens of European ancestry. This could be an underestimate of the PI*ZZ genotype frequency, given that
UK Biobank is not a population-representative cohort, as it recruited only those aged >40 years and has
some healthy volunteer bias. Next, we used data from the Office of National Statistics [18] to estimate the
proportion of British citizens of European ancestry and estimated the number of British individuals
carrying the PI*ZZ genotype.

Sensitivity analyses
We included those with E88.0 in ICD-10 codings for the diagnoses of AATD and recalculated the
prevalence of the diagnosed AATD. As UK Biobank included pairs of relatives, we removed one randomly
selected participant from each pair related to the third degree (kinship coefficient ⩾0.0442), leaving
449991 unrelated participants, to assess the inflation of association affected by familial effects. Multivariate
Cox proportional hazard model adjusted for age was also applied for survival analysis.

Phenome-wide association study
Next, we explored associations of SERPINA1 genotypes with other diseases using a PheWAS design. The
detailed methods are described in the supplementary material (supplementary tables S7 and S8).

Polygenic risk score for FEV1/FVC
The recent large scale genome-wide association study of spirometry data derived from external cohorts of
European descent [19] enabled us to establish a PRS, the weighted sum of effect alleles of common
variants that is associated with spirometry results. We calculated the FEV1/FVC PRS of each individual
and assessed the interactions between SERPINA1 genotypes and this PRS. The detailed methodology is
found in the supplementary material.

Results
We identified 458164 participants in UK Biobank of European descent who had a median age of 58 years
(interquartile range (IQR) 50–63 years), and there were 61 (0.013%) people who were diagnosed as having
AATD (table 1, supplementary figure S2). Among 140 participants with the PI*ZZ genotype, only nine
(6.4%, 95% CI 3.4–11.7%) were diagnosed as AATD (table 2). Given that there are 65.6 million citizens of
the UK [20], of whom 87% are estimated to be of European ancestry [18], we estimate that 17439 (95% CI
14671–20579) European individuals in the UK carry the PI*ZZ genotype.

Compared to those with PI*MM, participants with PI*ZZ had more respiratory symptoms (45% versus
25%), lower FEV1/FVC (median 0.74 versus 0.77) and lower FEV1 % predicted (median 86% versus 94%)
(table 2). A total of 37 (37%) participants with PI*ZZ had FEV1/FVC <0.7 (table 2). Among 17790
individuals with a diagnosis of COPD, 31 (0.17%) individuals had the PI*ZZ genotype, and they had more
severe airway obstruction than PI*MM individuals. Lastly, only seven (23%, 95% CI 11–40%) PI*ZZ
individuals with clinically detected COPD were diagnosed as having AATD (table 3), and among 1407
participants with a diagnosis of cirrhosis, three (0.21%) had the PI*ZZ genotype and none of them were
diagnosed as AATD.

https://doi.org/10.1183/13993003.01441-2020 3

COPD AND GENETICS | T. NAKANISHI ET AL.

http://erj.ersjournals.com/lookup/doi/10.1183/13993003.01441-2020.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.01441-2020.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.01441-2020.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.01441-2020.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.01441-2020.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.01441-2020.figures-only#fig-data-supplementary-materials


Association of PI*ZZ genotype with clinical outcomes
Those with PI*ZZ had a higher risk of COPD (OR 8.8, 95% CI 5.8–13.3; p=1.1×10−24), asthma (OR 2.0,
95% CI 1.4–3.0; p=5.3×10−4), bronchiectasis (OR 7.3, 95% CI 3.2–16.8; p=2.4×10−6) and pneumonia (OR
2.7, 95% CI 1.5–4.9; p=1.2×10−3) compared to PI*MM. Those with the PI*ZZ genotype had higher risk of
COPD regardless of smoking status, but effect sizes were larger for smokers (OR 13.3, 95% CI 7.5–23.8

TABLE 1 Participant characteristics stratified by SERPINA1 genotype

Total Genotype

MM ZZ SZ MZ SS MS

Subjects 458164 (100) 398424 (87) 140 (0.031) 867 (0.19) 16983 (3.7) 1013 (0.22) 40737 (8.9)
Unrelated individuals# 449991 391334 138 851 16707 993 39968

