

Cyclophilin inhibitors restrict Middle East respiratory syndrome coronavirus *via* interferon- λ *in vitro* and in mice

Lucie Sauerhering¹, Alexandra Kupke¹, Lars Meier¹, Erik Dietzel¹, Judith Hoppe², Achim D. Gruber², Stefan Gattenloehner³, Biruta Witte⁴, Ludger Fink⁵, Nina Hofmann⁶, Tobias Zimmermann⁶, Alexander Goesmann ⁶, Andrea Nist⁷, Thorsten Stiewe^{7,8}, Stephan Becker^{1,10}, Susanne Herold^{9,10} and Christin Peteranderi ⁶, 10

Affiliations: ¹Institute of Virology, Philipps University of Marburg, Member of the German Center for Infection Research (DZIF), TTU Emerging Infections, Marburg, Germany. ²Dept of Veterinary Pathology, Free University Berlin, Berlin, Germany. ³Dept of Pathology, University Hospital of Giessen, Giessen, Germany. ⁴Dept of General and Thoracic Surgery, University Hospital of Giessen, Germany. ⁵Institut für Pathologie und Zytologie, Wetzlar, Germany. ⁶Bioinformatics and System Biology, University of Giessen, Giessen, Germany. ⁷Genomics Core Facility, Philipps University of Marburg, Germany. ⁸Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Germany. ⁹Dept of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany. ¹⁰Equal contribution.

Correspondence: Christin Peteranderl, Universities of Giessen and Marburg Lung Center, Department of Internal Medicine II, Klinikstr. 36, D-35392 Giessen, Germany. E-mail: Christin.Peteranderl@innere.med.uni-qiessen.de

@ERSpublications

The cyclophilin inhibitors cyclosporin A and alisporivir activate host innate immunity by induction of interferon-λ via activation of IRF1 in human lung epithelial cells and in vivo, resulting in a significant inhibition of MERS-CoV https://bit.ly/37gzIBH

Cite this article as: Sauerhering L, Kupke A, Meier L, *et al.* Cyclophilin inhibitors restrict Middle East respiratory syndrome coronavirus *via* interferon- λ *in vitro* and in mice. *Eur Respir J* 2020; 56: 1901826 [https://doi.org/10.1183/13993003.01826-2019].

This single-page version can be shared freely online.

ABSTRACT While severe coronavirus infections, including Middle East respiratory syndrome coronavirus (MERS-CoV), cause lung injury with high mortality rates, protective treatment strategies are not approved for clinical use.

We elucidated the molecular mechanisms by which the cyclophilin inhibitors cyclosporin A (CsA) and alisporivir (ALV) restrict MERS-CoV to validate their suitability as readily available therapy in MERS-CoV infection.

Calu-3 cells and primary human alveolar epithelial cells (hAECs) were infected with MERS-CoV and treated with CsA or ALV or inhibitors targeting cyclophilin inhibitor-regulated molecules including calcineurin, nuclear factor of activated T-cells (NFATs) or mitogen-activated protein kinases. Novel CsA-induced pathways were identified by RNA sequencing and manipulated by gene knockdown or neutralising antibodies. Viral replication was quantified by quantitative real-time PCR and 50% tissue culture infective dose. Data were validated in a murine MERS-CoV infection model.

Both CsA and ALV reduced MERS-CoV titres and viral RNA replication in Calu-3 cells and hAECs, improving epithelial integrity. While neither calcineurin nor NFAT inhibition reduced MERS-CoV propagation, blockade of c-Jun N-terminal kinase diminished infectious viral particle release but not RNA

Copyright ©ERS 2020. This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0.

accumulation. Importantly, CsA induced interferon regulatory factor 1 (IRF1), a pronounced type III interferon (IFN λ) response and expression of antiviral genes. Downregulation of IRF1 or IFN λ increased MERS-CoV propagation in the presence of CsA. Importantly, oral application of CsA reduced MERS-CoV replication *in vivo*, correlating with elevated lung IFN λ levels and improved outcome.

We provide evidence that cyclophilin inhibitors efficiently decrease MERS-CoV replication *in vitro* and *in vivo via* upregulation of inflammatory antiviral cell responses, in particular IFN λ . CsA might therefore represent a promising candidate for treating MERS-CoV infection.