

Mechanical circulatory support in refractory cardiogenic shock due to influenza virus-related myocarditis

Jan-Thorben Sieweke 01,6 , Muharrem Akin 1,6 , Sebastian Stetskamp 1 , Christian Riehle 1 , Danny Jonigk 2 , Ulrike Flierl 1 , Tobias J. Pfeffer 1 , Valentin Hirsch 1 , Jochen Dutzmann 3 , Marius M. Hoeper 04 , Christian Kühn 5 , Johann Bauersachs 01 and Andreas Schäfer 1

Affiliations: ¹Cardiac Arrest Center and Advanced Heart Failure Unit, Dept of Cardiology and Angiology, Hannover Medical School, Hannover, Germany. ²Dept of Pathology, Hannover Medical School, Hannover, Germany. ³Mid-German Heart Center, Dept of Cardiology, Angiology, and Intensive Care Medicine, University Hospital, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany. ⁴Dept of Respiratory Medicine and the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany. ⁵Dept of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany. ⁶These authors contributed equally to the manuscript.

Correspondence: Jan-Thorben Sieweke, Dept of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany. E-mail: sieweke.jan-thorben@mh-hannover.de

@ERSpublications

Combined mechanical circulatory support in refractory cardiogenic shock (ECMELLA) might not salvage patients with influenza-associated myocarditis and severe end-organ damage, in contrast to the favourable effects in primary cardiac causes https://bit.ly/3dmonC4

Cite this article as: Sieweke J-T, Akin M, Stetskamp S, *et al.* Mechanical circulatory support in refractory cardiogenic shock due to influenza virus-related myocarditis. *Eur Respir J* 2020; 56: 2000925 [https://doi.org/10.1183/13993003.00925-2020].

This single-page version can be shared freely online.

ABSTRACT

Background: There is scarce evidence for mechanical circulatory support (MCS) in patients with influenza-related myocarditis complicated by refractory cardiogenic shock (rCS). We sought to investigate the impact of MCS using combined veno-arterial extracorporeal membrane oxygenation (VA-ECMO) and micro-axial flow pumps (the ECMELLA concept) in influenza-related myocarditis complicated by rCS.

Methods: This is a prospective, observational analysis from the single centre HAnnover Cardiac Unloading REgistry (HACURE) from two recent epidemic influenza seasons. We analysed patients with verified influenza-associated myocarditis complicated by rCS who were admitted to our intensive care unit (ICU) on MCS. Subsequently, we performed a propensity score (PS) matched analysis to patients with acute myocardial infarction (AMI) complicated by rCS and non-ischaemic cardiomyopathy (DCM) related rCS.

Results: We describe a series of seven patients with rCS-complicated influenza-related myocarditis (mean age 56 ± 10 years, 58% male, influenza A (n=2)/influenza B (n=5)). No patient had been vaccinated prior to the influenza season. MCS was provided using combined VA-ECMO and Impella micro-axial flow pump. In two patients with out-of-hospital cardiac arrest, VA-ECMO had been implanted for extracorporeal cardiopulmonary resuscitation. All patients died within 18 days of hospital admission. By PS-based comparison to patients with AMI- or DCM-related rCS and combined MCS, 30-day mortality was significantly higher in influenza-related rCS.

Conclusion: Despite initial stabilisation with combined MCS in patients with rCS-complicated influenza-related myocarditis, the detrimental course of shock could not be stopped and all patients died. Influenza virus infection potentially critically affects other organs besides the heart, leading to irreversible end-organ damage that MCS cannot compensate for and, therefore, results in a devastating outcome.

Copyright ©ERS 2020. This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0.