Age years 58 (50–63) 58 (50–63) 56 (49–63) 57 (50–63) 58 (51–64) 57 (50–63) 58 (50–63)
Male 209694 (46) 182344 (46) 73 (52) 393 (45) 7715 (45) 469 (46) 18700 (46)
Height cm 168.7±9.2 168.6±9.2 172.2±9.3 170.1±9.3 169.6±9.3 169.1±9.1 168.8±9.2
Subjects with no height
data

1032 (0.23) 898 (0.23) 0 1 (0.12) 36 (0.21) 3 (0.30) 94 (0.23)

BMI kg·m−2 27.4±4.8 27.4±4.8 26.7±4.7 27.0±4.6 27.3±4.7 27.3±4.6 27.4±4.8
Subjects with no BMI
data

1522 (0.33) 1321 (0.33) 0 3 (0.35) 50 (0.29) 4 (0.39) 144 (0.35)

Smoking status 451157 (98) 392313 (98) 135 (96) 856 (99) 16736 (99) 996 (98) 40121 (98)
Current smokers¶ 47711 (11) 41735 (11) 7 (5.2) 83 (9.7) 1605 (9.6) 106 (11) 4175 (10)
Pack-years 25.5 (14.7–37.8) 25.3 (14.7–38.0) 10.3 (7.8–14.9) 25.4 (16.2–35.0) 24.6 (14.3–37.4) 30.0 (17.5–39.0) 25.2 (14.6–37.5)
Subjects with
pack-years data¶

38309 (80) 33512 (80) 4 (57) 70 (84) 1298 (81) 85 (80) 3340 (80)

Past smokers¶ 158852 (35) 138053 (35) 45 (33) 313 (37) 5915 (35) 334 (34) 14192 (35)
Pack-years 17.0 (9.0–29.5) 17.0 (9.0–29.5) 15.9 (8.0–17.8) 16.3 (9.0–26.0) 17.0 (8.8–30.0) 18.0 (10.0–31.5) 17.5 (9.0–29.7)
Subjects with
pack-years data¶

103195 (65) 89632 (65) 27 (60) 189 (60) 3852 (65) 221 (66) 9274 (65)

Never-smokers¶ 244594 (54) 212525 (54) 83 (61) 460 (54) 9216 (55) 556 (56) 21754 (54)
Exposure to smoke or
polluted air

120423 (26) 104642 (26) 36 (26) 223 (26) 4505 (27) 256 (26) 10761 (26)

AATD diagnosis 61 (0.013) 4 (0.0010) 9 (6.4) 9 (1.0) 36 (0.21) 0 3 (0.0074)

Data are presented as n (%), n, median (interquartile range) or mean±SD. BMI: body mass index; AATD: alpha-1 antitrypsin deficiency.
#: numbers of individuals were calculated by removing related individuals with kinship coefficients ⩾0.044, which were used in sensitivity
analyses; ¶: percentage was calculated among people with information available.

TABLE 2 Clinical diagnoses and spirometry results of participants stratified by SERPINA1 genotype

MM ZZ p-value# SZ p-value# MZ p-value# SS p-value#

Subjects 398424 140 867 16983 1013
Respiratory symptoms 97970 (25) 63 (45) 1.8×10−7 219 (25) 0.64 4150 (24) 0.24 234 (23) 0.29
AATD diagnosis 4 (0.0010) 9 (6.4) 4.5×10−29 9 (1.0) 7.3×10−22 36 (0.21) 7.8×10−46 0 1
COPD diagnosis 15502 (3.9) 31 (22) 2.9×10−15 46 (5.3) 0.034 676 (4.0) 0.44 36 (3.6) 0.68
Asthma diagnosis 54205 (14) 33 (24) 1.3×10−3 118 (14) 1 2343 (14) 0.48 127 (13) 0.34
Bronchiectasis diagnosis 2767 (0.69) 6 (4.3) 4.8×10−4 11 (1.2) 0.06 125 (0.74) 0.51 10 (0.99) 0.25
PFT 285824 (72) 101 (72) 1 613 (71) 0.50 12 110 (71) 0.22 728 (72) 0.94

FEV1 L 2.8 (2.3–3.3) 2.8 (2.1–3.4) 0.28 2.8 (2.4–3.4) 0.015 2.8 (2.3–3.4) 3.1×10−7 2.8 (2.3–3.3) 0.21
FEV1/FVC 0.77 (0.73–0.80) 0.74 (0.66–0.79) 3.5×10−4 0.77 (0.72–0.81) 0.67 0.77 (0.73–0.80) 0.63 0.77 (0.73–0.80) 0.74
FEV1 % predicted 94 (83–103) 86 (75–103) 2.3×10−4 95 (85–104) 0.28 94 (84–104) 0.062 94 (84–104) 0.28
Decrease in FEV1 by age

¶

mL·year−1
35.6 (35.4–35.8) 68.4 (47.1–89.7) 2.0×10−4 36.0 (35.5–37.8) 0.74 36.6 (35.5–37.8) 0.074 34.0 (29.4–38.5) 0.51

FEV1/FVC <0.7+ 40351 (14) 37 (37) 1.5×10−8 107 (17) 0.02 1799 (15) 0.023 99 (14) 0.75

Data are presented as n (%) or median (interquartile range), unless otherwise stated. AATD: alpha-1 antitrypsin deficiency; PFT: pulmonary
function testing; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity. #: calculated by comparing to PI*MM genotype; ¶: estimated
with linear regression by age (95% CI) and not derived from the longitudinal data; +: percentage calculated among subjects with spirometry
information available.
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versus OR 7.9, 95% CI 3.9–16.1). In never-smokers, the PI*ZZ genotype was not significantly associated
with asthma or bronchiectasis (figure 1 and supplementary table S9). PI*ZZ was not independently
associated with pneumonia when conditioned on the diagnosis of COPD (OR 1.5, 95% CI 0.8–2.8;
p=0.21).

Among the extrapulmonary diseases we curated, PI*ZZ genotype was associated with diagnoses of
cirrhosis (OR 7.8, 95% CI 2.5–24.6; p=0.004), hepatic carcinoma (OR 13.7, 95% CI 3.4–56.0; p=2.7×10−4)
and panniculitis (OR 71.8, 95% CI 9.6–534.9; p=3.1×10−5) (supplementary table S9).

Individuals with PI*ZZ had more respiratory symptoms (OR 2.5, 95% CI 1.8–3.5; p=6.5×10−8) than
PI*MM, such as wheeze (OR 2.1, 95% CI 1.5–3.0; p=4.0×10−5), shortness of breath (OR 3.3, 95% CI 1.9–
5.8; p=3.0×10−5), persistent cough (OR 4.2, 95% CI 2.2–7.8; p=9.7×10−6) and persistent sputum (OR 4.1,
95% CI 2.0–8.2; p=9.1×10−5). For never-smokers, persistent cough was the only symptom associated with
PI*ZZ (OR 3.3, 95% CI 1.3–8.9; p=0.016) (supplementary table S10). People with PI*ZZ genotype were
more likely to have FEV1/FVC <0.7 (OR 4.3, 95% CI 2.8–6.6; p=1.1×10−11) and have FEV1 <50% pred
(OR 13.2, 95% CI 6.9–25.5; p=1.2×10−14) (figure 1, supplementary table S10). Linear regression of FEV1

by age estimated that the decrease of FEV1 by age is 68.3 mL·year−1 (95% CI 47.1–89.7) in PI*ZZ
participants compared to 35.6 mL·year−1 (95% CI 35.4–35.8) in PI*MM individuals (table 2,
supplementary table S10). The difference of the decrease of FEV1 by age between ever-smokers and
never-smokers in PI*ZZ individuals was inconclusive because of the lack of statistical power
(supplementary table S11). PI*ZZ genotype was associated with all-cause mortality compared to PI*MM
genotype (hazard ratio 2.4, 95% CI 1.2–4.6; p=9.9×10−3) during a median follow-up duration of 7.0 years
(IQR 6.4–7.7 years) (figure 2, supplementary table S12). All results from sensitivity analyses are presented
in the supplement (supplementary tables S12 and S13).

Phenome-wide association study
PI*ZZ genotype was associated with increased risk of other disorders of metabolism (including AATD),
emphysema, obstructive chronic bronchitis and chronic airway obstruction (supplementary figure S3). In
addition, PI*ZZ was associated with increased risks of dependency on a respirator or supplemental oxygen,
empyema and pneumothorax, cachexia, polycythaemia, aneurysm and pancreatitis, all of which were
statistically significant (p<6.1×10−4) after Benjamini–Hochberg correction in the main analysis,
conservatively assuming that all the phecodes tested were independent (supplementary figure S3 and table
S14). The more detailed results of sensitivity analyses are in the supplementary material.

TABLE 3 Comparison of characteristics for PI*ZZ and PI*MM genotypes among individuals with
COPD

ZZ MM p-value

Subjects 31 (0.17) 15502 (95)
Age years 56 (49–63) 62 (57–66) 0.47
Male 21 (68) 8016 (52) 0.1
Height cm 173.5±9.9 167.8±9.2 1.5×10−3

No height information 0 63 (0.41) 1
BMI kg·m−2 25.8±4.9 28.4±5.7 1.9×10−3

No BMI information 0 100 (0.65) 1
Respiratory symptoms 28 (90) 11470 (74) 0.04
AATD diagnosis 7 (23) 2 (0.013) 2.3×10−18

Exposure to smoke or polluted air 10 (32) 4173 (27) 0.54
Smoking status 30 (97) 15159 (98) 0.51
Current smokers# 2 (6.7) 4328 (29) 7.1×10−3

Ex-smokers# 19 (63) 7249 (48) 0.10
Never-smokers# 9 (30) 3582 (24) 4.7×10−3

PFT 14 (45) 9427 (61) 0.095
FEV1 L 1.5 (1.7–2.7) 2.2 (1.7–2.7) 0.073
FEV1/FVC 0.48 (0.42–0.65) 0.70 (0.62–0.76) 4.1×10−5

FEV1 % predicted 45 (36–79) 76 (62–90) 3.8×10−3

Data are presented as n (%), median (interquartile range) or mean±SD, unless otherwise stated. n=17790.
BMI: body mass index; AATD: alpha-1 antitrypsin deficiency; PFT: pulmonary function testing; FEV1: forced
expiratory volume in 1 s; FVC: forced vital capacity. #: percentage was calculated among subjects with
information on smoking status.
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AATD-associated genotypes, other than PI*ZZ
Additionally, we analysed participants with PI*SZ, PI*MZ and PI*SS compared to PI*MM.

In brief, PI*SZ and PI*MZ genotypes were associated with a slight increase of FEV1/FVC <0.7 (OR 1.3,
95% CI 1.0–1.6; p=0.022 and OR 1.1, 95% CI 1.0–1.1; p=0.032), but not associated with increased risk of
clinically diagnosed COPD (figure 3, supplementary tables S9 and S10). Among heavy smokers
(>20 pack-years), PI*SZ was associated with two-fold increased risk of FEV1/FVC <0.7 (OR 2.0, 95% CI
1.3–3.1; p=2.6×10−3), whereas PI*MZ was associated with mildly increased risk of FEV1/FVC <0.7 (OR
1.2, 95% CI 1.1–1.4; p=4.5×10−4) (supplementary table S10). PI*MZ was also associated with increased
risk of cirrhosis (OR 1.5, 95% CI 1.2–1.8; p=0.002) (figure 3), hepatitis (OR 1.4, 95% CI 1.1–1.8;
p=4.6×10−3) and granulomatosis with polyangiitis (OR 2.2, 95% CI 1.2–3.9; p=9.9×10−3) (supplementary
table S9). All the other results are provided in the supplementary material (supplementary figures S4 and
S5 and tables S9–S12, S15–S17).

Polygenic risk score for FEV1/FVC
The square of the correlation coefficient (r2) between observed FEV1/FVC and FEV1/FVC predicted by
the PRS was 3.5% (95% CI 3.4%–3.6%) in the total population (n=328638), which was higher than the
correlation between FEV1/FVC and smoking status (2.4%, 95% CI 2.3%–2.5%). The PRS was not
associated with other nongenetic risk factors (supplementary table S18). We divided participants into
quartiles according to their PRS (figure 4). Among PI*ZZ individuals, those with the lowest quartile of
PRS, i.e. those at lowest polygenic risk (n=29), had higher FEV1/FVC results compared to other PI*ZZ
individuals (n=72) (median (IQR) 0.79 (0.67–0.85) versus 0.72 (0.66–0.77), p=0.019). Multivariate logistic
regression indicated that 1-SD change of PRS and PI*ZZ are independently associated with FEV1/FVC <0.7
(OR 1.4, 95% CI 1.4–1.5; p<2×10−16 and OR 4.5, 95% CI 3.0–6.9; p=2.3×10−12, respectively)
(supplementary table S19).

Discussion
Undertaking a large-scale assessment of the prevalence of SERPINA1 genotypes, their associated odds of
morbidity and mortality and the diagnostic rates of AATD in UK Biobank, we found that the vast
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majority of individuals with PI*ZZ were not diagnosed as having AATD. Yet, these individuals had
substantially increased odds of respiratory symptoms, diseases and all-cause mortality. We estimated that
∼17000 individuals in the UK carry the PI*ZZ genotype, which was similar to the estimates from the
prior population-based neonatal screening studies [21, 22]. Nevertheless, this could be an underestimate
given that UK Biobank recruited only those aged >40 years, and very ill individuals are unlikely to be able
to take part. Thus, while the proportion of all British individuals who could be detected through
genotyping efforts is small, the absolute number is not.

The impact of PI*ZZ genotype on health status is striking. PI*ZZ was associated with increased risk of
COPD and pneumonia regardless of smoking status, yet the effect sizes for COPD were substantially larger
among smokers. Furthermore, PI*ZZ genotype was associated with increased risk of asthma and
bronchiectasis only among smokers. This suggests that smoking cessation has the potential to prevent
those with PI*ZZ genotype from developing multiple respiratory diseases.

Almost half of those with the PI*ZZ genotype were symptomatic with severe airflow obstruction and
increased risk of all-cause mortality. Linear regression of FEV1 by age in PI*ZZ individuals estimated a
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FIGURE 2 Survival curves of all-cause mortality stratified by SERPINA1 genotypes. a) PI*ZZ versus PI*MM genotypes; b) PI*SZ versus PI*MM
genotypes; c) PI*MZ versus PI*MM genotypes; d) PI*SS versus PI*MM genotypes. All p-values were calculated by log-rank test.
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larger age-dependent decrease of FEV1 compared to PI*MM individuals. In PheWAS, PI*ZZ was
significantly associated with dependence on a respirator or supplemental oxygen, empyema and
pneumothorax, cachexia and secondary polycythaemia, all of which could be sequelae of AATD.
Extrapulmonary diseases that have previously been described as associated with PI*ZZ were also replicated
in our study, such as cirrhosis, hepatic carcinoma, panniculitis, pancreatitis and aneurysm, pathogenesis of
which is thought to be triggered by protease–antiprotease imbalance [23].

Even among subjects with COPD diagnosis, 77% of PI*ZZ individuals were not diagnosed as having
AATD in this study. Previous surveys indicated that the mean delay between symptom onset and diagnosis
among those actually diagnosed ranges from 5 to 8 years [6, 24], and the delay was associated with worse
respiratory symptoms and accelerated emphysema progression [25]. Potential reasons for underdiagnosis
include poor awareness of the disease, the unavailability of appropriate tests and/or treatments in specific
regions, i.e. no availability of AAT replacement therapy in the UK [26, 27]. The current laboratory testing
practice for AATD involves first quantifying plasma AAT levels together with measuring C-reactive
protein, followed by protein phenotyping and/or Z and S genotyping [28, 29]. Since the genotype data is
less affected by batch effects compared to measuring AAT, a protein known to increase in the context of
inflammatory conditions [30], our results suggest that genotyping could be a step toward efficient
identification of PI*ZZ carriers. In the current study, 80% of diagnosed AATD occurred in PI*MZ
individuals. This could reflect either misdiagnoses or the impact of other disease predisposing mutations
in the SERPINA1 gene that were not detected with the genotyping array.

PI*ZZ individuals with the lowest quartile of the PRS had relatively higher FEV1/FVC, possibly suggesting
that polygenic factors affecting lung function partially explain variable penetrance of PI*ZZ genotype [3].
Genome-wide genotyping, which enables the calculation of the PRS and the SERPINA1 genotyping, could
be alternative approach to the SERPINA1-targeted genotyping as a screening strategy for AATD, given its
relatively low cost (USD 40 in a research context).

In addition, our study provides several insights of the effects of PI*SZ and PI*MZ genotype. Overall, while
PI*SZ was associated with a two-fold increased risk of an FEV1/FVC <0.7 in heavy smokers, we
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demonstrated that PI*SZ and PI*MZ genotypes had modest effects on the risks of spirometry-defined
obstructive lung impairment (FEV1/FVC <0.7) and severe airways obstruction (FEV1 <50% pred)
compared to the previous findings that PI*SZ had three-fold increased risk of COPD (95% CI 1.24–8.57)
[5] and PI*MZ had five-fold increased risk of COPD (95% CI 1.27–21.15) [31]. However, these case–
control studies described very large confidence intervals and the PI*MZ participants were recruited from
index PI*MZ COPD patients [31], potentially biased by the other shared genetic factors associated with
COPD. PI*MZ genotype, but not PI*SZ, was significantly associated with increased risk of cirrhosis and
marginally increased risk of all-cause mortality in this study. The discordance between PI*SZ and PI*MZ
genotype could be driven by the lack of statistical power in PI*SZ individuals, 20 times less than PI*MZ.
PheWAS found that PI*MZ was associated with multiple diseases, namely increased risk of cholelithiasis
and decreased risk of cardiovascular disease. There are several studies [32–35] which might support these
hypotheses, although validation studies and functional investigations are necessary.

Most of the previous epidemiological studies of PI*ZZ individuals were case–control studies [36, 37] and
the current study is the one of the largest studies to assess the effects of the SERPINA1 genotype status to
multiple health conditions in a single large population cohort. A prior family-based study included
nonindex family members with undiagnosed PI*ZZ individuals who had more severe spirometry results
(mean FEV1/FVC 0.61 and mean FEV1 72.3% pred) [38] than those in UK Biobank (table 2), which could
reflect the effects of other shared genetic factors. The main limitation of this study is that UK Biobank is
not representative of general population as there is well-documented evidence of a “healthy volunteer’ bias
[39]. Therefore, we did not try to derive generalisable disease prevalence, but aimed to report the
associations with PI*ZZ genotype and multiple health conditions. Another shortcoming is that the
diagnosis of AATD was based on questionnaires and/or Hospital Episode Statistics, which rely on the
diagnosis of each clinician and potentially harbour “clinical order” bias [40]. Nevertheless, the estimated
prevalence of asthma (14%), COPD (3.9%) and bronchiectasis (0.69%) in PI*MM individuals were similar
to the previous reports [41–43], which might support the validity of our approach of how to ascertain the
disease status. PheWAS demonstrated that PI*ZZ was associated with increased risk of cystic fibrosis,
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which could represent misdiagnoses of bronchiectasis. PheWAS, which is based on ICD codings, can be
underpowered, so that while no significant associations between PI*ZZ and liver diseases or asthma were
observed, this does not preclude smaller effects. Last, there are no AAT measurements available in UK
Biobank, so we could not test whether people with high-risk genotypes had low levels of plasma AAT.
Although we did not test cost-effectiveness of the population-level screening of AATD, genome-wide
genotyping may help the screening of individuals at risk, such as heavy smokers or with a family history of
pulmonary disease, to identify those with undiagnosed AATD. As this is a genetic study with potential
clinical implications, future effort is needed to address the issue of incidental findings, such as applying
the American College of Medical Genetics and Genomics [44] recommendations as to how to report
secondary findings.

In summary, we provide evidence that the vast majority of individuals with PI*ZZ are not diagnosed as
having AATD, according to definitions available in UK Biobank. Yet these individuals have a profoundly
increased burden of multiple symptoms and diseases and an increased risk of all-cause mortality.
Identification of these individuals could help to target smoking cessation programmes [45] and the
ascertainment of family members, as well as disease-specific therapies [9]. Our data provide potential
avenues to realise clinical benefits of emerging nationwide genomic efforts in the UK.
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